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Model of independence for Binary random variables

Independence model in “implicit” form

X = (X1, X2) be a random vector, where X1 and X2 taking values from {0, 1}.

Probability simplex in this case is

∆ = {(p11, p12, p21, p22) ∈ R4
≥0 : p11 + p12 + p21 + p22 = 1}

with the understanding that P (X1 = i, X2 = j) = pij, i, j ∈ {1, 2}.
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� X1 is independent of X2 translates into

p11p22 − p12p21 = 0

a polynomial equations in k[p11, p12, p21, p22].

(when all probabilities are positive then this equivalent to the “odds ratio condition” for

independence in 2 × 2 contingency tables.)

� We say that this model is in the algebraic variety

V(p11p22 − p12p21)

◦ On normalization

◦ Complex solutions
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� f(Θ) represents the independence model. Note that f is a polynomial function.



Maximum Likelihood Estimation

Model: Say our statistical model is given by the mapping

f Θ → Rm (1)

assigning probabilities as pj = fj(θ), j = 1, . . . , m, where fj, : j = 1, . . . , m are polynomial

(could be rational) functions.
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Maximum Likelihood Estimation

Model: Say our statistical model is given by the mapping

f Θ → Rm (3)

assigning probabilities as pj = fj(θ), j = 1, . . . , m, where fj, : j = 1, . . . , m are polynomial

(could be rational) functions.

Log-likelihood: Let (u1, . . . , um) ∈ Zm
≥0 sufficient statistic corresponding to sequence of an iid

observations. We have log-likelihood function

l(θ) =

m∑

j=1

uj log fj(θ)

Likelihood Equations:

∂l

∂θj
=

u1

f1(θ)

∂f1(θ)

∂θj
+ . . . +

um

fm(θ)

∂fm(θ)

∂θj
= 0, j = 1, . . . , d.



Maximum Likelihood Estimation (Contd. . .)

Estimation by algebraic methods: The ideal which represents the solutions is

a = â ∩ R[θ1, . . . , θd] ,

where

â =

〈
y1f1(θ) − 1, . . . , ymfm(θ) − 1︸ ︷︷ ︸,

m∑

j=1

ujyj
∂fj

∂θ1
, . . . ,

m∑

j=1

ujyj
∂fj

∂θd
︸ ︷︷ ︸

〉

Solving by Gröbner bases method Hoşten, Khetan & Sturmfels, Solving the Likelihood

equations, 2005.
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What Commutative Algebra & Algebraic Geometry could offer to
Statistics

General role

� Estimation

� Elimination

� Enumeration

� Algebraic Geometric insights???

◦ (Inspired by Geometric Ideas in Minimum Cross-Entropy by Campbell, 2003 )

◦ for which we need to embed models in algebraic varieties

Broad Approaches

� Reverse engineering of gene regulatory networks (Laubenbacher et al. , 2000 onwards)

� Experimental design (Pistone et al. , 1998 onwards)

� Analysis of graphical models and sampling (Diaconis, Sturmfels, Pactor et al. ,

1998 onwards)



Outline of the Talk

� Estimation of ME models as polynomial system solving

� Gröbner Bases (Buchberger,1965 ) Fundamentals

� Elimination Theorem and Its Application to Estimation

� Embedding ME models in algebraic varieties

� Concluding Remarks and Discussion



Estimation of ME models as polynomial system solving



Kullback’s minimum discrimination theorem

(Kullback 1959 )

Given a probability space, (X, M, R) define a probability measure P as

P (A) = Z−1

∫

A

exp(T ) dR , ∀A ∈ M

where T a real valued function on X such that Z = E[R] exp(T ) < ∞. Suppose T is

P integrable Then

I(P ′‖R) ≥ I(P‖R) = E[P ]T − ln Z



ME model

Set Up

� X is discrete random variable taking values from the set [m] = {1, 2, . . . , m}.

� The available information is in the form of expected values of some functions ti : [m] → R,

i = 1, . . . , d (feature functions ). That is

m∑

j=1

ti(j)pj = Ti , i = 1, . . . d,

where Ti, i = 1, . . . , d, are assumed to be known.
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� X is discrete random variable taking values from the set [m] = {1, 2, . . . , m}.

� The available information is in the form of expected values of some functions ti : [m] → R,

i = 1, . . . , d (feature functions ). That is

m∑

j=1

ti(j)pj = Ti , i = 1, . . . d,

where Ti, i = 1, . . . , d, are assumed to be known.

Principle (Information theoretic approach to statistics)

� choose the pmf that maximize the Shannon entropy functional

S(p) = −
m∑

j=1

pj ln pj

(equivalent to minimizing Bayes loss in decision theory framework)



ME model (Contd...)

Lagrangian

Ξ(p, ξ) ≡ S(p) − ξ0




m∑

j=1

pj − 1


−

d∑

i=1

ξd




m∑

j=1

ti(j)pj − Ti




model

� Holding ξ = (ξ1, . . . , ξd) fixed, the unconstrained maximum of Lagrangian Ξ(p, ξ) over all p ∈

∆m−1 is given by an exponential family

pj(ξ) = Z(ξ)−1 exp

(
−

d∑

i=1

ξiti(j)

)
, j = 1, . . . , m,

where Z(ξ) is normalizing constant given by

Z(ξ) =
m∑

j=1

exp

(
−

d∑

i=1

ξiti(j)

)
.

(For various values of ξ ∈ R, this is known as “maximum entropy model”.)
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� Holding ξ = (ξ1, . . . , ξd) fixed, the unconstrained maximum of Lagrangian Ξ(p, ξ) over all p ∈

∆m−1 is given by an exponential family

pj(ξ) = Z(ξ)−1 exp

(
−

d∑

i=1

ξiti(j)

)
, j = 1, . . . , m,

where Z(ξ) is normalizing constant given by

Z(ξ) =
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j=1

exp

(
−

d∑

i=1

ξiti(j)

)
.

(For various values of ξ ∈ R, this is known as “maximum entropy model”.)

Various Formulations

(i) Primal (ii) Dual (iii) Kullback-Csiszár Iteration



Towards Algebraic methods

Proposition: The estimation of maximum entropy model amounts to solving a set of polynomial

equations provided that the feature functions ti, i = 1, . . . , d are positive and integer valued.

Proof: By setting ξi = − ln θi, i = 1, . . . , d, we obtain maximum entropy model as

pj = Z(θ)−1
d∏

i=1

θ
ti(j)
i ,

where

Z(θ) =

m∑

j=1

d∏

i=1

θ
ti(j)
i .

Given the information in the form of expected values of feature functions ti, i = 1, . . . , d, θi, i =

1, . . . , d should satisfy following set of polynomial equations

m∑

j=1

(ti(j) − Ti)
d∏

i=1

θ
ti(j)
i = 0.



Towards Algebraic methods (Contd...)

proposition: Given the “sample mean” hypothesis the problem of estimating the ME-model in duel-

method amounts to solving set of Laurent polynomial equations.

Proof: To retain the integer valued exponents in our final solution we consider the constrains of

the form

N

m∑

j=1

ti(j)pj = S̃i , i = 1, . . . d , (4)

where S̃i =
∑N

l=1 ti(Ol) denotes the sample sum. In this case Lagrangian is

Ξ̃(p, ξ) ≡ S(p)−ξ0




m∑

j=1

pj − 1


−

d∑

i=1

ξ̃dN




m∑

j=1

pjti(j) − S̃i


 . (5)

pj(ξ) = Z̃(ξ)−1 exp

(
−N

d∑

i=1

ξ̃iti(j)

)
, j = 1, . . . , m.

where Z̃(ξ) is a normalizing constant.



Towards Algebraic methods (Contd...)

To calculate the parameters we maximize the dual Ψ̃(ξ̃) of Ξ̃(p, ξ). That is we maximize the functional

Ψ̃(ξ̃) = ln Z̃ +

d∑

i=1

ξ̃iS̃i . (6)

It is equivalent to optimizing the functional

Ψ̃′(ξ̃) =
m∑

j=1

exp

(
d∑

i=1

ξ̃iS̃i − N
d∑

i=1

ξ̃iti(j)

)

By setting ln θ̃i = ξ̃ we have

Ψ̃′(θ̃) =
m∑

j=1

d∏

i=1

θ̃
(S̃i−Nti(j))
i (7)

The solution is given by solving the following set of equations

∂Ψ̃′

∂θ̃j

= 0 , j = 1, . . . d. (8)

We have
∂Ψ̃′

∂θ̃j

∈ k[θ̃±1 , . . . , θ̃±d ] , i = 1, . . . , d. (9)



Estimation by Minimum I-Divergence Principle

� Given a prior estimate r ∈ ∆m one would choose the pmf p ∈ ∆m that minimizes the

Kullback-Leibler divergence

I(p‖r) =

m∑

j=1

pj ln
pj

rj
(10)

with respect to the given constraints.

� The corresponding minimum entropy distributions are in the form of

pj(ξ) = Z(ξ)−1rj exp

(
−

d∑

i=1

ξiti(j)

)
, j = 1, . . . , m, (11)

where Z(ξ) is normalizing constant given by

Z(ξ) =
m∑

j=1

rj exp

(
−

d∑

i=1

ξiti(j)

)
. (12)
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(
−

d∑
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)
, j = 1, . . . , m, (14)

where Z(ξ) is normalizing constant given by

Z(ξ) =
m∑

j=1

rj exp

(
−

d∑

i=1

ξiti(j)

)
. (15)

� Estimation in this case can be translated to solving polynomial equations, when the feature

functions are integer valued. Polynomial system one would solve in this case is

m∑

j=1

rj(ti(j) − Ti)
d∏

i=1

θ
ti(j)
i = 0. (16)



Estimation by Kullback-Csiszár Iteration

Algorithm: The algorithm computes the distribution p(N) which minimizes I(p(N)‖p(N−1)) with re-

spect the ith constraint, 1 ≤ i ≤ d if N = ad + i, for any positive integer a.
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Algorithm: The algorithm computes the distribution p(N) which minimizes I(p(N)‖p(N−1)) with re-

spect the ith constraint, 1 ≤ i ≤ d if N = ad + i, for any positive integer a.

at 0th iteration: p(0) = r

at 1st iteration: p(1) is given by

p
(1)
j = rj

(
Z(1)

)−1

ζ
t1(j)
1 ,

where
(
Z(1)

)−1
=
∑m

j=1 rjζ
t1(j)
1 . Considering the first constraint it can be estimated by solving

polynomial equation
m∑

j=1

rj(t1(j) − T1)ζ
t1(j)
1 = 0 , (17)

with indeterminate ζ1.
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Algorithm: The algorithm computes the distribution p(N) which minimizes I(p(N)‖p(N−1)) with re-

spect the ith constraint, 1 ≤ i ≤ d if N = ad + i, for any positive integer a.

at 0th iteration: p(0) = r

at 1st iteration: p(1) is given by

p
(1)
j = rj

(
Z(1)

)−1

ζ
t1(j)
1 ,

where
(
Z(1)

)−1
=
∑m

j=1 rjζ
t1(j)
1 . Considering the first constraint it can be estimated by solving

polynomial equation
m∑

j=1

rj(t1(j) − T1)ζ
t1(j)
1 = 0 , (18)

with indeterminate ζ1.

at 2st iteration: Similarly we have

p
(2)
j = rj

(
Z(1)

)−1(
Z(2)

)−1

ζ
t1(j)
1 ζ

t2(j)
2 ,

where
(
Z(2)

)−1
=
∑m

j=1 ζ
t1(j)
2 .



Estimation by Kullback-Csiszár Iteration (Contd...)

Considering the first two constrains in ME distribution can be estimated by solving
m∑

j=1

rj(t2(j) − T2)ζ
t1(j)
1 ζ

t2(j)
2 = 0 , (19)

along with the previous equations.



Estimation by Kullback-Csiszár Iteration (Contd...)

Considering the first two constrains in ME distribution can be estimated by solving
m∑

j=1

rj(t2(j) − T2)ζ
t1(j)
1 ζ

t2(j)
2 = 0 , (20)

along with the previous equations.

at N th iteration: In general, when N = ad + i for some positive integer a, p
(N)
j , for N = 1, 2 . . . is

given by

p
(N)
j = rj

(
Z(1)

)−1

. . .
(
Z(N)

)−1

ζ
t1(j)
1 . . . ζ

tN (j)
N

and is determined by the following system of polynomial equations
∑m

j=1 rj(t1(j) − T1)ζ
t1(j)
1 = 0 ,∑m

j=1 rj(t2(j) − T2)ζ
t1(j)
1 ζ

t2(j)
2 = 0 ,

...∑m
j=1 rj(ti(j) − Ti)ζ

t1(j)
1 ζ

t2(j)
2 . . . ζ

ti(j)
N = 0 .





(21)



Gröbner Bases (Buchberger,1965 ) Fundamentals



Dictionary of Algebra & Geometry

Basic problem of algebraic geometry is to understand the set of points a = (a1, . . . , an) ∈ kn sat-

isfying a system of polynomial equations f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0 where f1, . . . , fs ∈

k[x1, . . . , xn].
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Basic problem of algebraic geometry is to understand the set of points a = (a1, . . . , an) ∈ kn sat-

isfying a system of polynomial equations f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0 where f1, . . . , fs ∈

k[x1, . . . , xn].

Algebraic Variety: A set V ⊂ kn is said to be algebraic variety if there exists f1, . . . , fs ∈ k[x1, . . . , xn]

such that

V(f1, . . . , fs) = V = {(c1, . . . cn) ∈ kn : fi(c1, . . . cn) = 0, 1 ≤ i ≤ s} .

� V(f1, . . . , fs) is uniquely determined by the ideal generated by f1, . . . , fs.

Ideal: A subset a ⊂ k[x1, . . . , xn] is said to be ideal if it satisfies:

(i) 0 ∈ a

(ii) f, g ∈ a, then f + g ∈ a

(iii) f ∈ a and h ∈ k[x1, . . . , xn] and then hf ∈ a.

� Ideal generated by f1, . . . , fs ∈ k[x1, . . . , xn]:

〈f1, . . . , fs〉 =

{
f ∈ k[x1, . . . , xn] :

s∑

i=1

hsfs, hs ∈ k[x1, . . . , xs]

}



Dictionary of Algebra & Geometry (Contd...)

Vanishing Ideal of a variety: Let E ⊂ kn be an variety. Then vanishing ideal of a variety is

defined as

I(E) = {f ∈ k[x1, . . . , xn] : f(a) = 0, ∀a ∈ E}

(Can be extended to any arbitrary subset of kn)
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defined as

I(E) = {f ∈ k[x1, . . . , xn] : f(a) = 0, ∀a ∈ E}

(Can be extended to any arbitrary subset of kn)

Ideal Variety relations
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Vanishing Ideal of a variety: Let E ⊂ kn be an variety. Then vanishing ideal of a variety is

defined as

I(E) = {f ∈ k[x1, . . . , xn] : f(a) = 0, ∀a ∈ E}

(Can be extended to any arbitrary subset of kn)

Ideal Variety relations

� V(f1, . . . , fs) = V(〈f1, . . . , fs〉)

� 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 =⇒ V(f1, . . . , fs) = V(g1, . . . , gt)

� 〈f1, . . . , fs〉 ⊆ I(V(f1, . . . , fs))

� V = W ⇐⇒ I(V ) = I(W )

(Hilbert Nullstellensatz: Given a variety, we can recover the ideal up to its radical only in the

case of algebraically closed fields.)



Multivariate Division Algorithm and Hilbert Bases Theorem

Division algorithm in k[x]: Let g ∈ k[x]. Then for any f ∈ k[x], ∃ unique q, r ∈ k[x] and

deg r < deg g or r = 0 such that f = qg + r.

� k[x] is a principle ideal domain (PID).
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deg r < deg g or r = 0 such that f = qg + r.

� k[x] is a principle ideal domain (PID).
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≥0, and let F =

(f1, . . . , fs) be an ordered s-tuple of polynomials in k[x1, . . . , xn]. Then every f ∈ k[x1, . . . , xn]

can be written as

f =
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qifi + r

where qi ∈ k[x1, . . . , xn], i = 1, . . . , s and r ∈ k[x1, . . . , xn] such that r = 0 or none of the

terms in r are divisible by any of LT≺(f1), . . . , LT≺(fs)
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Proof of Hilbert Basis theorem

if a = 0 then we are done

from Dickson’s lemma ∃f1, . . . , fs ∈ a such that

LT≺(a) = 〈LT≺(a)〉 = 〈LT(f1), . . . , LT(fs)〉

claim: a = 〈f1, . . . , fs〉

Enough to show that a ⊂ 〈f1, . . . , fs〉

Pick f ∈ a arbitrary.

Apply division algorithm:

f =
s∑

i=1

qifi + r

we have: no term of r is divisible by LT (fi) for i = 1, . . . s.

We have r ∈ a and hence LT (r) ∈ 〈LT(a)〉.

Hence LT(r) is divided by one of LT(gi), =⇒⇐=

Hence r = 0 and hence f ∈ 〈f1, . . . , fs〉
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definition

Consider k[x1, . . . , xn] and fix a monomial order. Given any ideal a ⊂ k[x1, . . . , xn], a

finite subset G = {g1, . . . , gs} ⊂ a is said to be Gröbner basis if

〈LT(a)〉 = 〈LT(f1), . . . , LT(fs)〉

Other characterizations of Gröbner Bases

� G ⊂ k[x1, . . . , xn] is a Gröbner bases if and only if for any f ∈ a there exists g ∈ G such

that LM(g)|LM(f)

� G ⊂ k[x1, . . . , xn] is a Gröbner bases if and only if for any f ∈ k[x1, . . . , xn] we have

f ∈ a ⇔ ηG(f) = 0

Buchberger’s algorithm ....



Some Applications

� Solving system of polynomial equations

� Intersection Ideals

� Kernel of ring homeomorphism

� Quotient Ideals

� Basis for k vector space k[x1, . . . , xn]/a

B = {xα : α ∈ Zn
≥0, LM(gi) - xα, i = 1, 2, . . . , s}

where G = {g1, . . . , gs} is a Gröbner basis.

� Elimination methods



Elimination Theorem and Its Application to Estimation



Elimination Theorem

(Buchberger 1987 )

Elimination order: Consider k[x1, . . . , xn, y1, . . . , ym] a polynomial ring in indeterminate x1, . . . , xn,

y1, . . . , ym. We refer to {x1, . . . , xn} as x-variables and {y1, . . . , ym} as y-variables. Let ≺x and ≺y

be monomial orderings on x and y variables respectively. Define an ordering relation ≺ on Zn+m
≥0 (i.e

set of all monomials in indeterminate x1, . . . , xn, y1, . . . , ym) as follows:

xα(1)
yβ(1)

≺[x�y] xα(2)
yβ(2)

⇐⇒





α(1) ≺x α(2)

or

α(1) = α(2) and β(1) ≺y β(2)

,

where α(1), α(2) ∈ Zn
≥0 and β(1), β(2) ∈ Zm

≥0. The term order ≺[x�y] is called elimination order with

the x variables larger than the y variables (which is indeed a term order).
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Elimination order: Consider k[x1, . . . , xn, y1, . . . , ym] a polynomial ring in indeterminate x1, . . . , xn,

y1, . . . , ym. We refer to {x1, . . . , xn} as x-variables and {y1, . . . , ym} as y-variables. Let ≺x and ≺y

be monomial orderings on x and y variables respectively. Define an ordering relation ≺ on Zn+1
≥0 (i.e

set of all monomials in indeterminate x1, . . . , xn, y1, . . . , ym) as follows:

xα(1)
yβ(1)

≺[x�y] xα(2)
yβ(2)

⇐⇒





α(1) ≺x α(2)

or

α(1) = α(2) and β(1) ≺y β(2)

,

where α(1), α(2) ∈ Zn
≥0 and β(1), β(2) ∈ Zm

≥0. The term order ≺[x�y] is called elimination order with

the x variables larger than the y variables (which is indeed a term order).

Elimination Ideal: lth-elimination ideal of an ideal a ⊂ k[x1, . . . , xn] with respect to an elimination

order x1 � x2 . . . � xn is defined as al = a ∩ k[xl+1, . . . , xn].

Elimination Theorem: Let a ⊂ k[x1, . . . , xn] be an ideal and let G ⊂ k[x1, . . . , xn] be a Gröbner

basis of a with respect to term order x1 � x2 � . . . � xn. Then for every 0 ≤ l ≤ n the set

Gl = G ∩ k[xl+1, . . . , xn] is a Gröbner basis of lth elimination ideal al.



Application to Maximum Likelihood Estimation

Recall...

The ideal which represents the solutions to likelihood equations

∂l

∂θj
=

u1

f1(θ)

∂f1(θ)

∂θj
+ . . . +

um

fm(θ)

∂fm(θ)

∂θj
= 0, j = 1, . . . , d.

is

a = â ∩ R[θ1, . . . , θd] ,

where

â =

〈
y1f1(θ) − 1, . . . , ymfm(θ) − 1︸ ︷︷ ︸,

m∑

j=1

ujyj
∂fj

∂θ1
, . . . ,

m∑

j=1

ujyj
∂fj

∂θd
︸ ︷︷ ︸

〉
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step 1: Calculate a Gröbner basis Ĝ for the ideal â.
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Recall...

The ideal which represents the solutions to likelihood equations

∂l

∂θj
=

u1

f1(θ)

∂f1(θ)

∂θj
+ . . . +

um

fm(θ)

∂fm(θ)

∂θj
= 0, j = 1, . . . , d.

is

a = â ∩ R[θ1, . . . , θd] ,

where

â =

〈
y1f1(θ) − 1, . . . , ymfm(θ) − 1︸ ︷︷ ︸,

m∑

j=1

ujyj
∂fj

∂θ1
, . . . ,

m∑

j=1

ujyj
∂fj

∂θd
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〉

Estimation by Gröbner bases

step 1: Calculate a Gröbner basis Ĝ for the ideal â.

step 2: Polynomials in Ĝ which doesn’t involve y1, . . . , ym forms a Gröbner basis whose variety gives

the solution to the ML estimation.



Application to Minimax estimation and Feature selection

Recall... Ideal which represents the maximum entropy solution

a =

〈
m∑

j=1

(ti(j) − Ti)
d∏

i=1

θ
ti(j)
i : i = 1, . . . , d

〉



Application to Minimax estimation and Feature selection

Recall... Ideal which represents the maximum entropy solution

a =

〈
m∑

j=1

(ti(j) − Ti)
d∏

i=1

θ
ti(j)
i : i = 1, . . . , d

〉

Zhu-Mumford method of estimation and feature selection

� Let X be a rv, let l be the true distribution. Let p∗ be the ME distribution with respect to the

feature functions ti, i = 1, . . . , d.

� KL-distance from p∗ to l is

I(l‖p∗) = S(p∗) − S(l)

� Feature selection by minimizing I(l‖p∗) with respect to the feature subsets.

� Zhu-Mumford algorithm requires estimation of ME-distribution with respect to the various feature

subsets.



Application to Minimax estimation and Feature selection

Recall... Ideal which represents the maximum entropy solution

a =

〈
m∑

j=1

(ti(j) − Ti)
d∏

i=1

θ
ti(j)
i : i = 1, . . . , d

〉

Zhu-Mumford method of estimation and feature selection

� Let X be a rv, let l be the true distribution. Let p∗ be the ME distribution with respect to the

feature functions ti, i = 1, . . . , d.

� KL-distance from p∗ to l is

I(l‖p∗) = S(p∗) − S(l)

� Feature selection by minimizing I(l‖p∗) with respect to the feature subsets.

� Zhu-Mumford algorithm requires estimation of ME-distribution with respect to the various feature

subsets.

Application of elimination theorem to Zhu-Mumford algorithms...



Embedding ME models in Algebraic Varieties



Algebraic Formulations

Semi-algebraic set: A set Θ ⊆ R is called semi-algebraic set, if there are two finite collection of

polynomials F ⊂ k[x1, . . . , xd] and G ⊂ k[x1, . . . , xd] such that

Θ = {θ ∈ Rd : f(θ) = 0, ∀f ∈ F and g(θ) ≥ 0, ∀g ∈ G} .
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model.

How Commutative algebra and Algebraic geometry plays a role:

Parametric representation of statistical models pj = fj(θ1, . . . , θd), j = 1, . . . , m can be viewed in

three different ways

� parametric description of a curve in m dimentional space

� homeomorphism of the ring k[p1, . . . , pm] to k[θ1, . . . , θd] identified by pj 7→ fj(θ1, . . . , θd)

� solution of polynomial equations (then projected to km) pj − fj(θ1, . . . , θd) = 0



Implicit ME-model: Main Theorem

Given positive integer valued functions ti, i = 1, . . . , d we have maximum entropy model as image

of
f : kd → km − W

(θ1, . . . , θd) 7→

( ∏d
i=1 θ

ti(1)
i∑m

j=1

∏d
i=1 θ

ti(j)
i

, . . . ,
∏d

i=1 θ
ti(m)
i∑m

j=1

∏d
i=1 θ

ti(m)
i

)
.

(22)

where W = V(
∑m

j=1

∏d
i=1 θ

ti(m)
i )
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where W = V(
∑m

j=1

∏d
i=1 θ

ti(m)
i )

theorem Let f be a polynomial functions which parameterize maximum entropy model with

respect to sufficient statistic ti : R → Z≥0 according to (28). Then

im(f) ⊆ V(ker(̃f∗))︸ ︷︷ ︸∩V(
m∑

j=1

pj − 1)

︸ ︷︷ ︸
(24)
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theorem Let f be a polynomial functions which parameterize maximum entropy model with

respect to sufficient statistic ti : R → Z≥0 according to (28). Then

im(f) ⊆ V(ker(̃f∗))︸ ︷︷ ︸∩V(
m∑

j=1

pj − 1)
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(29)

where f̃ ∗ is a k-algebra homeomorphism

f̃ ∗ : k[p1, . . . , pm] → k[θ0, . . . , θd]

pj 7→ θ0

d∏

i=1

θ
ti(j)
i .

(30)

***The inclusion should be understand from the point of “closure” or “Zariski Closure”



Ideal and Gröbner bases representation

Corollary:

im(f) ⊆ V(a ∩ k[p1, . . . , pm])︸ ︷︷ ︸∩V(
m∑

j=1

pj − 1)

︸ ︷︷ ︸
, (31)

where

a =

〈
pj − θ0

d∏

i=1

θ
t1(j)
i : j = 1, . . . , m

〉
⊆ k[p1, . . . , pm, θ1, . . . , θd]
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Corollary:

im(f) ⊆ V(a ∩ k[p1, . . . , pm])︸ ︷︷ ︸∩V(
m∑

j=1

pj − 1)

︸ ︷︷ ︸
, (34)

where

a =

〈
pj − θ0

d∏

i=1

θ
t1(j)
i : j = 1, . . . , m

〉
⊆ k[p1, . . . , pm, θ1, . . . , θd]

Corollary: (By Elimination theorem)

im(f) ⊆ V(G ∩ k[p1, . . . , pm])︸ ︷︷ ︸∩V(
m∑

j=1

pj − 1)

︸ ︷︷ ︸
, (35)

where G is the Gröbner basis of

a =

〈
pj − θ0

d∏

i=1

θ
t1(j)
i : j = 1, . . . , m

〉
⊆ k[p1, . . . , pm, θ1, . . . , θd]

with a term order {p1, . . . , pm} ≺ {θ1, . . . , θd}



ME model as a rational parameterization

Theorem

im(f) ⊆ V(b ∩ k[p1, . . . , pm]) , (36)

where

b =

〈
Zpj −

d∏

i=1

θ
ti(j)
i : j = 1, . . . , m, 1 − Zmy

〉
⊆ k[p1, . . . , pm, θ1, . . . , θd, y]

(Z is the partition function)

**** probably difficult to compute



Example

p1 = θ0θ1
2θ2

p2 = θ0θ1θ2
2

p3 = θ0θ1
3θ2

p4 = θ0θ1θ2
4

p5 = θ0θ1
5θ2

3

p6 = θ0θ1
2θ2

3

p7 = θ0θ1θ2



Example (Contd...)

Change of symbols

p1 → a, p2 → b, p3 → c, p4 → d, p5 → e, p6 → f , p7 → g

and

θ0 → x , θ1 → y, θ2 → z



Example (Contd...)

Maximum entropy model is contained in

Vmodel = V(p1p2 − p6p7,

p2p6 − p4p1,

p2 − p4p7,

p3p
2
1 − p5p

2
7,

p4p
2
1 − p2

6p7,

p6p3p1 − p2p5p7,

p2
6p3 − p4p5p7,

p6
6 − p2p

3
4p3p5

7∑

i=1

pi − 1)
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Maximum entropy model is contained in

Vmodel = V(p1p2 − p6p7,

p2p6 − p4p1,

p2 − p4p7,

p3p
2
1 − p5p

2
7,

p4p
2
1 − p2

6p7,

p6p3p1 − p2p5p7,

p2
6p3 − p4p5p7,

p6
6 − p2p

3
4p3p5

7∑

i=1

pi − 1)

Maximum entropy distribution is contained in Vmodel ∩ Vdata.



Summary

Parametric

� Estimation of ME models can be transformed to solving system of polynomial equations

◦ Primal – System of polynomial equations

◦ Dual – System of Laurent polynomial equations

◦ Kullback-Csiszár – A triangular system (A decreasing sequence of dimension of quotient vector

spaces modulo ideals)



Summary

Parametric

� Estimation of ME models can be transformed to solving system of polynomial equations

◦ Primal – System of polynomial equations

◦ Dual – System of Laurent polynomial equations

◦ Kullback-Csiszár – A triangular system (A decreasing sequence of dimension of quotient vector

spaces modulo ideals)
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� Estimation of ME models can be transformed to solving system of polynomial equations

◦ Primal – System of polynomial equations

◦ Dual – System of Laurent polynomial equations

◦ Kullback-Csiszár – A triangular system (A decreasing sequence of dimension of quotient vector

spaces modulo ideals)

� Gröbner bases can be used in the estimation of ME-models

� Elimination theorem comes in handy (for both ML and ME)

Implicit

� ME-models can be treated with Toric ideals (One can relax positivity of feature functions)

� ME-models can be embedded in Toric varieties (elegant but can we characterize the margin)
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Concluding Remarks

Potential Problems

� Elimination in “implicit models”

� “Zero dimensional ideals” and “k-vector dimension of quotient ring modulo ideal” describing

ME models

� Universal Gröbner bases, term order

Finally...

In the case of ME, both model and data can be represented by algebraic

varieties ‘‘implicitly’’--- probably this result paves a way to algebraic

geometry of information theoretic statistics


