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Adapted Convex Optimization Algorithm for
Wavelet-Based Dynamic PET Reconstruction

Nelly Pustelnik, Caroline Chaux, Jean-Christophe Pesquet, Florent C. Sureau, Elodie Dusch and Claude Comtat

Abstract—This work deals with Dynamic Positron Emission
Tomography (PET) data reconstruction, considering time as an
additional variable (space+time). A convex optimization approach
closely related to a Bayesian framework is adopted. The objective
function to be minimized is expressed in the wavelet-frame
domain and is non-necessarily differentiable in order to promote
sparsity. We propose an adapted version of Forward-Backward-
Douglas-Rachford (FBDR) algorithm to solve the resulting min-
imization problem. The effectiveness of this approach is shown
with simulated dynamic PET data. Comparative results are also
provided.

Index Terms—Dynamic PET, wavelet-frame representations,
convex optimization, reconstruction.

I. INTRODUCTION

In Positron Emission Tomography (PET), a main challenge
consists of finding new reconstruction methods to improve im-
age quality degraded during the acquisition process. Iterative
reconstruction methods such as the Expectation Maximization
algorithms (which maximize the Poisson log-likehood asso-
ciated with PET data) have been proposed to achieve this
objective [1], [2]. Accelerated versions of these algorithms
have been suggested such as Ordered Subsets EM (OS-EM)
[3] and a modified form called RAMLA [4] for which the con-
vergence is established. A drawback of ML-EM approaches is
that they converge to noisy images and, in practice, it is thus
required to stop iterations before convergence. To overcome
this problem, Maximum A Posteriori (MAP) approaches have
been developed which take into account a prior controling
noise effects. The major difficulty is to find an appropriate
prior. Markov Random Fields (MRF) were first proposed,
which are well-adapted to image features. Multiresolution
models such as wavelet-based priors were also proved benefi-
cial. A MAP-EM algorithm based on a Gaussian fidelity term
and generalized Gaussian distributions to model the wavelets
coefficients have been proposed in [5]. The same authors [6]
adapted the RAMLA algorithm to solve a MAP estimation
problem under the constraint that the regularization term is
differentiable (BSREM algorithm [7]).

A new challenge consists of considering dynamic PET data
(space+t) to extract additional physiological parameters. For
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dynamic data, the acquisition duration per time-frame is short
and thus data noise is more severe. Usually, for dynamic
studies, each time-frame is reconstructed independently by
using the aforementioned methods. However, in [8], [9], [10]
the authors demonstrated the advantage of taking into account
time-frame characteristics. These methods can be divided
into two classes: on the one hand, methods which directly
reconstruct parametric maps [8], [9] and on the other hand,
methods reconstructing an image [10], [11], [12]. In parallel,
new convex optimization algorithms have been proposed in
[13], [14], [15] which are able to solve numerically MAP
estimation problems. The main advantages of these algorithms
are twofold: i) their ability to deal with a wide class of
problems and ii) guaranty of their convergence. In this paper,
we propose to apply one of these appealing methods to
space+t PET reconstruction. Previously, Verhaeghe et al. [10]
have suggested to use Forward-Backward-iterations [13] to
minimize a criterion with a Gaussian data fidelity term and
a wavelet spline regularization. In [11], the authors performed
TAC denoising before reconstruction by using the Douglas-
Rachford algorithm. In this paper, we propose to develop a
nested iterative algorithm (FBDR algorithm) [15] to directly
address a Poisson linear degradation model and to perform
denoising and reconstruction simultaneously. The convergence
proof of this kind of algorithm is given in [15]. This method
has another advantage: the possibility to constrain the dynamic
range of the image intensity.

This paper is organized as follows. In a first part, we
will present the degradation model and the associated objec-
tive function to be minimized. The use of multidimensional
wavelet representations will be motivated. Then, the FBDR
algorithm will be introduced in the case of dynamic recon-
struction (space+t) and the quadratic extension necessary to
use this algorithm will be presented next. Finally, we will
provide some results for simulated 2D + t PET data.

II. PET RECONSTRUCTION MODEL

A. Model

We consider the following degradation model:

(∀t ∈ {1, . . . , T}) zt = P(Ayt) (1)

where yt = (yi,t)1≤i≤N represents a finite parameterization
of the original image and corresponds to the spatial activity
distribution for a time-frame t. Here, zt = (zj,t)1≤j≤M is
the dynamic PET data corresponding to the number of coin-
cidences for each tube of response for a time-frame t. Finally,
A denotes the system linear operator associated with matrix
(Aj,i)1≤j≤M,1≤i≤N where each element Aj,i represents the
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probability for a voxel i to be detected in tube of response
j. During the acquisition process, data are contaminated by a
Poisson noise. The effect of the noise is denoted by P .

B. Maximum A Posteriori and Convex Optimization

Following a Bayesian approach, the MAP estimate can be
expressed as

ŷMAP = arg max
y

{
log p(z|y) + log p(y)

}
(2)

where, on the one hand, p(z|y) corresponds to the Poisson
likelihood such that p(z|y) =

∏T
t=1

∏M
j=1 p(zj,t|uj,t) with

uj,t =
∑N

i=1Ajiyi,t,

p(zj,t|uj,t) =
(uj,t)zj,t

zj,t!
exp

(− uj,t

)
(3)

and on the other hand, p(y) is an a priori distribution on the
original image, which will be assumed to correspond to a log-
concave function.

In many convex optimization problems, the goal is similarly
to minimize a convex objective function by finding

ŷCO = arg min
y∈RN×T

g̃(y) + f̃(y) (4)

where f̃ and g̃ are functions in the class Γ0(RN×T ) of lower
semicontinuous convex functions taking their values in ] −
∞,+∞] which are proper (i.e. not identically equal to +∞)
and defined on the Hilbert space RN×T . In the context of
inverse problems, g̃ is considered as the data fidelity term and
f̃ is a regularizer. Actually, a link between (2) and (4) can
be established [16] by identifying g̃ with the Poisson antilog-
likelihood term and f̃ with the prior potential function.

Then, the main difficulty lies in the choice of the prior.
In the last decade, wavelet representations have demonstrated
their efficiency in modelling prior information for images
involved in general inverse problems and in PET particularly
[6], [10], [5]. In the following, the minimization problem (4)
is reformulated in the wavelet transform domain.

C. Wavelets representation and redundant representation

Let F ∗ : RK → RN×T represent a tight wavelet-frame
synthesis operator such that F ∗ ◦ F = νId with ν ∈]0,+∞[
and let x ∈ RK denote the wavelet coefficients of a field
y ∈ RN×T [16]. The field ȳ can be expressed as y = F ∗x =
(F ∗t x)1≤t≤T and Model (1) becomes:

zt = P(AF ∗t x) (5)

where x represents the unknown vector of wavelet-frame
coefficients. In this context, the minimization problem (4) can
be reformulated as

min
x∈RK

g(x) + f(x) (6)

where the noise related term g is such that g =
∑T

t=1 gt where
gt = Ψt ◦A ◦ F ∗t and, for every ut = (uj,t)1≤j≤M ∈ RM ,

Ψt(ut) =
M∑

j=1

ψj,t(uj,t) (7)

with ψj,t(uj,t) = − log p(zj,t|uj,t), j ∈ {1, . . . ,M}. For
the regularization term, previous studies have emphasized the
advantage of taking the l0 “norm” as a penalty term so as to
promote sparsity but the main difficulty is the non-convexity
of this “norm”. The l1-norm was then proposed as a penalty
term in [13]. Good performance was demonstrated in spite of
the possible non-uniqueness of the solution. In [16], authors
proposed to take a weighted combination of an l1-norm and
an lp-norm with p > 1 to regularize the solution, so ensuring
the uniqueness of the solution and a more accurate modelling
of wavelet-frame coefficients. In this work, we will consider
the latter regularizer. Futhermore, a positivity constraint on the
image is introduced. More generally, let C be a closed convex
in RK allowing us to take into account the image range values,
then the minimization problem is reformulated as:

min
x∈RK

g(x) + f(x) + ιC(x) (8)

where ιC corresponds to the indicator function of the set C,
such that (∀x ∈ RK), ιC(x) = 0 if x ∈ C and ιC(x) = +∞
otherwise.

III. FBDR ALGORITHM

To solve Problem (8), a nested iterative algorithm named
Forward-Backward-Douglas-Rachford (FBDR) was proposed
in [15], which consists of a Douglas-Rachford [14] inner loop
in each Forward-Backward iteration [17]. To guarantee the
convergence to a solution to Problem (8), a necessary condition
is the β-Lipschitz differentiability of the fidelity term which is
not guaranteed for g as defined in (7). A quadratic extension
was proposed in [15] to circumvent this problem.

A. Quadratic extension

The idea behind the quadratic extension approach is to
notice that the following inequality is satisfied for the sec-
ond derivative of function ψj,t with t ∈ {1, . . . , T} and
j ∈ {1, . . . ,M}:

(∀υ ∈]0,+∞[) 0 ≤ ψ′′j,t(υ) ≤ θ ⇔ υ ≥ υj,t(θ) = (zj,t/θ)1/2

(9)
when θ ∈ ]0,+∞[. It is then possible to build a lower approx-
imation of ψj,t that is θ-Lipschitz differentiable, denoted by
ψθ,j,t. For every value over threshold υj,t(θ), ψθ,j,t is chosen
equal to the Poisson antilog-likelihood, whereas for values
lower than the threshold, ψθ,j,t takes a quadratic form. A lower
approximation gθ =

∑T
t=1 gθ,t with gθ,t = Ψθ,t◦A◦F ∗t is then

obtained, which is (ν‖A‖2θ)-Lipschitz differentiable, where
(∀ut = (uj,t)1≤i≤M ∈ RM ) , Ψθ,t(ut) =

∑N
j=1 ψθ,j,t(uj,t)

and (∀υ ∈ R), if zj,t > 0

ψθ,j,t(υ) =





υ − zj,t + zj,t ln
(

zj,t

υ

)
if υ ≥ υj,t(θ)

θ
2υ

2 + ζj,t,1(θ) υ + ζj,t,0(θ) if 0 ≤ υ < υj,t(θ)

+∞ otherwise
(10)

and, if zj,t = 0, ψθ,j,t(υ) = υ, if υ ≥ 0, and +∞, otherwise.
Note that a different polynomial approximation of the

objective function was considered in [18].



3

B. Application of FBDR to space+t PET reconstruction

The proposed reconstruction algorithm possesses some ap-
pealing features. At first, the gradient descent is performed
in the space domain based on a time-frame by time-frame
computation. Secondly, it is grounded on an adapted wavelet
decomposition performed along the space/time dimensions
taking into account the fewer number of available samples
in time.

Algorithm III.1
À Choose sequences (γn)n∈N and (λn)n∈N such that γn ∈

]0, 2/(ν‖A‖2θ)[ and λn ∈]0, 1]. Set τ ∈]0, 2].
Á Set n = 0 and x(0) ∈ C.
Â Compute y(n) = F ∗x(n).
Ã For each time-frame t ∈ {1, . . . , T}, compute d

(n)
t =

A∗∇Ψθ,t(Ay
(n)
t ).

Ä Set p(n) = x(n) − γnFd
(n).

Å Set z(n,0) = 2proxγnfp
(n) − p(n).

Æ For m = 0, . . . ,Mn − 1

a) Compute z(n,m+ 1
2 ) = PC

(z(n,m) + p(n)

2

)
.

b) Choose τn,m ∈ [τ , 2].
c) Compute z(n,m+1) =

z(n,m) + τn,m

`
proxγnf (2z(n,m+ 1

2 ) − z(n,m))− z(n,m+ 1
2 )´.

d) If z(n,m+1) = z(n,m), then goto Ç.
Ç Set x(n+1) = x(n) + λn

(
z(n,m+ 1

2 ) − x(n)
)
.

È Increment n and goto Â.

In Step À, the step-size and relaxation parameters used in
the Forward-Backward iterations are chosen. Step Á initializes
the wavelet coefficient vector to an element of the convex
set C. Step Â to Ä correspond to the gradient descent.
The gradient of gθ is defined as: (∀x ∈ RK) ∇gθ(x) =
F (A∗∇Ψθ,t(AF ∗t x))1≤t≤T where (∀ut = (uj,t)1≤j≤M ∈
RM ),

∇Ψθ,t(ut) = (ψ′θ,j,t(uj,t))1≤j≤M , (11)

ψ′θ,j,t(uj,t) =

8
><
>:

1− zj,t

uj,t
if zj,t > 0 and uj,t ≥ υj,t(θ)

θuj,t + ζj,t,1(θ) if zj,t > 0 and 0 ≤ uj,t < υj,t(θ)

1 if zj,t = 0 and uj,t ≥ 0.
(12)

Step Æ allows us to compute the proximity operator of
ιC + f at point p(n). Details on proximity operators can be
found in [17], [14], [16]. The corresponding Douglas-Rachford
procedure is mainly decomposed in two operations performed
iteratively: on the one hand, a projection PC onto the convex
set C, and on the other hand, the computation of proxγnf . In
practice, C is defined from a convex set C∗ ⊂ RN×T allowing
us to incorporate constraints on the image range values, the
positivity constraint, in particular. The relation between the
two convex sets is C = {x ∈ RK |F ∗x ∈ C∗}.

To compute PC , we use the following relation [14]:

PC(x) = x+
1
ν
F (PC∗(F ∗x)− F ∗x) (13)

For the computation of proxγnf , explicit forms are given in
[16]. Step Å represents the initialization of Douglas-Rachford
iterations and allows us to ensure its convergence in one

iteration when the proximity operator of f at p(n) belongs
to the convex set C [15]. Finally, Step Ç corresponds to the
relaxation part of the Forward-Backward algorithm.

IV. MATERIALS AND METHODS

Results are presented on two differents slices of the Zubal
brain phantom including two additional arteries. Each 2D+ t
phantom consists of 256× 256 voxels. The generated activity
corresponds to a [18F]-FDG exam which was simulated and
divided in 16 time-frames with a duration varying between 50
seconds for the first time-frames to 5 minutes for the last ones.
288 (radial) × 144 (angles) sinograms with a radial sampling
of 2.247 mm were simulated by analytically projecting the
phantom in the presence of Poisson noise. Attenuation, random
and scattered coincidences were not simulated. The number of
events in Slice 1 varies from 3 for first time-frame to 647162
for the last time-frame. For Slice 2 the event number varies
from 47 to 331348.

The FBDR algorithm is run over 2000 iterations. The chosen
separable orthonormal wavelets correspond to Daubechies fil-
ters of length 6 on 2 resolution levels for spatial decomposition
and 1 level of Daubechies-6 on the interval [19] for temporal
decomposition. The latter choice is motived by the small
number of time-frames. The parameter θ is choosen equal to
10−4 and the parameters associated with the prior have been
determined by a maximum likelihood approach. We compare
this algorithm with EM stopped at the iteration that gives
the lowest MSE (here 10 iterations for Slice 1 and 2). EM
with post-reconstruction smoothing using a Gaussian kernel
adapted so as to minimize the MSE was also employed. The
EM iteration number in this approach is 120 and 100 for Slice
1 and 2, respectively, and a 4.7 mm x 4.7 mm full width at
half maximum (FWHM) Gaussian filter is used.

V. RESULTS

Figs. 1, 2, 3 and 4 display the different reconstruction results
for the 4th and 14th time-frames of each slice. As it can be
observed, structures are better recovered using the proposed
approach. The advantage of taking into account the temporal
aspect can be mainly observed for the first time-frames where
the noise level is relatively important (Figs. 1 and 3).

Temporal Activity Curves (TAC) are presented in Figs. 5
and 6 for two neighbouring voxels in the cortex (green area in
Fig. 1(a)) and arteries (red area in Fig. 3(a)), respectively. The
MSE values presented in Table I show the differences between
the reconstructed TAC and the original ones. In each situation,
the FBDR approach is the more accurate.

VI. CONCLUSION

We have proposed to employ the FBDR algorithm to restore
space+time PET data. This method is very flexible. It allows
us to consider non-necessarily differentiable priors, which can
be of main interest when using wavelet-frame representations.
The obtained results for 2D + t PET simulations are very
encouraging, and we are now working on 3D + t data.



4

(a) EM Smoothing EM FBDR
Fig. 1. Slice 1 - time-frame 4.

(a) EM Smoothing EM FBDR
Fig. 2. Slice 1 - time-frame 14.

(a) EM Smoothing EM FBDR
Fig. 3. Slice 2 - time-frame 4.

(a) EM Smoothing EM FBDR
Fig. 4. Slice 2 - time-frame 14.
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Fig. 5. TAC extracted from Slice 1 for two neighbouring voxels. Original
(red), EM (cyan), Smoothed-EM (green) and FBDR (blue).
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