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This last decade, very active community with DREAM challenge and many inference methods (RN, ARACNE,
SIMoNe, NARROMI, CLR, GENIES ...)

GRN: powertful tool to visualize gene interaction relationships from high-throughput data
Difficult problem: thousands of genes expressed in only few conditions

Results

Global strategy

Comparison to two state-of-the-art methods: CLR [1] and GENIE3 [2] on two kinds of dataset: DREAM4 [4]
(in silico multifactorial challenge) and a real dataset of Escherichia coli also used in [1]. The evaluation is
performed computing Precision and Recall for each inferred graph.

Inferring a GRN: recovering the interactions between the transcription factors and their target genes i.e. in
the graph G(V, &), find a set of edges £7(C &) reflecting regulatory links

: : Cost function TP TP
Transcrlptomlcl [ Com } s : ‘ Inferred Gene . _ _
. plete Network . incorporating structural . Precision = and Recall =
data | t : | a priori Regulatory Network (GRN) TP + FP TP + FN’

I where TP: True Positive, FP: False Positive and FN: False Negative. Results are given in terms of AUPR:
Area Under the Precision-Recall curve.
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In silico data: multifactorial DREAM4 Challenge
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GENIE3!: all genes used as input genes GENIE3%: TF genes used as input genes

Optlmlzatlon strategy Real data: Escherichia coli compendium

Thanks to the min-cut /max-flow duality, computing the optimal labeling x* minimizing the above equation
may be performed by a maximal flow algorithm on a flow network G .

Method GENIE3 CLR Our method

AUPR (x107%) 6.28 6.11 6.45
A flow f is a function assigning a real value at each edge under two main constraints: AUPR Gain (%) 2.2 5.6
. . . . _ . Method GENIE3 CLR Our method
e Capacity constraint: the flow in each edge is less than the capacity (weight) of the edges Total. comp. time (min) 190 30 30.05

Comp. time Gain 14 x faster none

e Flow conservation: at each node, the entering flow equals the leaving flow

The flow network ¢ f

We used construction rules given by [3] to build the flow network G allowing us to compute x*:

e Two specific nodes: the source s (0-in-degree) and the sink ¢ (0-out-degree)

Precision (%) Recall (%)

GENIE3 CLR Our method

e n = |&| nodes v; ; linked to the source s and p = |V| nodes g; linked to the sink ¢

83.8 224 343 3.61
The capacities of the different edges in G are given by the different weights m; ;, A; ; and Q j it of the 30 370 3.05 4.37
above equation. The edge saturation allows us to label the nodes v; ; of G with binary labels z; ;: 78 3.80  4.52 4.80
| | 63.6 562 583 6.23
e nodes v; ; linked to the source s via a non-saturated path: z; ; =1 Precision (%) TP edges
. . . L GENIE3 CLR Our method
e nodes v; ; linked to the think ¢ via a non-saturated path: x; ; =0 98 =1 13 119
30 122 130 145
With respect to the two constraints on the flow, finding the maximal flow from s to ¢ in the flow network gg ] 12? 132 ;(5)2

g fs give us the optimal labeling x* according to the cost function
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