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Exercices d’application directe du cours

Exercice 1

1. On vérifie que la matrice nulle appartient à Sn et que pour tout (α, β) ∈ R2 et tout (A,B) ∈
(Sn)2, (αA + βB)T = αA + βB ∈ Sn. Sn est donc un s.e.v. de l’espace des matrices réelles
de dimension n × n. Une base de Sn est formée des matrices (Ei,j)1≤i≤j≤n telles que, pour

tout (i, j) ∈ {1, . . . , n}2 avec i ≤ j, Ei,j = (ei,jk,l)1≤k≤n,1≤l≤n où

ei,jk,l =

{
1 si (k, l) = (i, j) ou (k, l) = (j, i)
0 sinon.

En décomptant le nombre d’éléments de la base, on voit que Sn est un e.v. de dimension
n(n+ 1)/2.

2. Pour tout (A,B) ∈ (Sn)2, notons A = (ak,l)1≤k≤n,1≤l≤n et B = (bk,l)1≤k≤n,1≤l≤n. Par calcul
immédiat

tr(AB) = tr(ABT ) =

n∑

k=1

n∑

l=1

ak,lbk,l. (1)

On reconnâıt ainsi l’expression d’un produit scalaire euclidien classique. Dans la suite, on
notera 〈A,B〉 = tr(AB).

3. Rappelons que S+
n est l’ensemble des matrices A de Sn telles que, pour tout x ∈ Rn,

xTAx ≥ 0.

Quel que soit A ∈ S+
n , on a donc, pour tout α > 0,

∀x ∈ Rn, xT (αA)x = αxTAx ≥ 0

ce qui montre que αA ∈ S+
n . Par ailleurs, pour tout (A,B) ∈ (S+

n )2 et tout α ∈ [0, 1],

∀x ∈ Rn, xT (αA+ (1− α)B)x = αxTAx+ (1− α)xTBx ≥ 0

ce qui montre que αA + (1 − α)B ∈ S+
n . On en déduit que S+

n est un cône convexe dont le
sommet est la matrice nulle.

Considérons maintenant une suite (Ai)i∈N d’élements de S+
n qui converge vers A ∈ Sn. Ceci

signifie que ‖Ai − A‖ → 0 quand i → ∞ où ‖.‖ est la norme associée au produit scalaire
précédent :

∀B ∈ Sn, ‖B‖ = (tr(B2))1/2.

On a alors, par continuité du produit scalaire : pour tout x ∈ Rn,

xTAix = tr(Aixx
T ) = 〈Ai, xxT 〉 ≥ 0 −−−→

i→∞
〈A, xxT 〉 = xTAx

ce qui implique que xTAx ≥ 0 et que A ∈ S+
n . Ceci permet de conclure que S+

n est un cône
fermé convexe.



4. Pour tout x ∈ X, on peut écrire f(x) = Ax + b où A est un opérateur linéaire de X vers Y
et b ∈ Y .

On a
f(C) = {y ∈ Y | ∃x ∈ C, y = f(x)}.

Pour tout (y1, y2) ∈ f(C)2 et tout α ∈ [0, 1], il existe (x1, x2) ∈ C2 tels que y1 = f(x1) et
y2 = f(x2). On a donc

αy1 +(1−α)y2 = α(Ax1 +b)+(1−α)(Ax2 +b) = A(αx1 +(1−α)x2)+b = f(αx1 +(1−α)x2).

C ayant été supposé convexe, αx1 +(1−α)x2 ∈ C et, par conséquent, αy1 +(1−α)y2 ∈ f(C).

Par ailleurs,
f−1(D) = {x ∈ X | f(x) ∈ D}.

Pour tout (x1, x2) ∈ f−1(D)2 et tout α ∈ [0, 1],

f(αx1 + (1− α)x2) = α(Ax1 + b) + (1− α)(Ax2 + b) = αf(x1) + (1− α)f(x2).

D étant convexe et (f(x1), f(x2)) ∈ D2, on a αf(x1) + (1 − α)f(x2) ∈ D, ce qui permet
d’affirmer que αx1 + (1− α)x2 ∈ f−1(D). Il a ainsi été démontré que f−1(D) est convexe.

5. Définissons l’application f de Rp vers Sn qui, à tout x = (x1, . . . , xp), associe f(x) = B −∑p
i=1 xiAi. Cette application est affine. Par ailleurs, l’ensemble considéré s’écrit

{x ∈ Rp | f(x) � 0}.

Il s’agit donc de f−1(S+
n ). On déduit des résultats des questions 3 et 5 que cet ensemble est

convexe. S’agissant de l’image réciproque d’un fermé par une application continue, on peut
affirmer qu’il s’agit d’un convexe fermé.

Exercice 2

1. Remarquons tout d’abord que ‖ · ‖ est bien définie sur X puisque, si x est continue sur [a, b],
elle est absolument intégrable sur cet intervalle. Il s’agit clairement d’une application de X
vers R+.

Il nous reste à vérifier les propriétés d’une norme qui, dans ce cas, apparaissent comme des
conséquences immédiates de celles de la valeur absolue et de l’intégrale.

(a) ∀λ ∈ R, ∀x ∈ X,

‖λx‖ =

∫ b

a

|λx(t)| dt = |λ|
∫ b

a

|x(t)| dt = |λ| ‖x‖.

(b) ∀(x, y) ∈ X2,

‖x+y‖ =

∫ b

a

|x(t)+y(t)| dt ≤
∫ b

a

(|x(t)|+|y(t)|) dt =

∫ b

a

|x(t)| dt+
∫ b

a

|y(t)| dt = ‖x‖+‖y‖.

(c) ∀x ∈ X,

‖x‖ = 0⇔
∫ b

a

|x(t)| dt = 0,

ce qui signifie que x est presque partout nulle sur [a, b] et la continuité de x permet alors
d’affirmer qu’elle est nulle sur tout l’intervalle.

2. Pour montrer que X muni de cette norme n’est pas complet il suffit de trouver une suite de
Cauchy de cet espace qui ne converge pas. Considérons la suite (xn)n∈N de fonctions affines
par morceau définies par

∀n ∈ N, ∀t ∈ [a, b], xn(t) =





0 si a ≤ t ≤ a+ b

2
,

2(n+ 1)

b− a (t− a+ b

2
) si 0 < t− a+ b

2
<

b− a
2(n+ 1)

,

1 si
a+ b

2
+

b− a
2(n+ 1)

≤ t ≤ b.

2



Il s’agit de fonctions de X (i.e. continues sur [a, b]).

Montrons que (xn)n∈N est une suite de Cauchy de X. Pour cela, pour tout (n,m) ∈ N2 avec
m ≥ n, calculons

‖xm − xn‖ =

∫ b

a

|xm(t)− xn(t)| dt.

En raisonnant sur les graphes des fonctions xn et xm, on trouve par un calcul élémentaire
d’aire :

‖xm − xn‖ =
(b− a)

4

( 1

n+ 1
− 1

m+ 1

)
.

On voit ainsi que
‖xm − xn‖ −−−−−→

n,m→∞
0,

ce qui est la caractéristique d’une suite de Cauchy.

Si l’on considère maintenant la fonction y définie par

∀t ∈ [a, b], y(t) =





0 si a ≤ t ≤ a+ b

2
,

1 si
a+ b

2
< t ≤ b,

on a

‖xn − y‖ =
(b− a)

4(n+ 1)
.

Par conséquent, si (xn)n∈N convergeait dans X vers une limite x∞, on aurait

lim
n→∞

‖xn − y‖ = ‖x∞ − y‖ = 0.

Les fonctions x∞ et y étant continues sur [a, (a + b)/2[ et ](a + b)/2, b], elles seraient donc
égales sur ces intervalles. Ceci contredit évidemment l’hypothèse de continuité de x∞ en
(a+ b)/2.
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