Reconstruction and Clustering with Graph optimization and Priors on Gene Networks and Images

Aurélie Pirayre

PhD supervisors:

Frédérique BIDARD-MICHELOT Camille COUPRIE Laurent DUVAL Jean-Christophe PESQUET IFP Energies nouvelles Facebook A.I. Research IFP Energies nouvelles CentraleSupélec

July 3th, 2017

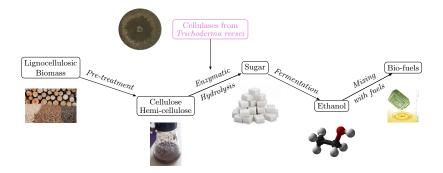
An overview

	Gene regulatory networks	Signals and images	
Reconstruction		🌄 - 😵	
Clustering	A.P.		
Our framework	Variational	Bayes variational	
Method	BRANE	НОДМер	

July 3th, 2017

Biological motivation

• Second generation bio-fuel production



12

Biological motivation

• Second generation bio-fuel production

- Improve Trichoderma reseei cellulase production
- Understand cellulase production mechanisms

July 3th, 2017

Biological motivation

• Second generation bio-fuel production

- Improve Trichoderma reseei cellulase production
- Understand cellulase production mechanisms
 - \Rightarrow Use of Gene Regulatory Network (GRN)

July 3th, 2017

What is a Gene Regulatory Network (GRN)?

GRN: a graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ $\mathcal{V} = \{v_1, \dots, v_G\}$: a set of *G* nodes (corresponding to genes) \mathcal{E} : a set of edges (corresponding to interactions between genes)

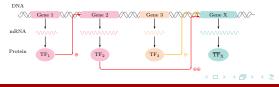
July 3th, 2017

What is a Gene Regulatory Network (GRN)?

GRN: a graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ $\mathcal{V} = \{v_1, \dots, v_G\}$: a set of *G* nodes (corresponding to genes) \mathcal{E} : a set of edges (corresponding to interactions between genes)

A gene regulatory network...

... models biological gene regulatory mechanisms



What biological data can be used?

For a given experimental condition, transcriptomic data answer to: *which genes are expressed? in which amount?*

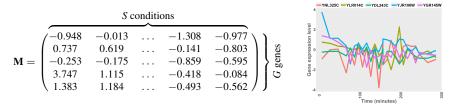
What biological data can be used?

For a given experimental condition, transcriptomic data answer to: *which genes are expressed? in which amount?*

How to obtain transcriptomic data? Microarray and RNAseq experiments

What do transcriptomic data look like?

Gene expression data (GED): G genes $\times S$ conditions



From gene expression data...

From gene expression data...

• $\mathcal{V} = \{v_1, \cdots, v_G\}$ a set of **vertices** (genes) and \mathcal{E} a set of edges

leading to a complete graph...

July 3th, 2017

From gene expression data...

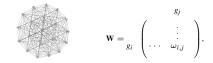
- $\mathcal{V} = \{v_1, \cdots, v_G\}$ a set of **vertices** (genes) and \mathcal{E} a set of edges
- Each edge $e_{i,j}$ is weighted by $\omega_{i,j}$

leading to a complete weighted graph...

From gene expression data ...

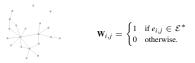
- $\mathcal{V} = \{v_1, \cdots, v_G\}$ a set of **vertices** (genes) and \mathcal{E} a set of edges
- Each edge $e_{i,j}$ is weighted by $\omega_{i,j}$

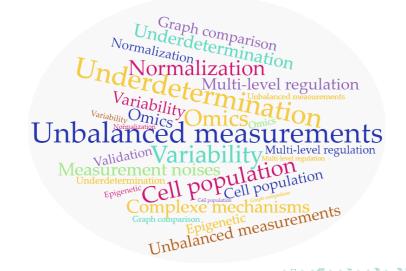
leading to a complete weighted graph...



• We look for a subset of edges \mathcal{E}^* reflecting **regulatory links between genes**

to infer a meaningful gene network.





July 3th, 2017

Normalization

Measurement noises Cell population

July 3th, 2017

Normalization Multi-level regulation

Omics

Measurement noises Cell population Complexe mechanisms Epigenetic

July 3th, 2017

Underdete^{Multi-level regulation} Unbalanced measurements Variability Measurement noises Cell population Complexe mechanisms Epigenetic

July 3th, 2017

What is the subset of edges \mathcal{E}^* reflecting real regulatory links between genes? \Rightarrow what is the binary adjacency matrix $\mathbf{W} \in \{0, 1\}^{G \times G}$?

What is the subset of edges \mathcal{E}^* reflecting real regulatory links between genes? \Rightarrow what is the binary adjacency matrix $\mathbf{W} \in \{0, 1\}^{G \times G}$?

• We note $x_{i,j}$ the binary label of edge presence: $x_{i,j} = \begin{cases} 1 & \text{if } e_{i,j} \in \mathcal{E}^*, \\ 0 & \text{otherwise.} \end{cases}$

What is the subset of edges \mathcal{E}^* reflecting real regulatory links between genes? \Rightarrow what is the binary adjacency matrix $\mathbf{W} \in \{0, 1\}^{G \times G}$?

• We note $x_{i,j}$ the binary label of edge presence: $x_{i,j} = \begin{cases} 1 & \text{if } e_{i,j} \in \mathcal{E}^*, \\ 0 & \text{otherwise.} \end{cases}$

• Classical thresholding:
$$x_{i,j}^* = \begin{cases} 1 & \text{if } \omega_{i,j} > \lambda, \\ 0 & \text{otherwise.} \end{cases}$$

What is the subset of edges \mathcal{E}^* reflecting real regulatory links between genes? \Rightarrow what is the binary adjacency matrix $\mathbf{W} \in \{0, 1\}^{G \times G}$?

• We note $x_{i,j}$ the binary label of edge presence: $x_{i,j} = \begin{cases} 1 & \text{if } e_{i,j} \in \mathcal{E}^*, \\ 0 & \text{otherwise.} \end{cases}$

• Classical thresholding:
$$x_{i,j}^* = \begin{cases} 1 & \text{if } \omega_{i,j} > \lambda, \\ 0 & \text{otherwise.} \end{cases}$$

• Given by a cost function for given weights ω :

$$\left(\begin{array}{c} \underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{maximize}} \quad \sum_{(i,j) \in \mathbb{V}^{2}} \omega_{i,j} \, x_{i,j} + \lambda (1 - x_{i,j}) \end{array} \right)$$

1

What is the subset of edges \mathcal{E}^* reflecting real regulatory links between genes? \Rightarrow what is the binary adjacency matrix $\mathbf{W} \in \{0, 1\}^{G \times G}$?

• We note $x_{i,j}$ the binary label of edge presence: $x_{i,j} = \begin{cases} 1 & \text{if } e_{i,j} \in \mathcal{E}^*, \\ 0 & \text{otherwise.} \end{cases}$

• Classical thresholding:
$$x_{i,j}^* = \begin{cases} 1 & \text{if } \omega_{i,j} > \lambda, \\ 0 & \text{otherwise.} \end{cases}$$

• Given by a cost function for given weights ω :

 $\underbrace{\max_{\boldsymbol{x}\in\{0,1\}^{E}} \sum_{(i,j)\in\mathbb{V}^{2}} \omega_{i,j} x_{i,j} + \lambda(1-x_{i,j}) \Leftrightarrow \min_{\boldsymbol{x}\in\{0,1\}^{E}} \sum_{(i,j)\in\mathbb{V}^{2}} \omega_{i,j} (1-x_{i,j}) + \lambda x_{i,j}}}_{(i,j)\in\mathbb{V}^{2}}$

BRANE: Biologically Related A priori Network Enhancement

- Extend classical thresholding
- Integrate biological priors into the functional to be optimized
- Enforce modular networks
- Additional knowledge:
 - Transcription factors (TFs): regulators
 - Non transcription factors (TFs): targets

BRANE: Biologically Related A priori Network Enhancement

- Extend classical thresholding
- Integrate biological priors into the functional to be optimized
- Enforce modular networks
- Additional knowledge:
 - Transcription factors (TFs): regulators
 - Non transcription factors (TFs): targets

	Method	a priori	Formulation	Algorithm
Inference	BRANE Cut BRANE Relax	Gene co-regulatiton TF-connectivity	Discrete Continuous	Maximal flow Proximal method
Joint inference and clustering	BRANE Clust	Gene grouping	Mixed	Alternating scheme

A discrete method: BRANE Cut

We look for a discrete solution for $\mathbf{x} \Leftrightarrow \mathbf{x} \in \{0, 1\}^E$

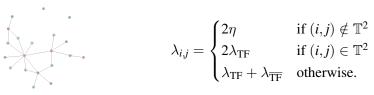
July 3th, 2017

$$\underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{minimize}} \quad \sum_{(i,j) \in \mathbb{V}^{2}} \omega_{i,j} \varphi(x_{i,j}-1) + \lambda_{i,j} \varphi(x_{i,j}) + \mu \Psi(x_{i,j})$$

July 3th, 2017

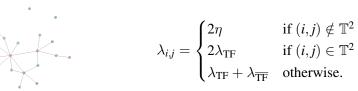
$$\underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{minimize}} \quad \sum_{(i,j) \in \mathbb{V}^{2}} \omega_{i,j} \varphi(x_{i,j}-1) + \lambda_{i,j} \varphi(x_{i,j}) + \mu \Psi(x_{i,j})$$

• Modular network: favors links between TFs and \overline{TFs}



$$\underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{minimize}} \quad \sum_{(i,j) \in \mathbb{V}^{2}} \omega_{i,j} \varphi(x_{i,j}-1) + \lambda_{i,j} \varphi(x_{i,j}) + \mu \Psi(x_{i,j})$$

• Modular network: favors links between TFs and TFs



with:

- \mathbb{T} : the set of TF indices
- $\eta > \max \left\{ \omega_{i,j} \mid (i,j) \in \mathbb{V}^2 \right\}$
- $\lambda_{\mathrm{TF}} > \lambda_{\overline{\mathrm{TF}}}$

A linear relation is sufficient: $\lambda_{\rm TF} = \beta \lambda_{\rm \overline{TF}}$ with $\beta = \frac{|\mathcal{V}|}{|\mathcal{T}|}$

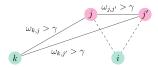
July 3th, 2017

$$(\underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{minimize}} \quad \sum_{(i,j) \in \mathbb{V}^{2}} \omega_{i,j} \varphi(x_{i,j}-1) + \lambda_{i,j} \varphi(x_{i,j}) + \mu \Psi(x_{i,j})$$

July 3th, 2017

$$\left(\begin{array}{ccc} \underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{minimize}} & \sum_{(i,j) \in \mathbb{V}^{2}} \omega_{i,j} \varphi(x_{i,j}-1) & + & \lambda_{i,j} \varphi(x_{i,j}) & + & \mu \Psi(x_{i,j}) \end{array} \right)$$

• Gene co-regulation: favors edge coupling

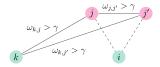


$$\Psi(x_{i,j}) = \sum_{\substack{(j,j') \in \mathbb{T}^2 \\ i \in \mathbb{V} \setminus \mathbb{T}}} \rho_{i,j,j'} |x_{i,j} - x_{i,j'}|$$

 $\rho_{i,j,j'}$: co-regulation probability

$$\left(\begin{array}{ccc} \underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{minimize}} & \sum_{(i,j) \in \mathbb{V}^{2}} \omega_{i,j} \varphi(x_{i,j}-1) & + & \lambda_{i,j} \varphi(x_{i,j}) & + & \mu \Psi(x_{i,j}) \end{array} \right)$$

• Gene co-regulation: favors edge coupling



$$\Psi(x_{i,j}) = \sum_{\substack{(j,j') \in \mathbb{T}^2\\i \in \mathbb{V} \setminus \mathbb{T}}} \rho_{i,j,j'} |x_{i,j} - x_{i,j'}|$$

 $\rho_{i,j,j'}$: co-regulation probability

with

•
$$\rho_{i,j,j'} = \frac{\displaystyle\sum_{k \in \mathcal{V} \setminus (\mathcal{T} \cup \{i\})} \mathbbm{1}(\min\{\omega_{j,j'}, \omega_{j,k}, \omega_{j',k}\} > \gamma)}{|\mathcal{V} \setminus \mathcal{T}| - 1}$$

• γ : the $(|\mathcal{V}|-1)^{\mathrm{th}}$ of the normalized weights ω

$$\left(\begin{array}{ccc} \underset{\boldsymbol{x} \in \{0,1\}^E}{\text{minimize}} & \sum_{\substack{(i,j) \in \mathbb{V}^2 \\ j > i}} \omega_{i,j} |x_{i,j} - 1| & + & \lambda_{i,j} x_{i,j} & + \sum_{\substack{i \in \mathbb{V} \setminus \mathbb{T} \\ (j,j') \in \mathbb{T}^2, j' > j}} \rho_{i,j,j'} |x_{i,j} - x_{i,j'}| \right)$$

July 3th, 2017

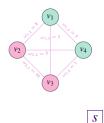
Recons. and Clust. with Graph Optim. and Priors on GRN and Images

э

$$\underset{\boldsymbol{x} \in \{0,1\}^{E}}{\operatorname{minimize}} \sum_{\substack{(i,j) \in \mathbb{V}^{2} \\ j > i}} \omega_{i,j} |x_{i,j} - 1| + \lambda_{i,j} x_{i,j} + \sum_{\substack{i \in \mathbb{V} \setminus \mathbb{T} \\ (j,j') \in \mathbb{T}^{2}, j' > j}} \rho_{i,j,j'} |x_{i,j} - x_{i,j'}|$$

-

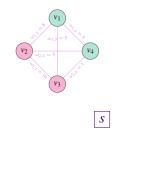
$$\begin{bmatrix} \underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{minimize}} & \sum_{\substack{(i,j) \in \mathbb{V}^{2} \\ j > i}} \omega_{i,j} |x_{i,j} - 1| & + & \lambda_{i,j} x_{i,j} & + \sum_{\substack{i \in \mathbb{V} \setminus \mathbb{T} \\ (j,j') \in \mathbb{T}^{2}, j' > j}} \rho_{i,j,j'} |x_{i,j} - x_{i,j'}| \end{bmatrix}$$



-

t

$$\left(\begin{array}{ccc} \underset{\boldsymbol{x} \in \{0,1\}^E}{\text{minimize}} & \sum_{\substack{(i,j) \in \mathbb{V}^2 \\ j > i}} \omega_{i,j} |x_{i,j} - 1| & + & \lambda_{i,j} x_{i,j} & + \sum_{\substack{i \in \mathbb{V} \setminus \mathbb{T} \\ (j,j') \in \mathbb{T}^2, j' > j}} \rho_{i,j,j'} |x_{i,j} - x_{i,j'}| \right)$$



*x*_{2,3}

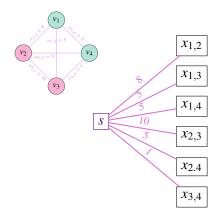
*x*_{2.4}

*x*_{3,4}

Recons. and Clust. with Graph Optim. and Priors on GRN and Images

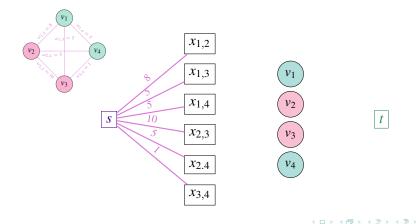
t

$$\left(\underset{\substack{\boldsymbol{x} \in \{0,1\}^E \\ j > i}}{\text{minimize}} \sum_{\substack{(i,j) \in \mathbb{V}^2 \\ j > i}} \omega_{i,j} |x_{i,j} - 1| + \lambda_{i,j} x_{i,j} + \sum_{\substack{i \in \mathbb{V} \setminus \mathbb{T} \\ (j,j') \in \mathbb{T}^2, j' > j}} \rho_{i,j,j'} |x_{i,j} - x_{i,j'}| \right)$$

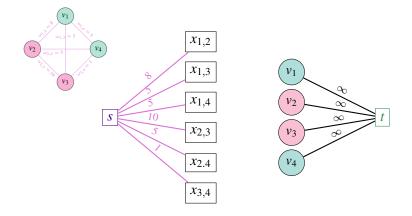


t

$$\left(\underset{\substack{\boldsymbol{x} \in \{0,1\}^E \\ j > i}}{\text{minimize}} \sum_{\substack{(i,j) \in \mathbb{V}^2 \\ j > i}} \omega_{i,j} |x_{i,j} - 1| + \lambda_{i,j} x_{i,j} + \sum_{\substack{i \in \mathbb{V} \setminus \mathbb{T} \\ (j,j') \in \mathbb{T}^2, j' > j}} \rho_{i,j,j'} |x_{i,j} - x_{i,j'}| \right)$$

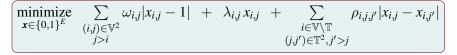


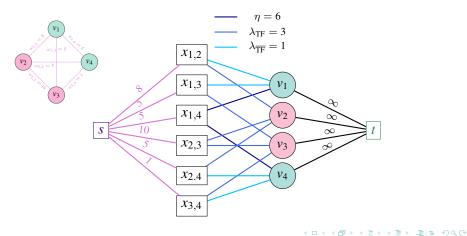
$$\left[\underset{\substack{\boldsymbol{x} \in \{0,1\}^E \\ j > i}}{\text{minimize}} \sum_{\substack{(i,j) \in \mathbb{V}^2 \\ j > i}} \omega_{i,j} |x_{i,j} - 1| + \lambda_{i,j} x_{i,j} + \sum_{\substack{i \in \mathbb{V} \setminus \mathbb{T} \\ (j,j') \in \mathbb{T}^2, j' > j}} \rho_{i,j,j'} |x_{i,j} - x_{i,j'}| \right]$$



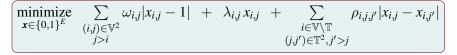
ELE DOG

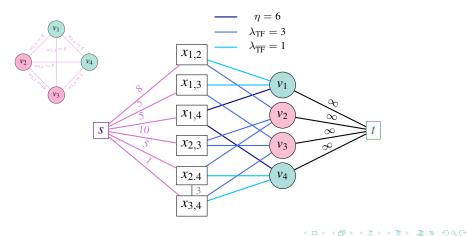
.



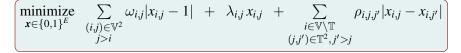


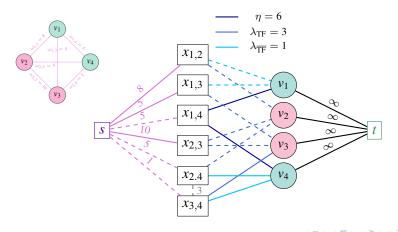
July 3th, 2017



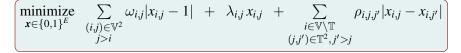


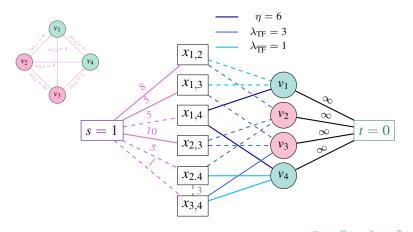
July 3th, 2017





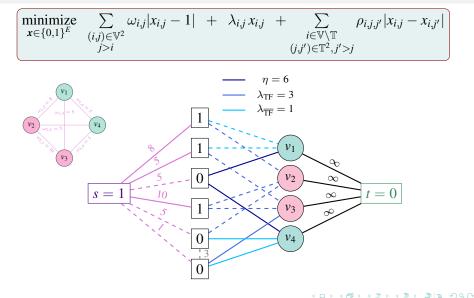
July 3th, 2017



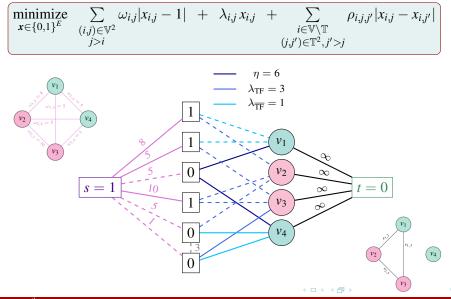


July 3th, 2017

EL OQO



July 3th, 2017



July 3th, 2017

A continuous method: BRANE Relax

We look for a continuous solution for $x \Leftrightarrow x \in [0, 1]^E$

July 3th, 2017

A priori

A priori: modular structure and TF connectivity

$$\left(\begin{array}{ccc} \underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{minimize}} & \sum_{(i,j) \in \mathbb{V}^{2}} \omega_{i,j} \varphi(x_{i,j}-1) & + & \lambda_{i,j} \varphi(x_{i,j}) & + & \mu \Psi(x_{i,j}) \end{array} \right)$$

July 3th, 2017

A priori: modular structure and \overline{TF} connectivity

$$\left(\begin{array}{ccc} \underset{\boldsymbol{x} \in \{0,1\}^E}{\text{minimize}} & \sum_{(i,j) \in \mathbb{V}^2} \omega_{i,j} \varphi(x_{i,j}-1) & + & \lambda_{i,j} \varphi(x_{i,j}) & + & \mu \Psi(x_{i,j}) \end{array} \right)$$

• Modular network: favors links between TFs and TFs

$$\lambda_{i,j} = \begin{cases} 2\eta & \text{if } (i,j) \notin \mathbb{T}^2\\ 2\lambda_{\text{TF}} & \text{if } (i,j) \in \mathbb{T}^2\\ \lambda_{\text{TF}} + \lambda_{\overline{\text{TF}}} & \text{otherwise.} \end{cases}$$

July 3th, 2017

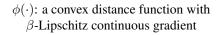
A priori: modular structure and \overline{TF} connectivity

$$(\underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{minimize}} \sum_{(i,j) \in \mathbb{V}^{2}} \omega_{i,j} \varphi(x_{i,j}-1) + \lambda_{i,j} \varphi(x_{i,j}) + \mu \Psi(x_{i,j}))$$

• Modular network: favors links between TFs and TFs

$$\lambda_{i,j} = \begin{cases} 2\eta & \text{if } (i,j) \notin \mathbb{T}^2\\ 2\lambda_{\text{TF}} & \text{if } (i,j) \in \mathbb{T}^2\\ \lambda_{\text{TF}} + \lambda_{\overline{\text{TF}}} & \text{otherwise.} \end{cases}$$

• $\overline{\text{TF}}$ connectivity: constraint $\overline{\text{TF}}$ node degree



 $\Psi(x_{i,j}) = \sum_{i \in \mathbb{W} \setminus \mathbb{T}} \phi\left(\sum_{i \in \mathbb{W}} x_{i,j} - d\right)$

TF3 TF5 TF5

A convex relaxation for a continuous formulation

$$\underset{\boldsymbol{x} \in \{0,1\}^{E}}{\text{minimize}} \sum_{\substack{(i,j) \in \mathbb{V}^{2} \\ j > i}} \omega_{i,j} (1 - x_{i,j}) + \lambda_{i,j} x_{i,j} + \mu \sum_{i \in \mathbb{V} \setminus \mathbb{T}} \phi \left(\sum_{j \in \mathbb{V}} x_{i,j} - d \right)$$

July 3th, 2017

Recons. and Clust. with Graph Optim. and Priors on GRN and Images

3 > < 3

A convex relaxation for a continuous formulation

$$\underset{\boldsymbol{x}\in\{0,1\}^{E}}{\text{minimize}} \sum_{\substack{(i,j)\in\mathbb{V}^{2}\\j>i}} \omega_{i,j}(1-x_{i,j}) + \lambda_{i,j}x_{i,j} + \mu \sum_{i\in\mathbb{V}\setminus\mathbb{T}} \phi\left(\sum_{j\in\mathbb{V}} x_{i,j} - d\right)$$

• Relaxation and vectorization:

$$\underset{\boldsymbol{x}\in[0,1]^{E}}{\text{minimize}} \quad \sum_{l=1}^{E} \omega_{l}(1-x_{l}) + \lambda_{l} x_{l} + \mu \sum_{i=1}^{P} \phi\left(\sum_{k=1}^{E} \Omega_{i,k} x_{k} - d\right),$$

where $\mathbf{\Omega} \in \{0, 1\}^{P \times E}$ encodes the degree of the *P* TFs nodes in the complete graph. $\Omega_{i,j} = \begin{cases} 1 & \text{if } j \text{ is the index of an edge linking the TF node } v_i \text{ in the complete graph,} \\ 0 & \text{otherwise.} \end{cases}$

Distance function in BRANE Relax

$$\underset{\boldsymbol{x} \in [0,1]^{E}}{\text{minimize}} \quad \sum_{l=1}^{E} \omega_{l}(1-x_{l}) + \lambda_{l} x_{l} + \mu \sum_{i=1}^{P} \phi\left(\sum_{k=1}^{E} \Omega_{i,k} x_{k} - d\right)$$

Choice of ϕ : node degree distance function, with respect to d

• $z_i = \sum_{k=1}^{E} \Omega_{i,k} x_k - d$ • squared ℓ_2 norm: $\phi(z) = ||z||^2$ • Huber function: $\phi(z_i) = \begin{cases} z_i^2 & \text{if } |z_i| \le \delta \\ 2\delta(|z_i| - \frac{1}{2}\delta) & \text{otherwise} \end{cases}$ 80 × -5

July 3th, 2017

Resolution

Optimization strategy via proximal methods

• Splitting

$$\underset{\boldsymbol{x} \in \mathbb{R}^{E}}{\text{minimize}} \quad \underbrace{\boldsymbol{\omega}^{\top}(\boldsymbol{1}_{E} - \boldsymbol{x}) + \boldsymbol{\lambda}^{\top}\boldsymbol{x} + \mu \Phi(\boldsymbol{\Omega}\boldsymbol{x} - \boldsymbol{d})}_{f_{2}} + \underbrace{\boldsymbol{\iota}_{[0,1]^{E}}(\boldsymbol{x})}_{f_{1}}$$

- $f_1 \in \Gamma_0(\mathbb{R}^E)$: proper, convex, and lower semi-continuous
- f_2 : convex, differentiable with an *L*-Lipschitz continuous gradient

Optimization strategy via proximal methods

Splitting

$$\underset{\boldsymbol{x} \in \mathbb{R}^{E}}{\text{minimize}} \quad \underbrace{\boldsymbol{\omega}^{\top}(\boldsymbol{1}_{E} - \boldsymbol{x}) + \boldsymbol{\lambda}^{\top}\boldsymbol{x} + \mu \Phi(\boldsymbol{\Omega}\boldsymbol{x} - \boldsymbol{d})}_{f_{2}} + \underbrace{\iota_{[0,1]^{E}}(\boldsymbol{x})}_{f_{1}}$$

- $f_1 \in \Gamma_0(\mathbb{R}^E)$: proper, convex, and lower semi-continuous
- f_2 : convex, differentiable with an L-Lipschitz continuous gradient

Algorithm 1: Forward-Backward

Fix $\mathbf{x}_0 \in \mathbb{R}^E$ for $k = 0, 1, \dots$ do $z_k = \mathbf{x}_k - \gamma_k \quad \nabla f_2(\mathbf{x}_k)$ $\mathbf{x}_{k+1} = \operatorname{prox}_{\gamma_k} \quad f_1(\mathbf{z}_k)$

Optimization strategy via proximal methods

Splitting

$$\underset{\boldsymbol{x} \in \mathbb{R}^{E}}{\text{minimize}} \quad \underbrace{\boldsymbol{\omega}^{\top}(\boldsymbol{1}_{E} - \boldsymbol{x}) + \boldsymbol{\lambda}^{\top}\boldsymbol{x} + \mu \Phi(\boldsymbol{\Omega}\boldsymbol{x} - \boldsymbol{d})}_{f_{2}} + \underbrace{\iota_{[0,1]^{E}}(\boldsymbol{x})}_{f_{1}}$$

- $f_1 \in \Gamma_0(\mathbb{R}^E)$: proper, convex, and lower semi-continuous
- f_2 : convex, differentiable with an L-Lipschitz continuous gradient

Algorithm 2: Preconditioned Forward-Backward

Fix $\mathbf{x}_0 \in \mathbb{R}^E$ for $k = 0, 1, \dots$ do $z_k = \mathbf{x}_k - \gamma_k A^{-1} \nabla f_2(\mathbf{x}_k)$ $\mathbf{x}_{k+1} = \operatorname{prox}_{\gamma_k^{-1}, A - f_1}(\mathbf{z}_k)$

Optimization strategy via proximal methods

Splitting

$$\underset{\boldsymbol{x} \in \mathbb{R}^{E}}{\text{minimize}} \quad \underbrace{\boldsymbol{\omega}^{\top}(\boldsymbol{1}_{E} - \boldsymbol{x}) + \boldsymbol{\lambda}^{\top}\boldsymbol{x} + \mu \Phi(\boldsymbol{\Omega}\boldsymbol{x} - \boldsymbol{d})}_{f_{2}} + \underbrace{\iota_{[0,1]^{E}}(\boldsymbol{x})}_{f_{1}}$$

- $f_1 \in \Gamma_0(\mathbb{R}^E)$: proper, convex, and lower semi-continuous
- f_2 : convex, differentiable with an L-Lipschitz continuous gradient

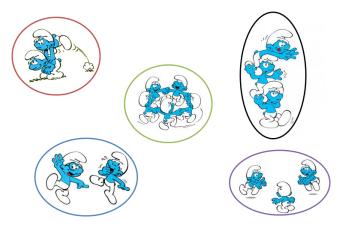
Algorithm 3: Block Coordinate + Preconditioned Forward-Backward

Fix
$$\mathbf{x}_0 \in \mathbb{R}^E$$

for $k = 0, 1, \dots$ do
Select the index $j_k \in \{1, \dots, J\}$ of a block of variables
 $\mathbf{z}_k^{(j_k)} = \mathbf{x}_k^{(j_k)} - \gamma_k A_{j_k}^{-1} \nabla_{j_k} f_2(\mathbf{x}_k)$
 $\mathbf{x}_{k+1}^{(j_k)} = \operatorname{prox}_{\gamma_k^{-1}, A_{j_k}, f_1^{(j_k)}}(\mathbf{z}_k^{(j_k)})$
 $\mathbf{x}_{k+1}^{(j_k)} = \mathbf{x}_k^{(j_k)}, \quad j_k = \{1, \dots, J\} \setminus \{j_k\}$

A mixed method: BRANE Clust

We look for a discrete solution for x and a continuous one for y



A priori: gene grouping and modular structure

$$(\underset{\substack{\boldsymbol{x} \in \{0,1\}^E \\ \boldsymbol{y} \in \mathbb{N}^G}}{\text{maximize}} \sum_{(i,j) \in \mathbb{V}^2} f(y_i, y_j) \omega_{i,j} x_{i,j} + \lambda(1 - x_{i,j}) + \Psi(y_i))$$

A priori: gene grouping and modular structure

$$\begin{array}{lll} \underset{\boldsymbol{x} \in \{0,1\}^E \\ \boldsymbol{y} \in \mathbb{N}^G}{\text{maximize}} & \sum_{(i,j) \in \mathbb{V}^2} f(y_i, y_j) \omega_{i,j} x_{i,j} + \lambda(1 - x_{i,j}) + \Psi(y_i) \end{array}$$

- Clustering-assisted inference
 - Node labeling $y \in \mathbb{N}^G$
 - Weight $\omega_{i,j}$ reduction if nodes v_i and v_j belong to distinct clusters
 - Cost function:

$$f(y_i, y_j) = \frac{\beta - \mathbb{1}(y_i \neq y_j)}{\beta}$$

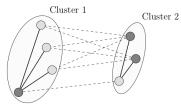
A priori: gene grouping and modular structure

$$(\underset{\substack{\boldsymbol{x} \in \{0,1\}^E \\ \boldsymbol{y} \in \mathbb{N}^G}}{\text{maximize}} \sum_{(i,j) \in \mathbb{V}^2} f(y_i, y_j) \omega_{i,j} x_{i,j} + \lambda(1 - x_{i,j}) + \Psi(y_i)$$

- Clustering-assisted inference
 - Node labeling $y \in \mathbb{N}^G$
 - Weight $\omega_{i,j}$ reduction if nodes v_i and v_j belong to distinct clusters
 - Cost function:

$$f(y_i, y_j) = \frac{\beta - \mathbb{1}(y_i \neq y_j)}{\beta}$$

• TF-driven clustering promoting modular structure



$$\Psi(y_i) = \sum_{\substack{i \in \mathbb{V} \\ j \in \mathbb{T}}} \mu_{i,j} \mathbb{1}(y_i = j)$$

 $\mu_{i,j}$: modular structure controlling parameter

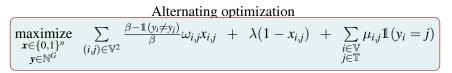
$$\left[\begin{array}{ccc} \underset{\boldsymbol{x} \in \{0,1\}^n}{\text{maximize}} & \sum_{(i,j) \in \mathbb{V}^2} \frac{\beta - \mathbb{1}(y_i \neq y_j)}{\beta} \omega_{i,j} x_{i,j} + \lambda (1 - x_{i,j}) + \sum_{\substack{i \in \mathbb{V} \\ j \in \mathbb{T}}} \mu_{i,j} \mathbb{1}(y_i = j) \right]$$

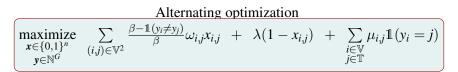
July 3th, 2017

Recons. and Clust. with Graph Optim. and Priors on GRN and Images

-

- ₹ 🖹 🕨





• At *y* fixed and *x* variable:

$$\underset{\boldsymbol{x} \in \{0,1\}^n}{\text{maximize}} \quad \sum_{(i,j) \in \mathbb{V}^2} \frac{\beta - \mathbb{1}(y_i \neq y_j)}{\beta} \,\omega_{i,j} \,x_{i,j} \quad + \quad \lambda(1 - x_{i,j})$$

 $\overbrace{\substack{\mathbf{x} \in \{0,1\}^n \\ \mathbf{y} \in \mathbb{N}^G}}^{\text{Alternating optimization}} \sum_{\substack{(i,j) \in \mathbb{V}^2 \\ \beta}} \frac{\beta - \mathbb{1}(y_i \neq y_j)}{\beta} \omega_{i,j} x_{i,j} + \lambda (1 - x_{i,j}) + \sum_{\substack{i \in \mathbb{V} \\ j \in \mathbb{T}}} \mu_{i,j} \mathbb{1}(y_i = j)$

• At *y* fixed and *x* variable:

$$\underset{\boldsymbol{x} \in \{0,1\}^n}{\text{maximize}} \quad \sum_{(i,j) \in \mathbb{V}^2} \frac{\beta - \mathbb{1}(y_i \neq y_j)}{\beta} \,\omega_{i,j} \,x_{i,j} \quad + \quad \lambda(1 - x_{i,j})$$

• At *x* fixed and *y* variable:

$$\underset{\mathbf{y}\in\mathbb{N}^{G}}{\text{minimize}} \quad \sum_{(i,j)\in\mathbb{V}^{2}} \frac{\omega_{i,j} x_{i,j}}{\beta} \mathbb{1}(y_{i}\neq y_{j}) + \sum_{i\in\mathbb{V}, j\in\mathbb{T}} \mu_{i,j} \mathbb{1}(y_{i}\neq j)$$

 $\overbrace{\substack{\mathbf{x} \in \{0,1\}^n \\ \mathbf{y} \in \mathbb{N}^G}}^{\text{Alternating optimization}} \sum_{\substack{(i,j) \in \mathbb{V}^2 \\ \beta}} \frac{\beta - \mathbb{1}(y_i \neq y_j)}{\beta} \omega_{i,j} x_{i,j} + \lambda (1 - x_{i,j}) + \sum_{\substack{i \in \mathbb{V} \\ j \in \mathbb{T}}} \mu_{i,j} \mathbb{1}(y_i = j)$

• At y fixed and x variable:

$$\begin{array}{ll} \underset{x \in \{0,1\}^{n}}{\text{maximize}} & \sum_{(i,j) \in \mathbb{V}^{2}} \frac{\beta - \mathbb{1}(y_{i} \neq y_{j})}{\beta} \,\omega_{i,j} \,x_{i,j} &+ \lambda(1 - x_{i,j}) \\ \\ \text{Explicit form: } x_{i,j}^{*} = \begin{cases} 1 & \text{if } \omega_{i,j} > \frac{\lambda\beta}{\beta - \mathbb{1}(y_{i} \neq y_{j})} \\ 0 & \text{otherwise.} \end{cases} \end{array}$$

• At *x* fixed and *y* variable:

$$\underset{\mathbf{y}\in\mathbb{N}^{G}}{\text{minimize}} \quad \sum_{(i,j)\in\mathbb{V}^{2}} \frac{\omega_{i,j} x_{i,j}}{\beta} \mathbb{1}(y_{i}\neq y_{j}) + \sum_{i\in\mathbb{V}, j\in\mathbb{T}} \mu_{i,j} \mathbb{1}(y_{i}\neq j)$$

• At *x* fixed and *y* variable:

$$\underset{\mathbf{y}\in\mathbb{N}^{G}}{\text{minimize}} \quad \sum_{(i,j)\in\mathbb{V}^{2}} \frac{\omega_{i,j} x_{i,j}}{\beta} \mathbb{1}(y_{i}\neq y_{j}) + \sum_{i\in\mathbb{V}, j\in\mathbb{T}} \mu_{i,j} \mathbb{1}(y_{i}\neq j)$$

(3)

• At *x* fixed and *y* variable:

$$\underset{\mathbf{y}\in\mathbb{N}^{G}}{\text{minimize}} \quad \sum_{(i,j)\in\mathbb{V}^{2}} \frac{\omega_{i,j} x_{i,j}}{\beta} \mathbb{1}(y_{i}\neq y_{j}) + \sum_{i\in\mathbb{V}, j\in\mathbb{T}} \mu_{i,j} \mathbb{1}(y_{i}\neq j) \qquad (\text{NP})$$

(3)

• At *x* fixed and *y* variable:

$$\underset{\mathbf{y}\in\mathbb{N}^{G}}{\text{minimize}} \quad \sum_{(i,j)\in\mathbb{V}^{2}} \frac{\omega_{i,j} x_{i,j}}{\beta} \mathbb{1}(y_{i}\neq y_{j}) + \sum_{i\in\mathbb{V}, j\in\mathbb{T}} \mu_{i,j} \mathbb{1}(y_{i}\neq j) \qquad (\text{NP})$$

- discrete problem \Rightarrow quadratic relaxation
- *T*-class problem \Rightarrow *T* binary sub-problems
 - label restriction to \mathbb{T} : $\{s^{(1)}, \ldots, s^{(T)}\}$ such that $s_j^{(t)} = 1$ if j = t and 0 otherwise.
 - $\mathcal{Y} = \{y^{(1)}, \dots, y^{(T)}\}$ such that $y^{(t)} \in [0, 1]^G$

• At *x* fixed and *y* variable:

$$\underset{\mathbf{y}\in\mathbb{N}^{G}}{\text{minimize}} \quad \sum_{(i,j)\in\mathbb{V}^{2}} \frac{\omega_{i,j} x_{i,j}}{\beta} \mathbb{1}(y_{i}\neq y_{j}) + \sum_{i\in\mathbb{V}, j\in\mathbb{T}} \mu_{i,j} \mathbb{1}(y_{i}\neq j) \qquad (\text{NP})$$

- discrete problem \Rightarrow quadratic relaxation
- *T*-class problem \Rightarrow *T* binary sub-problems
 - label restriction to T: {s⁽¹⁾,...,s^(T)} such that s_j^(t) = 1 if j = t and 0 otherwise.
 𝒴 = {y⁽¹⁾,...,y^(T)} such that y^(t) ∈ [0, 1]^G

Problem re-expressed as:

$$\underset{\mathcal{Y}}{\text{minimize}} \quad \sum_{t=1}^{T} \left(\sum_{(i,j) \in \mathbb{V}^2} \frac{\omega_{i,j} \, x_{i,j}}{\beta} \left(y_i^{(t)} - y_j^{(t)} \right)^2 + \sum_{i \in \mathbb{V}, \ j \in \mathbb{T}} \mu_{i,j} \left(y_i^{(t)} - s_j^{(t)} \right)^2 \right)$$

$$\underset{\mathcal{Y}}{\text{minimize}} \quad \sum_{t=1}^{T} \left(\sum_{(i,j) \in \mathbb{V}^2} \frac{\omega_{i,j} x_{i,j}}{\beta} \left(y_i^{(t)} - y_j^{(t)} \right)^2 + \sum_{i \in \mathbb{V}, j \in \mathbb{T}} \mu_{i,j} \left(y_i^{(t)} - s_j^{(t)} \right)^2 \right)$$

- This is the Combinatorial Dirichlet problem
- Minimization via solving a linear system of equations [Grady, 2006]

$$\underset{\mathcal{Y}}{\text{minimize}} \quad \sum_{t=1}^{T} \left(\sum_{(i,j) \in \mathbb{V}^2} \frac{\omega_{i,j} x_{i,j}}{\beta} \left(y_i^{(t)} - y_j^{(t)} \right)^2 + \sum_{i \in \mathbb{V}, j \in \mathbb{T}} \mu_{i,j} \left(y_i^{(t)} - s_j^{(t)} \right)^2 \right)$$

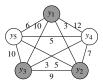
- This is the Combinatorial Dirichlet problem
- Minimization via solving a linear system of equations [Grady, 2006]
- Final labeling: node *i* is assigned to label *t* for which $y_i^{(t)}$ is maximal

$$y_i^* = \underset{t \in \mathbb{T}}{\operatorname{argmax}} \quad y_i^{(t)}$$

July 3th, 2017

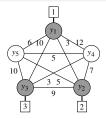
Random walker in graphs

We want to obtain the optimal labeling \mathbf{y}^* based on a weighted graph \Rightarrow Random Walker algorithm



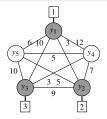
Random walker in graphs

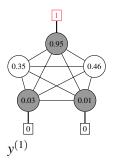
We want to obtain the optimal labeling \mathbf{y}^* based on a weighted graph \Rightarrow Random Walker algorithm



Random walker in graphs

We want to obtain the optimal labeling \mathbf{y}^* based on a weighted graph \Rightarrow Random Walker algorithm

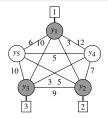


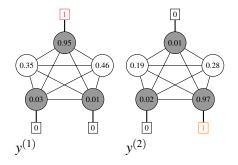


July 3th, 2017

Random walker in graphs

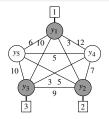
We want to obtain the optimal labeling \mathbf{y}^* based on a weighted graph \Rightarrow Random Walker algorithm

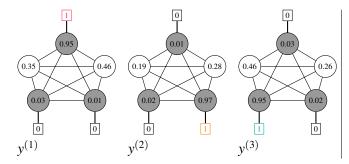




Random walker in graphs

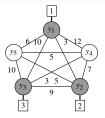
We want to obtain the optimal labeling \mathbf{y}^* based on a weighted graph \Rightarrow Random Walker algorithm

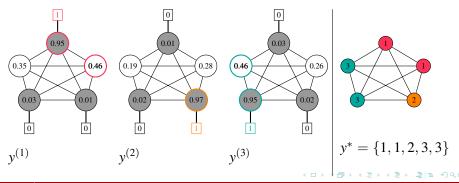




Random walker in graphs

We want to obtain the optimal labeling \mathbf{y}^* based on a weighted graph \Rightarrow Random Walker algorithm





hard- vs soft- clustering in BRANE Clust

$$\left(\begin{array}{cc} \text{minimize} & \sum_{t=1}^{T} \left(\sum_{(i,j) \in \mathbb{V}^2} \frac{\omega_{i,j} x_{i,j}}{\beta} \left(y_i^{(t)} - y_j^{(t)} \right)^2 + \sum_{i \in \mathbb{V}, j \in \mathbb{T}} \mu_{i,j} \left(y_i^{(t)} - s_j^{(t)} \right)^2 \right) \right)$$

hard-clustering	soft-clustering		
# clusters = # TF	# clusters \leq # TF		
$\mu_{i,j} = \begin{cases} \rightarrow \infty & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$	$\mu_{i,j} = \begin{cases} \alpha & \text{if } i = j \\ \alpha \mathbb{1}(\omega_{i,j} > \tau) & \text{if } i \neq j \text{ and } i \in \mathbb{T} \\ \omega_{i,j} \mathbb{1}(\omega_{i,j} > \tau) & \text{if } i \neq j \text{ and } i \notin \mathbb{T} \end{cases}$		
$\begin{array}{c} 1 \\ \hline \\ \beta \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \rightarrow \infty \end{array} \qquad (p) \qquad (p)$	$\begin{array}{c} 1\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		

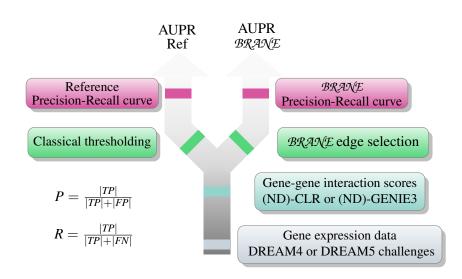
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

It's time to test the BRANE philosophy ...

-∢ ∃ →

Methodology

Numerical evaluation strategy



• DREAM4 [Marbach et al., 2010]

July 3th, 2017

Recons. and Clust. with Graph Optim. and Priors on GRN and Images

A B > < B</p>

• DREAM4 [Marbach et al., 2010]

Network	1	2	3	4	5	Average	Gain
CLR	0.256	0.275	0.314	0.313	0.318	0.295	
BRANE Cut	0.282	0.308	0.343	0.344	0.356	0.327	10.9%
BRANE Relax	0.278	0.293	0.336	0.333	0.345	0.317	7.8%
BRANE Clust	0.275	0.337	0.360	0.335	0.342	0.330	12.2 %
GENIE3	0.269	0.288	0.331	0.323	0.329	0.308	
BRANE Cut	0.298	0.316	0.357	0.344	0.352	0.333	8.4%
BRANE Relax	0.293	0.320	0.356	0.345	0.354	0.334	8.5%
			0.044	0.351	0.0.0		12.0.07
BRANE Clust	0.287	0.348	0.364	0.371	0.367	0.347	12.8 %
BRANE Clust	0.287	0.348	3	4	0.36 7	0.347	12.8 %
	1	2	3	4	5	Average	12.8 %
Network	1 0.254	2 0.250	3 0.324	4	5	Average 0.295	Gain
Network ND-CLR BRANE Cut	1 0.254 0.271	2 0.250 0.277	3 0.324 0.334	4 0.318 0.335	5 0.331 0.343	Average 0.295 0.312	Gain 5.9% 3.1%
Network ND-CLR BRANE Cut BRANE Relax	1 0.254 0.271 0.270	2 0.250 0.277 0.264	3 0.324 0.334 0.327	4 0.318 0.335 0.325	5 0.331 0.343 0.332	Average 0.295 0.312 0.304	Gain 5.9% 3.1%
Network ND-CLR BRANE Cut BRANE Relax BRANE Clust	1 0.254 0.271 0.270 0.258	2 0.250 0.277 0.264 0.251	3 0.324 0.334 0.327 0.327	4 0.318 0.335 0.325 0.337	5 0.331 0.343 0.332 0.342	Average 0.295 0.312 0.304 0.303	Gain
Network ND-CLR BRANE Cut BRANE Relax BRANE Clust ND-GENIE3	1 0.254 0.271 0.270 0.258 0.263	2 0.250 0.277 0.264 0.251 0.275	3 0.324 0.334 0.327 0.327 0.327	4 0.318 0.335 0.325 0.337 0.328	5 0.331 0.343 0.332 0.342 0.354	Average 0.295 0.312 0.304 0.303 0.309	Gain 5.9% 3.1% 2.5%

• DREAM4 [Marbach et al., 2010]

	CLR	GENIE3	ND-CLR	ND-GENIE3
BRANE Cut	10.9 %	8.4%	5.9 %	7.2%
BRANE Relax	7.8%	8.5 %	3.1 %	7.3 %
BRANE Clust	12.2 %	12.8 %	2.5 %	8.1 %

- BRANE approaches validated on small synthetic data
- BRANE methodologies outperform classical thresholding
- First and second best performers: BRANE Clust and BRANE Cut
- \Rightarrow Validation on more realistic synthetic data

July 3th, 2017

• DREAM5 [Marbach et al., 2012]

∃ ▶ ∢

• DREAM5 [Marbach et al., 2012]

	AUPR	Gain		AUPR	Gain
CLR BRANE Cut BRANE Relax BRANE Clust	0.252 0.268 0.272 0.301	6.3 % 7.9 % 19.4 %	GENIE3 BRANE Cut BRANE Relax BRANE Clust	0.283 0.295 0.294 0.336	4.2 % 3.8 % 18.6 %

	AUPR	Gain		AUPR	Gain
ND-CLR	0.272		ND-GENIE3	0.313	
BRANE Cut BRANE Relax BRANE Clust	0.277	1.9%	BRANE Cut BRANE Relax BRANE Clust	0.317	1.1%
BRANE Relax	0.274	0.6%	BRANE Relax	0.314	0.3%
BRANE Clust	0.289	6.2%	BRANE Clust	0.345	10.2%

July 3th, 2017

> < E > < E >

• DREAM5 [Marbach et al., 2012]

ND-CLR

BRANE Cut

BRANE Relax

BRANE Clust

	AUPR	Gain		AUPR	Gain
CLR BRANE Cut BRANE Relax BRANE Clust	0.252 0.268 0.272 0.301	6.3 % 7.9 % 19.4 %	GENIE3 BRANE Cut BRANE Relax BRANE Clust	0.283 0.295 0.294 0.336	4.2 % 3.8 % 18.6 %
	AUPR	Gain		AUPR	Gain

ND-GENIE3

BRANE Cut

BRANE Relax

BRANE Clust

0.313

0.317

0.314

0.345

1.1%

0.3%

10.2%

• BRANE approaches validated on realistic synthetic data and outperform classical thresholding

1.9%

0.6%

6.2%

- First and second best performer: BRANE Clust and BRANE Cut
- \Rightarrow Validation of BRANE Cut and BRANE Clust on real data

0.272

0.277

0.274

0.289

July 3th, 2017

BRANE Clust performance on real data

• Escherichia coli dataset

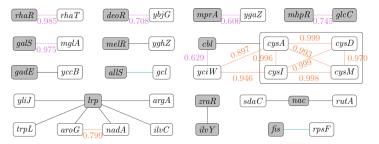
	AUPR	Gain		AUPR	Gain
CLR BRANE Clust	0.0378 0.0399	5.5%	GENIE3 BRANE Clust	0.0488 0.0536	9.8 %

BRANE Clust performance on real data

• Escherichia coli dataset

AUPR	Gain	AUPR	Gain
CLR 0.0378 BRANE Clust 0.0399	5.5%	GENIE3 0.0488 BRANE Clust 0.0536	9.8%

• BRANE Clust predictions using GENIE3 weights

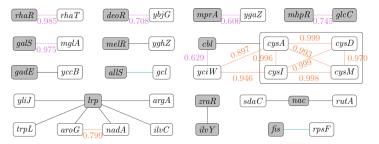


BRANE Clust performance on real data

• Escherichia coli dataset

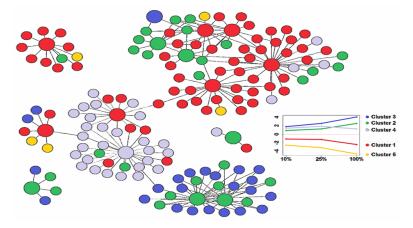
AUPR	Gain	AUPR	Gain
CLR 0.0378 BRANE Clust 0.0399	5.5%	GENIE3 0.0488 BRANE Clust 0.0536	9.8%

• BRANE Clust predictions using GENIE3 weights

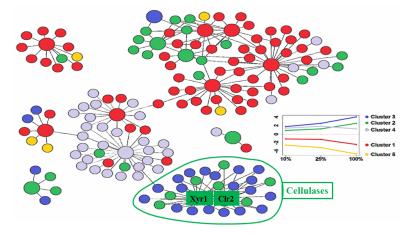


• BRANE Clust validated on real dataset

• GRN of T. reesei obtained with BRANE Cut using CLR weights

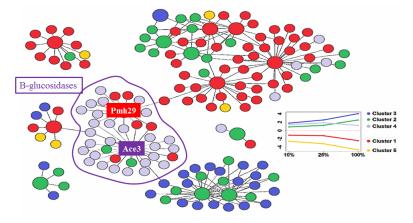


• GRN of T. reesei obtained with BRANE Cut using CLR weights

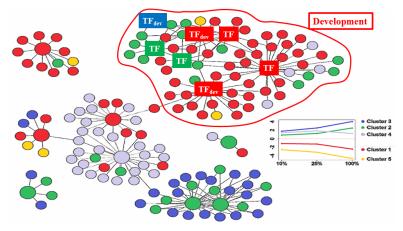


-

• GRN of T. reesei obtained with BRANE Cut using CLR weights



• GRN of T. reesei obtained with BRANE Cut using CLR weights



It's time to conclude...

Inference: BRANE Cut and BRANE Relax Joint inference and clustering: BRANE Clust

Inference: BRANE Cut and BRANE Relax Joint inference and clustering: BRANE Clust

- *The BRA- in BRANE*: integrating biological *a priori* constrains the search of relevant edges
- *The -NE in BRANE*: proposed graph inference methods lead to promising results and outperforms state-of-the-art methods

Inference: BRANE Cut and BRANE Relax Joint inference and clustering: BRANE Clust

- *The BRA- in BRANE*: integrating biological *a priori* constrains the search of relevant edges
- *The -NE in BRANE*: proposed graph inference methods lead to promising results and outperforms state-of-the-art methods
- \Rightarrow Average improvements around 10 %
- \Rightarrow Biological relevant inferred networks
- \Rightarrow Negligible time complexity with respect to graph weight computation

Inference: BRANE Cut and BRANE Relax Joint inference and clustering: BRANE Clust

- *The BRA- in BRANE*: integrating biological *a priori* constrains the search of relevant edges
- *The -NE in BRANE*: proposed graph inference methods lead to promising results and outperforms state-of-the-art methods
- \Rightarrow Average improvements around 10 %
- \Rightarrow Biological relevant inferred networks
- \Rightarrow Negligible time complexity with respect to graph weight computation
- Biological a priori relevance for network inference

 $BRANE Clust \succ BRANE Cut \succ BRANE Relax$

From biological graphs...

July 3th, 2017

Recons. and Clust. with Graph Optim. and Priors on GRN and Images

▲□▶▲圖▶▲필▶▲필▶ 週刊 釣요@

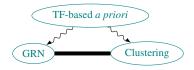
From biological graphs...

→ 3 → < 3</p>

From biological graphs...

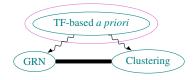


From biological graphs...



э

From biological graphs...



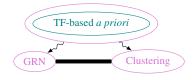
• Extend TF-based a priori for

July 3th, 2017

Recons. and Clust. with Graph Optim. and Priors on GRN and Images

∃ ▶ .

From biological graphs...



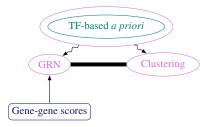
• Extend TF-based *a priori* for GRN, clustering

July 3th, 2017

Recons. and Clust. with Graph Optim. and Priors on GRN and Images

-

From biological graphs...



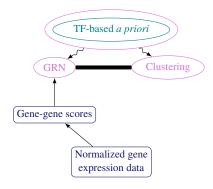
• Extend TF-based *a priori* for GRN, clustering

July 3th, 2017

Recons. and Clust. with Graph Optim. and Priors on GRN and Images

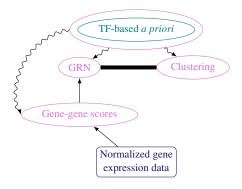
∃ ▶ ∢

From biological graphs...



• Extend TF-based *a priori* for GRN, clustering

From biological graphs...

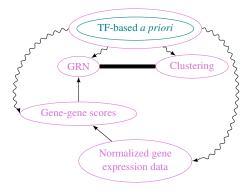


• Extend TF-based *a priori* for GRN, clustering , graph weighting,

July 3th, 2017

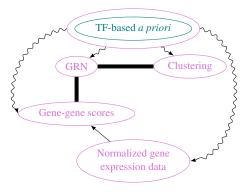
Recons. and Clust. with Graph Optim. and Priors on GRN and Images

From biological graphs...



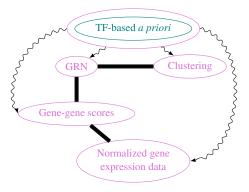
• Extend TF-based *a priori* for GRN, clustering, graph weighting, data normalization...

From biological graphs...



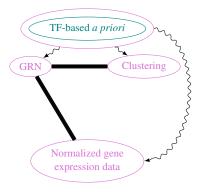
- Extend TF-based *a priori* for GRN, clustering, graph weighting, data normalization...
- Integrate transcriptomic data treatment

From biological graphs...



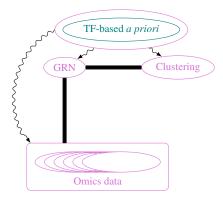
- Extend TF-based *a priori* for GRN, clustering, graph weighting, data normalization...
- Integrate transcriptomic data treatment

From biological graphs...



- Extend TF-based *a priori* for GRN, clustering, graph weighting, data normalization...
- Integrate transcriptomic data treatment

From biological graphs...



- Extend TF-based *a priori* for GRN, clustering, graph weighting, data normalization...
- Integrate transcriptomic data treatment
- Integrate *a priori*, omics- data and treatments

- ... to general graphs
 - BRANE-like applications for non biological graphs
 - Coupled edge inference: social networks
 - Node-degree constraint: telecommunication
 - Coupling between inference and clustering: temperature networks, brain networks

- ... to general graphs
 - BRANE-like applications for non biological graphs
 - Coupled edge inference: social networks
 - Node-degree constraint: telecommunication
 - Coupling between inference and clustering: temperature networks, brain networks
 - Topological constraint in graph inference
 - Expected node degree distribution
 - Scale-free networks: webgraphs, financial networks, social networks...

- ... to general graphs
 - BRANE-like applications for non biological graphs
 - Coupled edge inference: social networks
 - Node-degree constraint: telecommunication
 - Coupling between inference and clustering: temperature networks, brain networks
 - Topological constraint in graph inference
 - Expected node degree distribution
 - Scale-free networks: webgraphs, financial networks, social networks...
 - Laplacian-based approach for graph comparison
 - Spectral view of the graph
 - Modularity
 - Local and topological-based criteria

Publications

Journal papers — published

D. Poggi-Parodi, F. Bidard, A. Pirayre, T. Portnoy. C. Blugeon, B. Seiboth, C.P. Kubicek, S. Le Crom and A. Margeot Kinetic transcriptome reveals an essentially intact induction system in a cellu- lase hyper-producer Trichoderma reesei strain *Biotechnology for Biofuels*, 7:173, Dec. 2014

A. Pirayre, C. Couprie, F. Bidard, L. Duval, and J.-C. Pesquet.

BRANE Cut: biologically-related *a priori* network enhancement with graph cuts for gene regulatory network inference BMC Bioinformatics, 16(1):369, Dec. 2015.

A. Pirayre, C. Couprie, L. Duval, and J.-C. Pesquet.

BRANE Clust: Cluster-Assisted Gene Regulatory Network Inference Refinement IEEE/ACM Transactions on Computational Biology and Bioinformatics, Mar. 2017.

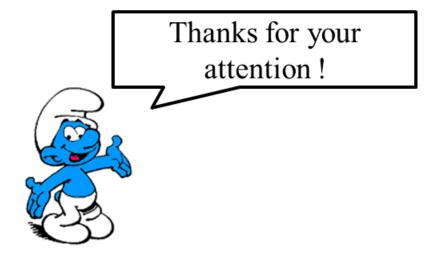
Journal papers — in preparation

Y. Zheng, A. Pirayre, L. Duval and J.-C. Pesquet

Joint restoration/segmentation of multicomponent images with variational Bayes and higher-order graphical models (HOGMep) To be submitted to *IEEE Transactions on Computational Imaging*, Jul. 2017.

A. Pirayre, D. Ivanoff, L. Duval, C. Blugeon, C. Firmo, S. Perrin, E. Jourdier, A. Margeot and F. Bidard Growing *Trichoderma reesei* on a mix of carbon sources suggests links between development and cellulase production To be submitted to *BMC Genomics*, Jul. 2017.

- - E > - E >

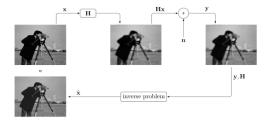


ъ.

HOGMep for non-blind inverse problems

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$

- **x**: unknown signal to be recovered
- H: known degradation operator
- n: additive noise
- y: observations



HOGMep — Bayesian framework

• Estimation of **x** from the knowledge of the posterior pdf $p(\mathbf{x}|\mathbf{y})$

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})}$$

- $p(\mathbf{x})$: the marginal pdf encoding information about \mathbf{x}
- $p(\mathbf{y}|\mathbf{x})$: the likelihood highlighting the uncertainty in \mathbf{y}
- $p(\mathbf{y})$: the marginal pdf of \mathbf{y}

HOGMep — Variational Bayesian Approximation

• $q(\mathbf{x})$: approximation of $p(\mathbf{x}|\mathbf{y})$

$$q^{opt}(\mathbf{x}) = \underset{q(\mathbf{x})}{\operatorname{argmin}} \ \mathcal{KL}(q(\mathbf{x}) || p(\mathbf{x} | \mathbf{y}))$$

• Separable distribution:

$$q(\mathbf{x}) = \prod_{j=1}^{J} q_j(\mathbf{x}_j),$$

with

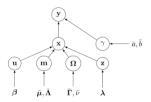
$$q_j^{opt}(\mathbf{x}_j) \propto \exp\left(\langle \ln p(\mathbf{y}, \mathbf{x}) \rangle_{\prod_{i \neq j} q_i(\mathbf{x}_i)}\right)$$

• Estimation of the distributions in an iterative manner

НОGМер

HOGMep — Bayesian formulation

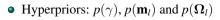
- Likelihood prior: $p(\mathbf{y} | \mathbf{x}, \gamma) = \mathcal{N}(\mathbf{H}\mathbf{x}, \gamma^{-1}\mathbf{I})$
- *p*(**z**): prior on hidden variables **z** ⇒ generalized Potts model
- *p*(**x**|**z**): prior on **x** conditionally to **z** ⇒ MEP distribution restricted to Gaussian Scale Mixtures *GSM*(**m**, **Ω**, β)
- Hyperpriors: $p(\gamma)$, $p(\mathbf{m}_l)$ and $p(\mathbf{\Omega}_l)$



НОСМер

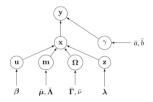
HOGMep — Bayesian formulation

- Likelihood prior: $p(\mathbf{y} | \mathbf{x}, \gamma) = \mathcal{N}(\mathbf{H}\mathbf{x}, \gamma^{-1}\mathbf{I})$
- *p*(**z**): prior on hidden variables **z** ⇒ generalized Potts model
- *p*(**x**|**z**): prior on **x** conditionally to **z** ⇒ MEP distribution restricted to Gaussian Scale Mixtures *GSM*(**m**, **Ω**, β)



• Joint posterior distribution

$$p(\mathbf{y} | \mathbf{x}, \gamma) \prod_{i=1}^{N} \left(p(\mathbf{x}_i | z_i, u_i, \mathbf{m}, \mathbf{\Omega}) p(u_i | \beta) \right) p(\mathbf{z}) p(\gamma) \prod_{l=1}^{L} p(\mathbf{m}_l) p(\mathbf{\Omega}_l)$$



• Separable form for the approximation:

$$q(\Theta) = \prod_{i=1}^{N} \left(q(\mathbf{x}_i, z_i) q(u_i) \right) q(\gamma) \prod_{l=1}^{L} \left(q(\mathbf{m}_l) q(\mathbf{\Omega}_l) \right)$$

with

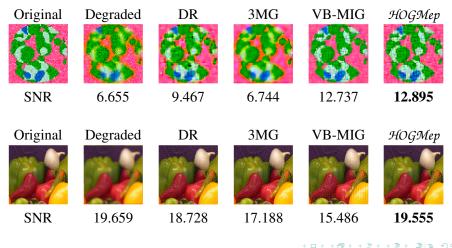
$$\begin{split} q(\mathbf{x}_i | z_i = l) &= \mathcal{N}(\boldsymbol{\eta}_{i,l}, \boldsymbol{\Xi}_{i,l}), \\ q(z_i = l) &= \pi_{i,l}, \\ q(\mathbf{m}_l) &= \mathcal{N}(\boldsymbol{\mu}_l, \boldsymbol{\Lambda}_l), \\ q(\boldsymbol{\Omega}_l) &= \mathcal{W}(\boldsymbol{\Gamma}_l, \nu_l), \\ q(\gamma) &= \mathcal{G}(a, b). \end{split}$$

July 3th, 2017

< □ > < □ > < 豆 > < 豆 > < 豆 > 三日 < ○ < ○

HOGMep — Some restoration results

Restoration



Recons. and Clust. with Graph Optim. and Priors on GRN and Images

HOGMep

HOGMep — Some segmentation results

• Segmentation

ICM

VB-MIG

July 3th, 2017

Recons. and Clust. with Graph Optim. and Priors on GRN and Images