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ABSTRACT

In the solution of inverse problems, the objective is often to
minimize the sum of two convex functions f and g subject
to convex constraints. Recently, many works have been de-
voted to this problem in the unconstrained case, when f is
possibly non-smooth and g is differentiable with a Lipschitz-
continuous gradient. The use of a non-smooth penalizing
function arises in particular in wavelet regularization tech-
niques in connection with sparsity issues. In this paper, we
propose a modification of the standard forward-backward
algorithm, which allows us to minimize f + g over a con-
vex constraint set C. The effectiveness of the proposed ap-
proach is illustrated in an image restoration problem involv-
ing signal-dependent noise.

1. INTRODUCTION

In a wide range of signal and image processing problems, one
needs to recover original data from observations having some
a priori information on the data. The prior knowledge may
consist of a model linking the observations to the original
data, some probabilistic information on the data (e.g. prior
probability distribution) and/or some constraints which are
satisfied by these data. Of particular interest are problems
where the observations are obtained from the data by a linear
operator T and some addition of noise. Restoration problems
correspond to the case when T is a convolution operator and
denoising problems are obtained when T = Id.

In order to solve such inverse problems, many ap-
proaches have been developed since the 1960s. In particular,
successfull methods have been proposed which take advan-
tage of a wavelet (or x-let) representation of the data.

In particular, a variational approach can be adopted, aim-
ing at minimizing the sum of two functions f and g over a
convex set C in the wavelet domain. The resulting criterion
can often be related to Maximum A Posteriori (MAP) es-
timation as will be shown in Section 5. The first function
f may be non-smooth. For example, it may correspond to
a ℓ1-norm so as to promote the sparsity of the wavelet rep-
resentation of the data. Unlikely, the second function g is
often differentiable with a Lipschitz-continuous gradient. It
usually corresponds to some “distance” function between the
observations and the data transformed by T . The convex set
C allows to further model some desirable properties of the
solution (e.g. positivity or energy bound). For tractability,
in this paper, it is assumed that the functions f and g are
in the class Γ0(H ) of lower semi-continuous convex func-
tions taking their values in ]−∞,+∞] (not identically equal
to +∞), which are defined on a real separable Hilbert space
H . Then, our objective is to solve the following:

Problem 1.1 Let C be a nonempty closed convex subset
of H . Let f and g be in Γ0(H ), where g is differen-
tiable onH with a β -Lipschitz continuous gradient for some
β ∈ ]0,+∞[.

Find min
x∈C

f (x)+g(x). (1)

Problem 1.1 is obviously equivalent to minimize f +g+ ιC,
where ιC denotes the indicator function ofC, i.e.,

(∀x ∈H ) ιC(x) =

{

0, if x ∈C;

+∞, otherwise.
(2)

In the specific case when C = H , this problem has re-
cently received much attention. Forward-backward algo-
rithms (which cover so-called thresholded Landweber algo-
rithms [1]) have been proposed to solve it numerically. The
idea was proposed by Daubechies et al. in [2] for a quadratic
function g and it was formulated in a more general con-
vex analysis framework in [3]. Extensions to frame-based
inverse problems can be found in [4] and theoretical con-
nections with thresholding rules are further investigated in
[5]. Attention was also paid to the improvement of the con-
vergence speed of the forward-backward algorithm [6]. In
[7], an accelerated method was proposed in the specific case
of a deconvolution in a Shannon wavelet basis. In [8], a
Douglas-Rachford algorithm was introduced to relax the as-
sumption of differentiability of g. Finally, a modification of
the forward-backward algorithm for restoration problems in-
volving Poisson data was proposed in [9].

As shown by the thorough discussion in [3], a funda-
mental tool to analyze Problem 1.1 is the proximity opera-
tor. This operator was introduced by Moreau in 1962 [10].
The proximity operator of f ∈ Γ0(H ) is prox f : H →H ;

x 7→ argminy∈H

1

2
‖y− x‖2 + f (y). We thus see that proxιC

reduces to the projection PC onto the convex set C. Con-
ceptually, by gathering the terms f and ιC in the previous
formulation, the standard form of the forward-backward al-
gorithm could be used. However, this would require a closed
form expression of proxιC+ f , which is only available in some

specific situations.
In Section 2, we recall some properties of the proximity

operator. It is shown that in general the proximity operator
of ιC + f cannot be easily expressed. In Section 3, we subse-
quently propose an iterative approach to compute this oper-
ator for any function f ∈ Γ0(H ). In Section 4, we describe
the constrained forward-backward algorithm we introduce in
order to solve Problem 1.1. An application of this approach



to a wavelet-based restoration problem is described in Sec-
tion 5. The problem of interest is made difficult by the pres-
ence of signal-dependent noise. In this context, we propose
to realize a quadratic lower approximation of the considered
MAP criterion to further improve the convergence profile of
the algorithm.

2. SOME PROPERTIES OF PROXIMITY
OPERATORS

As already mentioned, the proximity operator of ιC + f plays
a key role in our approach.

Some useful results for the calculation of proxιC+ f are

first recalled:

Proposition 2.1 [8, Proposition 12] Let f ∈ Γ0(H ) and let

C be a closed convex subset of H such thatC ∩ dom f 6= /0.1

Then the following properties hold.

(i) (∀x ∈H ), prox f x ∈C⇒ proxιC+ f x = prox f x

(ii) Suppose that H = R. Then

proxιC+ f = PC ◦ prox f . (3)

Note that, the second part of this proposition can be easily
generalized, yielding to the following result which appears
also an extension of [4]:

Proposition 2.2 Let K be a nonempty subset of N, let
(ok)k∈K be an orthonormal basis of H and let (ϕk)k∈K be
functions in Γ0(R). Set

f : H → ]−∞,+∞] : x 7→ ∑
k∈K

ϕk(〈x | ok〉). (4)

Let
C =

⋂

k∈K

{x ∈H | 〈x | ok〉 ∈Ck} (5)

where (Ck)k∈K are nonempty closed intervals in R such that
(∀k ∈K) Ck ∩domϕk 6= /0.
Suppose that either K is finite, or there exists a subset L of K

such that:

(i) KrL is finite;

(ii) (∀k ∈ L) ϕk ≥ ϕk(0) = 0 and 0 ∈Ck.

Then
(∀x ∈H ) proxιC+ f x = ∑

k∈K

πkok (6)

where

πk =







infCk if proxϕk
〈x | ok〉< infCk

supCk if proxϕk
〈x | ok〉> supCk

proxϕk
〈x | ok〉 otherwise.

(7)

A function f (resp. convex C) satisfying (4) (resp. (5)) will
be said separable. Note that (6) and (7) imply that (3) holds.
However, this relation has been proved under the restrictive
assumption that both f and C are separable. In general, when
either f or C is not separable, (3) is no longer valid. Let us
give two simple counterexamples to illustrate this fact.

1The domain of a function f : H →]−∞,+∞] is dom f = {x ∈H |
f (x) < +∞}.

Example 2.3 Let H = R
2 and let f be the function defined

by (∀x ∈ R
2) f (x) = 1

2
x⊤Λx with Λ =

(

1 Λ1,2

Λ1,2 Λ2,2

)

where

Λ2,2 ≥ 0 and |Λ1,2| ≤ Λ
1/2
2,2 . Let C = [−1,1]2. This convex

set is obviously separable w.r.t. the canonical basis of R
2.

Now, set x = 2(Λ1,2,1+Λ2,2)
⊤. After some calculations, we

obtain:

• PC(prox f x) = (0,1)⊤

• proxιC+ f x = (π ,1)⊤ where

π =











Λ1,2

2
if Λ1,2 ∈ [−2,2]

1 if Λ1,2 > 2

−1 if Λ1,2 <−2.
(8)

We conclude that (3) is not satisfied as soon as Λ1,2 6= 0, that
is f is not separable.

Example 2.4 Let H = R
2. Consider the separable function

defined by (∀x= (ξ1,ξ2)
⊤ ∈R

2) f (x) = (1+Λ1,2)ξ
2
1 +(1−

Λ1,2)ξ
2
2 where |Λ1,2| ≤ 1. Let us now consider the nonsepa-

rable convex set given by

C = {x = (ξ1,ξ2)
⊤ ∈ R

2 |max(|ξ1+ ξ2|, |ξ1− ξ2|)≤
√
2}.
(9)

In this case, it can also be shown that (3) does not hold.

In summary, for an arbitrary function f ∈ Γ0(H ) and an
arbitrary closed convex set C, we cannot trust (3) to deter-
mine proxιC+ f . In the next section, we propose an efficient

approach to compute the desired proximity operator in a gen-
eral setting.

3. COMPUTATION OF proxιC+ f

Let us first recall that the Douglas-Rachford algorithm pro-
vides an appealing numerical solution to the minimization of
the sum of two convex functions f1 and f2. More precisely,
we have:

Proposition 3.1 (see [8]) Let f1 and f2 in Γ0(H ) satisfy

int(dom f1)∩ dom f2 6= /0.2 Set z0 ∈H and construct, for
all m ∈ N,

{

z
m+ 1

2
= proxκ f2

(zm)

zm+1 = zm + τ
(

proxκ f1
(2z

m+ 1
2
− zm)− z

m+ 1
2

)

,
(10)

where κ > 0, τ ∈]0,2[. Then, (zm)m∈N converges weakly to
z ∈H such that proxκ f2

(z) is a minimizer of f1 + f2.

On the other hand, a way to compute proxιC+ f is to come

back to its definition: (∀x ∈H ),

proxιC+ f (x) = arg min
y∈H

1

2
‖y− x‖2 + ιC(y)+ f (y). (11)

To solve the above minimization problem, we propose to
use the Douglas-Rachford algorithm by setting f1 = f and

f2 = 1
2
‖·− x‖2+ ιC. Note that both proxκ f1

and proxκ f2
with

2The interior of dom f is designated by int (dom f ).



κ > 0, must be computed to apply this algorithm. In our
case, we have

proxκ f1
(z) = proxκ f (z) (12)

and

proxκ f2
(z) = PC

(z+ κx

1+ κ

)

. (13)

The resulting Douglas-Rachford algorithm enjoys the fol-
lowing properties:

Proposition 3.2 Assume that int(dom f )∩C 6= /0. Consider
the algorithm given by (10), (12) and (13) with τ = κ = 1
and z0 = 2prox f x− x. Then

(i) (z
m+ 1

2
)m∈N converges strongly to proxιC+ f x;

(ii) prox f x ∈C⇒ (∀m ∈ N), z
m+ 1

2
= proxιC+ f x.

The second property shows that the proposed algorithm con-
verges in one iteration when prox f x ∈C. This appears quite

consistent with Proposition 2.1(i).

4. PROPOSEDMINIMIZATION METHOD

4.1 Forward-backward approach

Let us now turn our attention to Problem 1.1 which is subse-
quently assumed to admit a solution. Such a solution can be
computed by the forward-backward algorithm.

Let x0 ∈H be an initial value. The algorithm constructs
a sequence (xn)n≥1 by the iteration: for every n ∈ N,

xn+1 = xn + λn

(

proxιC+γn f (xn− γn∇g(xn))+an− xn
)

(14)

where γn > 0 is the algorithm step-size, λn > 0 is a relaxation
parameter and an represents an error allowed in the compu-
tation of the proximity operator.

The weak convergence of (xn)n∈N to a solution to Prob-
lem 1.1 is then guaranteed provided that:

Assumption 4.1

(i) 0 < infn∈N γn < supn∈N
γn < 2β−1

(ii) (∀n ∈ N) λn ∈ ]0,1] and infn∈N λn > 0

(iii) ∑+∞
n=0 ‖an‖< +∞.

More details concerning this algorithm are given in [3, 4]
and additional conditions for the strong convergence of the
algorithm can be found in [5].

To implement (14), we see however that proxιC+γn f needs

to be computed, which in general, is a non trivial problem as
pointed out in the previous sections.

4.2 Algorithm

Let us summarize the complete form of the algorithmwe pro-
pose to solve Problem 1.1. In the following, (γn)n∈N and
(λn)n∈N are sequences satisfying Assumption 4.1(i) and (ii).

Algorithm 4.1

➀ Set x0 ∈C.

➁ Set x′n = xn− γn∇g(xn).
➂ Set zn,0 = 2proxγn f x

′
n− x′n.

➃ For m = 0, . . . ,Mn

a) Compute z
n,m+ 1

2
= PC

(zn,m + x′n
2

)

.

b) If z
n,m+ 1

2
= z

n,m− 1
2
, goto ➄.

c) Compute zn,m+1 = zn,m + proxγn f (2zn,m+ 1
2
− zn,m)−

z
n,m+ 1

2
.

➄ Set xn+1 = xn + λn

(

z
n,m+ 1

2
− xn

)

.

➅ Goto ➁.

We see that Step ➃ consists of at most Mn iterations of
the Douglas-Rachford algorithm described in the previous
section. Steps ➁ and ➄ correspond to the forward-backward
iteration where the error term is an = z

n,Mn+
1
2
−proxιC+γn f xn.

Due to Proposition 3.2(i), when int(dom f )∩C 6= /0, we are
guaranteed that, by choosing Mn large enough, Assump-
tion 4.1(iii) can be satisfied, so that Algorithm 4.1 weakly
converges to a solution to Problem 1.1. Note however that
we do not need to take large values ofMn when n is small.

In addition, since we have chosen x0 in C and (∀n ∈ N)
z
n,m+ 1

2
also lies inC, it can be deduced that (∀n ≥ 1) xn ∈C.

Consequently, in Step ➁, the gradient of g is only evaluated
onC. This means that the assumption of Lipschitz-continuity
on the gradient of g is only required onC.

5. APPLICATION TO IMAGE RESTORATION

5.1 Context

We aim at restoring an image y in a real separable Hilbert
space G corrupted by a linear operator T : G → G and an
additive noise w ∈ G , having an observation

z = Ty+w. (15)

Here, digital images of size N1×N2 are considered and thus
G = R

N with N = N1N2. In addition, T is a convolutive
blur and w = (w(i))1≤i≤N is a realization of an independent

zero-mean Gaussian noiseW = (W (i))1≤i≤N . The variance of
each random variable W (i) is signal-dependent and is equal

to σ2((Ty)(i)) where Ty =
(

(Ty)(i)
)

1≤i≤N and

(∀µ ∈ [δ ,+∞[) σ2(µ) = α1µ + α0 (16)

with α0 ≥ 0, α1 > 0 and δ ∈]−α0/α1,+∞[. Hereabove, it
has been assumed that Ty ∈ [δ ,+∞[N .

A both simple and efficient prior probabilistic model on
the unknown image y can be adopted by using a representa-
tion of this image in a frame. We thus use a linear representa-
tion of the form: y= F∗x, where F∗ : R

K→R
N (K ≥N) is a

frame synthesis operator. We then assume that the vector x of
frame coefficients is a realization of a random vector X with

independent components. Each component X
(k)
, 1≤ k ≤ K,

has a probability density exp(−φk(·))/
∫ +∞
−∞ exp(−φk(η))dη

where φk is a finite function in Γ0(R).
In addition, we assume that we have prior information

on x which can be expressed by the fact that x belongs to a
nonempty closed convex set C of R

K .
With these assumptions, it can be shown that a MAP es-

timate of the vector of frame coefficients x can be obtained
from z =

(

z(i)
)

1≤i≤N by minimizing in the Hilbert space

H = R
K the function f +g+ ιC where

(∀x =
(

x(k)
)

1≤k≤K ∈ R
K) f (x) =

K

∑
k=1

φk
(

x(k)
)

(17)



and g = Ψ◦T ◦F∗ with

(∀u =
(

u(i)
)

1≤i≤N ∈ R
N) Ψ(u) =

N

∑
i=1

ψi

(

u(i)
)

(18)

(∀µ ∈ R) ψi(µ) =











(

µ− z(i)
)2

2(α1µ + α0)
if µ ≥ δ

+∞ otherwise.

(19)

5.2 Quadratic extension

The functions f and g in the resulting MAP criterion belong
to Γ0(R

K). If we now investigate the Lipschitz-continuity
of the gradient of g, it turns out that g has a Lipschitz-
continuous gradient on the domain of g but that the Lipschitz
constant β is large when the components of z take large val-
ues and/orα1δ +α0 is small. As a consequence, if Algorithm
4.1 is employed, only small values of the step-sizes (γn)n∈N

are allowed, inducing a slow convergence.
To circumvent this problem, we propose to use a lower

approximation gθ of the function g where θ > 0 and gθ =
Ψθ ◦T ◦F∗ with

(∀u =
(

u(i)
)

1≤i≤N ∈R
N) Ψθ (u) =

N

∑
i=1

ψθ ,i

(

u(i)
)

. (20)

The functions (ψθ ,i)1≤i≤N are chosen such that, for every µ ∈
R,

ψθ ,i(µ) =







θ

2
µ2+ ζi,1(θ ) µ + ζi,0(θ ) if δ ≤ µ < µi(θ )

ψi(µ) otherwise,

(21)
and

α1µi(θ ) =
(

θ−1σ4(z(i))
)1/3

−α0. (22)

This means that, when σ2(z(i)) > (α0+δ )3θ , a quadratic ex-
tension of the functionψi over [δ ,µi(θ )] is performed, where
the real constants ζi,0(θ ) and ζi,1(θ ) are adjusted so as to
guarantee the continuity of ψθ ,i and of its first and second
order derivatives over R+. This extension is illustrated in
Fig. 1.
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Figure 1: Graph of the function ψi (continuous line) and its
quadratic extension ψθ ,i (dashed line) when δ = 0, α0 = 1,

α1 = 10−2, θ = 0.8 and z(i) = 70.

As a consequence, it can be shown that Ψθ is in Γ0(R
N)

and it has a Lipschitz-continuous gradient with constant θ .
So, if f +gθ + ιC is minimized with the proposed algorithm,

the parameter θ allows us to control the Lipschitz constant
of the gradient of gθ (i.e. the convergence speed) and, at the
same time, the closeness of the approximation to a minimizer
of the original MAP criterion. In practice, the choice of this
parameter results from a trade-off.

5.3 Simulation results

Here, T is a 7× 7 uniform blur with ‖T‖ = 1. A 256× 256
phantom image y is degraded by T and a signal-dependent
additive noise following the model described in Section 5.1.

An orthonormal discrete wavelet representation (Symlets
of length 6) has been adopted in this example. A gener-
alized Gaussian prior distribution has been used to model
the wavelet coefficients. The potential functions φk are
thus taken of the form ωk| . |pk where ωk > 0 and pk ∈
{1,4/3,3/2,2} are subband adaptive. A constraint on the

solution can be introduced by choosing C = {x ∈ R
K |F∗x ∈

[0,255]256×256}
The relaxation parameter and the stepsize of Algo-

rithm 4.1 are respectively chosen equal to λn ≡ 1 and γn ≡
1.99/θ . The error between images y and y is defined by
20log10(‖y‖/‖y− y‖). Results are provided in Fig. 2 where
the two scenarii α0 > α1 and α0 < α1 have been considered.

It can be noticed that satisfactory results are obtained
when the solution is contrained to belong to the convex C.
In the case when α0 > α1 (left column in Fig. 2), this allows
to observe a 1dB improvement with respect to the case
when the constraint is not activated and visually speaking,
dark areas are better restored. In the case when α0 < α1

(right column in Fig. 2), we observe a smaller quantitative
improvement but light areas in the image are better restored.
In both cases, the dynamic range of the image is clearly not
respected if the convex constraint is not activated.

6. CONCLUSION

In this paper, we have proposed a new algorithm based
on convex optimization to solve recovery problem subject
to constraints. Our method is based on the insertion of a
Douglas-Rachford step in a forward-backward algorithm. A
major problem with this approach is the requirement of a dif-
ferentiable term with a Lipschitz-continuous gradient in the
objective function, which is not always satisfied, in particular
in the considered example involving signal-dependent noise.
Another contribution of this work was to propose a quadratic
extension technique allowing to overcome this limitation.
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