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GRNs: powertul tools to visualize gene interaction relationships from high-throughput data Very active community with DREAM challenges and many inference methods:
Difficult problem: thousands of genes expressed in only few conditions/replicates Relevance Network, ARACNE, SIMoNe, NARROMI, CLR, GENIES...

Global strategy

Inferring a GRN: recovering interactions between transcription factors and their target genes i.e. in a graph G(V, ), find a set of edges £"(C &) reflecting regulatory links
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Optimization strategy

Proposed cost function

Generic Cost function Objective: Design appropriate algorithms to compute the optimal labeling x*
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e s5;; € [0,1] is a similarity weight between the expression profiles of genes ¢ and j

e )\;; €0,1] a parameter depending on the nature (regulator or not) of genes ¢ and j
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e /1 > (0 a regularization parameter
e Minimal Cut - Maximal Flow duality
o j\/;-yj a local neighborhood of the edge €; ;

e Maximal Flow algorithm applied to an
appropriate flow network G

Intermediate graph construction

T C V: a set Of transcrlptlon faCtorS (TFS) (a) Initial complete graph (b) for the min-cut computation (c) Inferred graph

Structural a prior:
¢ BRANE Relax [6]: Continuous Optimization via Proximal methods [1]

Co-regulation property Connectivity constraint ,
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Results Conclusion
Comparison, on the DREAM4 in silico multifactorial challenge dataset - . _ .
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e Information-theoretic score-based: CLR [2] T ot (a)  Precision-Recall  (PR)
e Model-based: GENIES [3] a,,.ﬂ;i;i;.&,l% - curves for various GRN infer- e On this tested dataset, CLR and GENIE3 are outperformed
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L : SRR CREE LELLOA. ) e The continuous approach allows us to interpret the result as a
The evaluation is performed by computing: O and BRANE Cut
TP TP B confidence score of the edge presence
Precision = and Recall = .
TP + FP TP + FN’ e Fxisting GRN methods may benefit from our approach, as they
where TP: True Positive, FP: False Positive and FN: False Negative. take a weighted graph as input
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Results are given in terms of AUPR: Area Under the Precision-Recall v (b) Comparison of the conver-
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