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INTRODUCTION GRN overview

What is a Gene Regulatory Network (GRN)?

GRN: a graph G(V, E)

V = {v1, . . . , vG}: a set of G nodes (corresponding to genes)
E : a set of edges (corresponding to interactions between genes)

A gene regulatory network...

v1

v2

v3

vX

... models biological gene regulatory mechanisms
DNA

Gene 1 Gene 2 Gene 3 Gene X

mRNA

Protein
TF1 TF2 TF3 TFX⊕ ⊖

⊕⊕
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INTRODUCTION Data overview

What biological data can be used?

For a given experimental condition, transcriptomic data answer to:
which genes are expressed? in which amount?

How to obtain transcriptomic data?
Microarray and RNAseq experiments

What do transcriptomic data look like?
Gene expression data (GED): G genes × S conditions

M =



S conditions︷ ︸︸ ︷
−0.948 −0.013 . . . −1.308 −0.977
0.737 0.619 . . . −0.141 −0.803
−0.253 −0.175 . . . −0.859 −0.595
3.747 1.115 . . . −0.418 −0.084
1.383 1.184 . . . −0.493 −0.562


 G

ge
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s

July 3th , 2017 Recons. and Clust. with Graph Optim. and Priors on GRN and Images 5 / 45



INTRODUCTION Data overview

What biological data can be used?

For a given experimental condition, transcriptomic data answer to:
which genes are expressed? in which amount?

How to obtain transcriptomic data?
Microarray and RNAseq experiments

What do transcriptomic data look like?
Gene expression data (GED): G genes × S conditions

M =



S conditions︷ ︸︸ ︷
−0.948 −0.013 . . . −1.308 −0.977
0.737 0.619 . . . −0.141 −0.803
−0.253 −0.175 . . . −0.859 −0.595
3.747 1.115 . . . −0.418 −0.084
1.383 1.184 . . . −0.493 −0.562


 G

ge
ne

s

July 3th , 2017 Recons. and Clust. with Graph Optim. and Priors on GRN and Images 5 / 45



INTRODUCTION Links between data and GRNs

How to use GED to produce a GRN ?

From gene expression data... M =


sj

.

.

.
gi · · · mi,j

,

V = {v1, · · · , vG} a set of vertices (genes) and E a set of edges

Each edge ei,j is weighted by ωi,j

leading to a complete

weighted

graph...

W =


gj

.

.

.
gi · · · ωi,j

,

We look for a subset of edges E∗ reflecting regulatory links between genes

to infer a meaningful gene
network. Wi,j =

{
1 if ei,j ∈ E∗

0 otherwise.
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INTRODUCTION

Difficulties in GRN inference
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INTRODUCTION

Our BRANE strategy

What is the subset of edges E∗ reflecting real regulatory links between genes?
⇒ what is the binary adjacency matrix W ∈ {0, 1}G×G?

We note xi,j the binary label of edge presence: xi,j =

{
1 if ei,j ∈ E∗,
0 otherwise.

Classical thresholding: x∗i,j =

{
1 if ωi,j > λ,

0 otherwise.

Given by a cost function for given weights ω:

maximize
x∈{0,1}E

∑
(i,j)∈V2

ωi,j xi,j + λ(1− xi,j)

⇔ minimize
x∈{0,1}E

∑
(i,j)∈V2

ωi,j (1− xi,j) + λ xi,j
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INTRODUCTION

Our BRANE strategy

BRANE: Biologically Related A priori Network Enhancement

Extend classical thresholding

Integrate biological priors into the functional to be optimized

Enforce modular networks

Additional knowledge:

Transcription factors (TFs): regulators
Non transcription factors (TFs): targets

Method a priori Formulation Algorithm

Inference BRANE Cut Gene co-regulatiton Discrete Maximal flow
BRANE Relax TF-connectivity Continuous Proximal method

Joint inference
and clustering BRANE Clust Gene grouping Mixed Alternating scheme
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BRANE Cut — NETWORK INFERENCE WITH GRAPH CUTS

A discrete method: BRANE Cut

We look for a discrete solution for x⇔ x ∈ {0, 1}E
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BRANE Cut — NETWORK INFERENCE WITH GRAPH CUTS A priori

A priori: modular structure and gene co-regulation

minimize
x∈{0,1}E

∑
(i,j)∈V2

ωi,jϕ(xi,j − 1) + λi,jϕ(xi,j) + µΨ(xi,j)

Modular network: favors links between TFs and TFs

λi,j =


2η if (i, j) /∈ T2

2λTF if (i, j) ∈ T2

λTF + λTF otherwise.

with:
T: the set of TF indices
η > max {ωi,j | (i, j) ∈ V2}
λTF > λTF

A linear relation is sufficient: λTF = βλTF with β = |V|
|T |
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BRANE Cut — NETWORK INFERENCE WITH GRAPH CUTS A priori

A priori: modular structure and gene co-regulation

minimize
x∈{0,1}E

∑
(i,j)∈V2

ωi,jϕ(xi,j − 1) + λi,jϕ(xi,j) + µΨ(xi,j)

Gene co-regulation: favors edge coupling

Ψ(xi,j) =
∑

(j,j′)∈T2

i∈V\T

ρi,j,j′ |xi,j − xi,j′ |

ρi,j,j′ : co-regulation probability
with

ρi,j,j′ =

∑
k∈V\(T ∪{i})

1(min{ωj,j′ , ωj,k, ωj′,k} > γ)

|V\T |−1

γ: the (|V| − 1)th of the normalized weights ω
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BRANE Cut — NETWORK INFERENCE WITH GRAPH CUTS Formulation and resolution

A maximal flow for a minimum cut formulation

minimize
x∈{0,1}E

∑
(i,j)∈V2

j>i

ωi,j|xi,j − 1| + λi,j xi,j +
∑

i∈V\T
(j,j′)∈T2, j′>j

ρi,j,j′ |xi,j − xi,j′ |

s ts = 1 t = 0
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BRANE Relax — NETWORK INFERENCE AS A RELAXED PROBLEM

A continuous method: BRANE Relax

We look for a continuous solution for x⇔ x ∈ [0, 1]E
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BRANE Relax — NETWORK INFERENCE AS A RELAXED PROBLEM A priori

A priori: modular structure and TF connectivity

minimize
x∈{0,1}E

∑
(i,j)∈V2

ωi,jϕ(xi,j − 1) + λi,jϕ(xi,j) + µΨ(xi,j)

Modular network: favors links between TFs and TFs

λi,j =


2η if (i, j) /∈ T2

2λTF if (i, j) ∈ T2

λTF + λTF otherwise.

TF connectivity: constraint TF node degree

Ψ(xi,j) =
∑

i∈V\T

φ

∑
j∈V

xi,j − d


φ(·): a convex distance function with
β-Lipschitz continuous gradient

July 3th , 2017 Recons. and Clust. with Graph Optim. and Priors on GRN and Images 15 / 45



BRANE Relax — NETWORK INFERENCE AS A RELAXED PROBLEM A priori

A priori: modular structure and TF connectivity

minimize
x∈{0,1}E

∑
(i,j)∈V2

ωi,jϕ(xi,j − 1) + λi,jϕ(xi,j) + µΨ(xi,j)

Modular network: favors links between TFs and TFs

λi,j =


2η if (i, j) /∈ T2

2λTF if (i, j) ∈ T2

λTF + λTF otherwise.

TF connectivity: constraint TF node degree

Ψ(xi,j) =
∑

i∈V\T

φ

∑
j∈V

xi,j − d


φ(·): a convex distance function with
β-Lipschitz continuous gradient

July 3th , 2017 Recons. and Clust. with Graph Optim. and Priors on GRN and Images 15 / 45



BRANE Relax — NETWORK INFERENCE AS A RELAXED PROBLEM A priori

A priori: modular structure and TF connectivity

minimize
x∈{0,1}E

∑
(i,j)∈V2

ωi,jϕ(xi,j − 1) + λi,jϕ(xi,j) + µΨ(xi,j)

Modular network: favors links between TFs and TFs

λi,j =


2η if (i, j) /∈ T2

2λTF if (i, j) ∈ T2

λTF + λTF otherwise.

TF connectivity: constraint TF node degree

Ψ(xi,j) =
∑

i∈V\T

φ

∑
j∈V

xi,j − d


φ(·): a convex distance function with
β-Lipschitz continuous gradient

July 3th , 2017 Recons. and Clust. with Graph Optim. and Priors on GRN and Images 15 / 45



BRANE Relax — NETWORK INFERENCE AS A RELAXED PROBLEM Formulation

A convex relaxation for a continuous formulation

minimize
x∈{0,1}E

∑
(i,j)∈V2

j>i

ωi,j(1− xi,j) + λi,j xi,j + µ
∑

i∈V\T
φ

(∑
j∈V

xi,j − d

)

Relaxation and vectorization:

minimize
x∈[0,1]E

E∑
l=1

ωl(1− xl) + λl xl + µ
P∑

i=1

φ

(
E∑

k=1

Ωi,kxk − d

)
,

where Ω ∈ {0, 1}P×E encodes the degree of the P TFs nodes in the complete graph.

Ωi,j =

{
1 if j is the index of an edge linking the TF node vi in the complete graph,
0 otherwise.
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BRANE Relax — NETWORK INFERENCE AS A RELAXED PROBLEM Formulation

Distance function in BRANE Relax

minimize
x∈[0,1]E

E∑
l=1

ωl(1− xl) + λl xl + µ
P∑

i=1
φ

(
E∑

k=1
Ωi,kxk − d

)

Choice of φ: node degree distance function, with respect to d

zi =
E∑

k=1
Ωi,kxk − d

squared `2 norm: φ(z) = ||z||2

Huber function: φ(zi) =

{
z2

i if |zi| ≤ δ
2δ(|zi| − 1

2δ) otherwise
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BRANE Relax — NETWORK INFERENCE AS A RELAXED PROBLEM Resolution

Optimization strategy via proximal methods

Splitting

minimize
x∈RE

ω>(1E − x) + λ>x + µΦ(Ωx− d)︸ ︷︷ ︸
f2

+ ι[0,1]E (x)︸ ︷︷ ︸
f1

f1 ∈ Γ0(RE): proper, convex, and lower semi-continuous

f2: convex, differentiable with an L−Lipschitz continuous gradient
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f1 ∈ Γ0(RE): proper, convex, and lower semi-continuous

f2: convex, differentiable with an L−Lipschitz continuous gradient

Algorithm 1: Forward-Backward
Fix x0 ∈ RE

for k = 0, 1, . . . do
Select the index jk ∈ {1, . . . , J} of a block of variables
z(jk)

k = x(jk)
k − γkA−1

jk ∇jk f2(xk)

x(jk)
k+1 = prox

γk
−1,Ajk f (jk)

1
(z(jk)

k )

x(j̄k)
k+1 = x(j̄k)

k , j̄k = {1, . . . , J}\{jk}
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BRANE Clust — NETWORK INFERENCE WITH CLUSTERING

A mixed method: BRANE Clust

We look for a discrete solution for x and a continuous one for y
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BRANE Clust — NETWORK INFERENCE WITH CLUSTERING A priori

A priori: gene grouping and modular structure

maximize
x∈{0,1}E

y∈NG

∑
(i,j)∈V2

f (yi, yj)ωi,jxi,j + λ(1− xi,j) + Ψ(yi)

Clustering-assisted inference
Node labeling y ∈ NG

Weight ωi,j reduction if nodes vi and vj belong to distinct clusters
Cost function:

f (yi, yj) =
β − 1(yi 6= yj)

β

TF-driven clustering promoting modular structure

Ψ(yi) =
∑
i∈V
j∈T

µi,j1(yi = j)

µi,j: modular structure controlling
parameter
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BRANE Clust — NETWORK INFERENCE WITH CLUSTERING Formulation and resolution

Alternating optimization strategy

Alternating optimization

maximize
x∈{0,1}n

y∈NG

∑
(i,j)∈V2

β−1(yi 6=yj)
β ωi,jxi,j + λ(1− xi,j) +

∑
i∈V
j∈T

µi,j1(yi = j)

At y fixed and x variable:

maximize
x∈{0,1}n

∑
(i,j)∈V2

β − 1(yi 6= yj)

β
ωi,j xi,j + λ(1− xi,j)

Explicit form: x∗i,j =

{
1 if ωi,j >

λβ
β−1(yi 6=yj)

0 otherwise.

At x fixed and y variable:

minimize
y∈NG

∑
(i,j)∈V2

ωi,j xi,j

β
1(yi 6= yj) +

∑
i∈V, j∈T

µi,j 1(yi 6= j)
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BRANE Clust — NETWORK INFERENCE WITH CLUSTERING Formulation and resolution

Clustering optimization strategy

At x fixed and y variable:

minimize
y∈NG

∑
(i,j)∈V2

ωi,j xi,j

β
1(yi 6= yj) +

∑
i∈V, j∈T

µi,j1(yi 6= j)

(NP)

discrete problem⇒ quadratic relaxation
T-class problem⇒ T binary sub-problems

label restriction to T: {s(1), . . . , s(T)} such that s(t)
j = 1 if j = t and 0 otherwise.

Y = {y(1), . . . , y(T)} such that y(t) ∈ [0, 1]G

Problem re-expressed as:
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Y

T∑
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BRANE Clust — NETWORK INFERENCE WITH CLUSTERING Formulation and resolution

Clustering optimization strategy

minimize
Y

T∑
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This is the Combinatorial Dirichlet problem

Minimization via solving a linear system of equations [Grady, 2006]

Final labeling: node i is assigned to label t for which y(t)i is maximal

y∗i = argmax
t∈T

y(t)i
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BRANE Clust — NETWORK INFERENCE WITH CLUSTERING Formulation and resolution

Random walker in graphs

We want to obtain the optimal labeling y∗ based on
a weighted graph⇒ Random Walker algorithm
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BRANE Clust — NETWORK INFERENCE WITH CLUSTERING Formulation and resolution

hard- vs soft- clustering in BRANE Clust

minimize
Y

T∑
t=1

( ∑
(i,j)∈V2

ωi,j xi,j
β

(
y(t)i − y(t)j

)2
+

∑
i∈V, j∈T

µi,j

(
y(t)i − s(t)j

)2
)

hard-clustering soft-clustering

# clusters = # TF # clusters ≤ # TF

µi,j =

{
→∞ if i = j
0 otherwise.

µi,j =


α if i = j
α1(ωi,j > τ) if i 6= j and i ∈ T
ωi,j1(ωi,j > τ) if i 6= j and i /∈ T
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BRANE RESULTS

It’s time to test the BRANE philosophy...

July 3th , 2017 Recons. and Clust. with Graph Optim. and Priors on GRN and Images 26 / 45



BRANE RESULTS Methodology

Numerical evaluation strategy

Gene expression data
DREAM4 or DREAM5 challenges

Gene-gene interaction scores
(ND)-CLR or (ND)-GENIE3

Classical thresholding BRANE edge selection

P = |TP|
|TP|+|FP|

R = |TP|
|TP|+|FN|

Reference
Precision-Recall curve

BRANE
Precision-Recall curve

AUPR
Ref

AUPR
BRANE
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BRANE RESULTS DREAM4 synthetic results

BRANE performance on in-silico data

DREAM4 [Marbach et al., 2010]

Network 1 2 3 4 5

Average Gain

CLR 0.256 0.275 0.314 0.313 0.318

0.295

BRANE Cut 0.282 0.308 0.343 0.344 0.356

0.327 10.9%

BRANE Relax 0.278 0.293 0.336 0.333 0.345

0.317 7.8%

BRANE Clust 0.275 0.337 0.360 0.335 0.342

0.330 12.2%

GENIE3 0.269 0.288 0.331 0.323 0.329

0.308

BRANE Cut 0.298 0.316 0.357 0.344 0.352

0.333 8.4%

BRANE Relax 0.293 0.320 0.356 0.345 0.354

0.334 8.5%

BRANE Clust 0.287 0.348 0.364 0.371 0.367

0.347 12.8%

Network 1 2 3 4 5

Average Gain

ND-CLR 0.254 0.250 0.324 0.318 0.331

0.295

BRANE Cut 0.271 0.277 0.334 0.335 0.343

0.312 5.9%

BRANE Relax 0.270 0.264 0.327 0.325 0.332

0.304 3.1%

BRANE Clust 0.258 0.251 0.327 0.337 0.342

0.303 2.5%

ND-GENIE3 0.263 0.275 0.336 0.328 0.354

0.309

BRANE Cut 0.275 0.312 0.367 0.346 0.368

0.334 7.2%

BRANE Relax 0.276 0.307 0.369 0.347 0.371

0.334 7.3%

BRANE Clust 0.273 0.311 0.354 0.373 0.370

0.336 8.1%
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BRANE RESULTS DREAM4 synthetic results

BRANE performance on in-silico data

DREAM4 [Marbach et al., 2010]

CLR GENIE3 ND-CLR ND-GENIE3

BRANE Cut 10.9 % 8.4 % 5.9 % 7.2 %

BRANE Relax 7.8 % 8.5 % 3.1 % 7.3 %

BRANE Clust 12.2 % 12.8 % 2.5 % 8.1 %

BRANE approaches validated on small synthetic data

BRANE methodologies outperform classical thresholding

First and second best performers: BRANE Clust and BRANE Cut

⇒ Validation on more realistic synthetic data
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BRANE RESULTS DREAM5 synthetic results

BRANE performance on in-silico data

DREAM5 [Marbach et al., 2012]

AUPR Gain AUPR Gain

CLR 0.252 GENIE3 0.283
BRANE Cut 0.268 6.3% BRANE Cut 0.295 4.2%

BRANE Relax 0.272 7.9% BRANE Relax 0.294 3.8%
BRANE Clust 0.301 19.4% BRANE Clust 0.336 18.6%

AUPR Gain AUPR Gain

ND-CLR 0.272 ND-GENIE3 0.313
BRANE Cut 0.277 1.9% BRANE Cut 0.317 1.1%

BRANE Relax 0.274 0.6% BRANE Relax 0.314 0.3%
BRANE Clust 0.289 6.2% BRANE Clust 0.345 10.2%

BRANE approaches validated on realistic synthetic data and outperform
classical thresholding

First and second best performer: BRANE Clust and BRANE Cut

⇒ Validation of BRANE Cut and BRANE Clust on real data
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BRANE RESULTS Escherichia coli results

BRANE Clust performance on real data

Escherichia coli dataset

AUPR Gain AUPR Gain

CLR 0.0378 5.5% GENIE3 0.0488 9.8%BRANE Clust 0.0399 BRANE Clust 0.0536

BRANE Clust predictions using GENIE3 weights

BRANE Clust validated on real dataset
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BRANE RESULTS Trichoderma results results

BRANE Cut in the real life

GRN of T. reesei obtained with BRANE Cut using CLR weights
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CONCLUSIONS

It’s time to conclude...

July 3th , 2017 Recons. and Clust. with Graph Optim. and Priors on GRN and Images 33 / 45



CONCLUSIONS

Conclusions

Inference: BRANE Cut and BRANE Relax
Joint inference and clustering: BRANE Clust

The BRA- in BRANE: integrating biological a priori constrains the search of
relevant edges

The -NE in BRANE: proposed graph inference methods lead to promising
results and outperforms state-of-the-art methods

⇒ Average improvements around 10 %
⇒ Biological relevant inferred networks
⇒ Negligible time complexity with respect to graph weight computation

Biological a priori relevance for network inference

BRANE Clust � BRANE Cut � BRANE Relax
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CONCLUSIONS

Perspectives

From biological graphs...

Omics data

GRN

TF-based a priori

GRN ClusteringClusteringGRN Clustering

Gene-gene scores

Normalized gene
expression data

Gene-gene scores

Normalized gene
expression dataOmics data

Extend TF-based a priori for
GRN, clustering , graph
weighting, data normalization...

Integrate transcriptomic data
treatment

Integrate a priori, omics- data
and treatments
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Perspectives

... to general graphs

BRANE-like applications for non biological graphs

Coupled edge inference: social networks
Node-degree constraint: telecommunication
Coupling between inference and clustering: temperature networks, brain
networks

Topological constraint in graph inference

Expected node degree distribution
Scale-free networks: webgraphs, financial networks, social networks...

Laplacian-based approach for graph comparison

Spectral view of the graph
Modularity
Local and topological-based criteria
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HOGMep

HOGMep for non-blind inverse problems

y = H x + n

x: unknown signal to be recovered

H: known degradation operator

n: additive noise

y: observations
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HOGMep

HOGMep — Bayesian framework

Estimation of x from the knowledge of the posterior pdf p(x|y)

p(x|y) =
p(x)p(y|x)

p(y)

p(x): the marginal pdf encoding information about x
p(y|x): the likelihood highlighting the uncertainty in y
p(y): the marginal pdf of y
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HOGMep

HOGMep — Variational Bayesian Approximation

q(x): approximation of p(x|y)

qopt(x) = argmin
q(x)

KL(q(x) || p(x | y))

Separable distribution:

q(x) =

J∏
j=1

qj(xj),

with
qopt

j (xj) ∝ exp
(
〈ln p(y, x)〉∏

i 6=j qi(xi)

)
Estimation of the distributions in an iterative manner
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HOGMep

HOGMep — Bayesian formulation

Likelihood prior: p(y | x, γ) = N (Hx, γ−1I)

p(z): prior on hidden variables z⇒
generalized Potts model

p(x|z): prior on x conditionally to z⇒MEP
distribution restricted to Gaussian Scale
Mixtures GSM(m,Ω, β)

Hyperpriors: p(γ), p(ml) and p(Ωl)

Joint posterior distribution

p(y | x, γ)
N∏

i=1

(
p(xi | zi, ui,m,Ω)p(ui |β)

)
p(z)p(γ)

L∏
l=1

p(ml)p(Ωl)
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HOGMep

HOGMep — VBA strategy

Separable form for the approximation:

q(Θ) =

N∏
i=1

(q(xi, zi)q(ui)) q(γ)

L∏
l=1

(q(ml)q(Ωl))

with

q(xi|zi = l) = N (ηi,l,Ξi,l),

q(zi = l) = πi,l,

q(ml) = N (µl,Λl),

q(Ωl) =W(Γl, νl),

q(γ) = G(a, b).
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HOGMep

HOGMep — Some restoration results

Restoration

Original Degraded DR 3MG VB-MIG HOGMep

SNR 6.655 9.467 6.744 12.737 12.895

Original Degraded DR 3MG VB-MIG HOGMep

SNR 19.659 18.728 17.188 15.486 19.555
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HOGMep

HOGMep — Some segmentation results

Segmentation
ICM ICM SC SC VB-MIG HOGMep

ICM ICM SC SC VB-MIG HOGMep
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