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Model of independence for Binary random variables

Independence model in “implicit” form
X = (X1, X3) be a random vector, where X and X taking values from {0, 1}.

Probability simplex in this case is
A = {(p11, P12, P21, p22) € RSyt pi1 + pio + por + poo = 1}
with the understanding that P(X; =i, Xo = j) = p;j, i, 5 € {1,2}.
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(when all probabilities are positive then this equivalent to the “odds ratio condition” for
independence in 2 X 2 contingency tables.)
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Probability simplex in this case is
A = {(p11, P12, P21, p22) € RSyt pi1 + pio + por + poo = 1}
with the understanding that P(X; =i, Xo = j) = p;j, i, 5 € {1,2}.
> X is independent of X5 translates into
p11p22 — p12p21 = 0

a polynomial equations in k[p11, p12, D21, Poa]-
(when all probabilities are positive then this equivalent to the “odds ratio condition” for
independence in 2 X 2 contingency tables.)

> We say that this model is in the algebraic variety
V(p11p22 — pr2pa1)

o On normalization

o Complex solutions




Model of independence for Binary random variables (Contd...)

Independence model in “parametric” form
X = (X1, Xy) be a random vector, where X takes values from [m;] = {1,...,m;} and X5
takes values from [ms] = {1,...,mo}. X = (X1, X3) be a random vector, where X; and X;

taking values from {0, 1}.
> Probability simplex in this case is
A = {(p11, p12, P21, p22) € Ry : p11 + pia + par + po = 1}
with the understanding that P(X; =i, Xy = j) = pyj, i, 7 € {1,2}.
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> f(O) represents the independence model. Note that f is a polynomial function.




Maximum Likelihood Estimation

Model: Say our statistical model is given by the mapping
f 6 —=R" (1)

assigning probabilities as p; = f;(0), 7 =1,...,m, where f;,: j =1,...,m are polynomial
(could be rational) functions.




Maximum Likelihood Estimation

Model: Say our statistical model is given by the mapping

f 6 —=R" (2)
assigning probabilities as p; = f;(0), 7 =1,...,m, where f;,: j =1,...,m are polynomial
(could be rational) functions.

Log-likelihood: Let (uy, ..., u,) € ZZ, sufficient statistic corresponding to sequence of an iid

observations. We have log-likelihood function

1(0) = Z ujlog f;(0)




Maximum Likelihood Estimation

Model: Say our statistical model is given by the mapping

f ©—=R" (3)
assigning probabilities as p; = f;(0), 7 =1,...,m, where f;,: j =1,...,m are polynomial
(could be rational) functions.

Log-likelihood: Let (uy, ..., u,) € ZZ, sufficient statistic corresponding to sequence of an iid

observations. We have log-likelihood function
[(6) =) uylog f;(6)
j=1

Likelihood Equations:
a0,  f1(0) 06, O f(0) 00,




Maximum Likelihood Estimation (Contd. . .)

Estimation by algebraic methods: The ideal which represents the solutions is
a=anR[b,...,04 ,

where

N = OFf; m of.
a= <y1f1(9) — 1L Ymfm(0) — 1, ijja—gi, . Z“ﬂ'%a—?>

Solving by Grobner bases method Hosten, Khetan & Sturmfels, Solving the Likelihood
equations, 2005.




What Commutative Algebra & Algebraic Geometry could offer to
Statistics

General role
> Estimation
> Elimination

> Enumeration
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What Commutative Algebra & Algebraic Geometry could offer to
Statistics

General role

> Estimation

> Elimination

> Enumeration

> Algebraic Geometric insights???

o (Inspired by Geometric Ideas in Minimum Cross-Entropy by Campbell, 2003)

o for which we need to embed models in algebraic varieties
Broad Approaches
> Reverse engineering of gene regulatory networks (Laubenbacher et al. , 2000 onwards)
> Experimental design (Pistone et al. , 1998 onwards)

> Analysis of graphical models and sampling (Diaconis, Sturmfels, Pactor et al. ,
1998 onwards)




Outline of the Talk

> Estimation of ME models as polynomial system solving
> Grobner Bases (Buchberger, 1965) Fundamentals

> Elimination Theorem and Its Application to Estimation
> Embedding ME models in algebraic varieties

> Concluding Remarks and Discussion




Estimation of ME models as polynomial system solving




Kullback's minimum discrimination theorem

(Kullback 1959)
Given a probability space, (X, 9, R) define a probability measure P as

P(A) = Zl/Aexp(T) dR , YVAeM

where T a real valued function on X such that Z = Ez exp(1) < co. Suppose T is

P integrable Then
I(P'|R) > I(P|R) =EjpT —InZ




ME model

Set Up

> X is discrete random variable taking values from the set [m| = {1,2,...,m}.

> The available information is in the form of expected values of some functions ¢; : [m] — R,
i =1,...,d (feature functions ). That is

where T;, 1 =1, ...,d, are assumed to be known.




ME model

Set Up

> X is discrete random variable taking values from the set [m| = {1,2,...,m}.

> The available information is in the form of expected values of some functions ¢; : [m] — R,

i =1,...,d (feature functions ). That is
th(j)pjzﬂ 72217 d7
j=1

where T;, 1 =1, ...,d, are assumed to be known.

Principle (Information theoretic approach to statistics)

> choose the pmf that maximize the Shannon entropy functional
S(p) = — ij Inp;
j=1

(equivalent to minimizing Bayes loss in decision theory framework)




ME model (Contd...)

Lagrangian
m d m
Z(p. ) =S - & (D pi—1] =) & | > tili)p;
=1 i=1 j=1
model
> Holding & = (&1,...,&,) fixed, the unconstrained maximum of Lagrangian =(p, &) over all p €

A,,_1 is given by an exponential family

pi(€) =2 eXp< Zfz ) o,

where Z (&) is normalizing constant given by

m d

(For various values of £ € R, this is known as “maximum entropy model”.)
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Lagrangian
m d m
Z(p. ) =S - & (D pi—1] =) & | > tili)p;
=1 i=1 j=1
model
> Holding & = (&1,...,&,) fixed, the unconstrained maximum of Lagrangian =(p, &) over all p €

A,,_1 is given by an exponential family

pi(€) =2 eXp< Zfz ) o,

where Z (&) is normalizing constant given by

m d

(For various values of £ € R, this is known as “maximum entropy model”.)

Various Formulations
(i) Primal (ii) Dual (iii) Kullback-Csiszar lteration




Towards Algebraic methods

Proposition: The estimation of maximum entropy model amounts to solving a set of polynomial
equations provided that the feature functionst;, v = 1,...,d are positive and integer valued.

Proof: By setting &, = —1Inf;, 1 =1,...,d, we obtain maximum entropy model as

d
pj = Z(6)~! HQZiU) 7
i=1

where
z(0)=>"T[o:" .
j=1 i=1

Given the information in the form of expected values of feature functions t;,, © = 1,....d, 6;, i =
1,...,d should satisfy following set of polynomial equations

m d

S ) - [V =0

j=1 i=1




Towards Algebraic methods (Contd...)

proposition: Given the “sample mean” hypothesis the problem of estimating the ME-model in duel-
method amounts to solving set of Laurent polynomial equations.

Proof: To retain the integer valued exponents in our final solution we consider the constrains of
the form

N> tiljpj=S , i=1,...d, (4)

where S; = S°V, t:(Oy) denotes the sample sum. In this case Lagrangian is

d

=(p.&) = Zpy—l ZdN ij Si| (5)

pi(€) = Z(€) eXp< NZ& ) i=1,...,m.

where Z(€) is a normalizing constant.




Towards Algebraic methods (Contd...)

To calculate the parameters we maximize the dual W(€) of Z(p, £). That is we maximize the functional

d
V(E) =mZ+> &S . (6)
i=1
It is equivalent to optimizing the functional
m d d
V6 -3 o (368~ v 380 )
j=1 i=1 i=1
By setting In 6, = £ we have
m d N
q;,(g) _ Z H ggSz—Ntm)) (7)
j=1 i=1
The solution is given by solving the following set of equations
oV’
—=0,5=1,...d. 8
7 (8)
We have
0 ~
o e klof,...,05] i=1,....d (9)

00,




Estimation by Minimum [-Divergence Principle

> Given a prior estimate r € A,, one would choose the pmf p € A,, that minimizes the
Kullback-Leibler divergence

I(p[r) ij ln— (10)

with respect to the given constraints.

> The corresponding minimum entropy distributions are in the form of

p(€) = Z(¢)” p< >l ) —1..m, (11)

where Z(&) is normalizing constant given by

= Zfrj exp (— Z&U(ﬂ) : (12)




Estimation by Minimum [-Divergence Principle

> Given a prior estimate r € A,, one would choose the pmf p € A,, that minimizes the
Kullback-Leibler divergence

I(p[r) ij ln— (13)

with respect to the given constraints.

> The corresponding minimum entropy distributions are in the form of

pj(g):Z( Tjexp< Zﬁz ) — 7°'°7m7 (]'4)
where Z (&) is normalizing constant given by

Z(&)-mep( > enl ) (15)

> Estimation in this case can be translated to solving polynomial equations, when the feature
functions are integer valued. Polynomial system one would solve in this case is

m d
> rilt) =T [ =0 (16)




Estimation by Kullback-Csiszar lteration

Algorithm: The algorithm computes the distribution p!™ which minimizes I(p'™|[p™=1) with re-
spect the i"" constraint, 1 < i < d if N = ad + 1, for any positive integer a.
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at 1% iteration: p!) is given by
1
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where (Z(]L))_]L = Z;.n:l erfl(j). Considering the first constraint it can be estimated by solving
polynomial equation

D rilta() = ¢ =0 (17)

with indeterminate (.




Estimation by Kullback-Csiszar lteration

Algorithm: The algorithm computes the distribution p!™ which minimizes I(p'™|[p™=1) with re-
spect the i"" constraint, 1 < i < d if N = ad + 1, for any positive integer a.

at 0'" iteration: pl¥) =r

at 1% iteration: p!) is given by
1

p§1) —7 (Z“))— ifl(j)7

where (Z(]L))_]L = Z;.n:l erfl(j). Considering the first constraint it can be estimated by solving
polynomial equation

D rilta() = ¢ =0 (18)

with indeterminate (.

at 2° iteration: Similarly we have

—1 1,
pgg) _ (Z(1)> (Z(z)) ?(]) ;52(]) 7

where (Z(Q))_l =>", él(j).




Estimation by Kullback-Csiszar Iteration (Contd...)

Considering the first two constrains in ME distribution can be estimated by solving

m

S r(tag) — TV =0 (19)

J=1

along with the previous equations.




Estimation by Kullback-Csiszar Iteration (Contd...)

Considering the first two constrains in ME distribution can be estimated by solving

t1(5) ~t2(5)
1

;=0 (20)

INgE
3
~

J=1

along with the previous equations.

at N jteration: In general, when N = ad + i for some positive integer a, p(-N), for N=1,2...1s

J
-1 —1 . .
p§N) _ (Z(1)) . (Z(N)) ?(]) o %v(])

and is determined by the following system of polynomial equations

Yjrithil) =g =0,
:Z:j ri(ta(f) — To)C t1(7) 22(]) ~0 > (1)

given by

S rtG) — TGV Y =0




Grobner Bases (Buchberger, 1965 ) Fundamentals




Dictionary of Algebra & Geometry

Basic problem of algebraic geometry is to understand the set of points a = (a1, ...,a,) € k" sat-
isfying a system of polynomial equations fi(xy1,...,2z,) = 0,..., fo(x1,...,2,) = 0 where f1,..., fs €
klxy, ...,z
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such that
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> V(f1,..., fs) is uniquely determined by the ideal generated by fi, ..., fs.
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Basic problem of algebraic geometry is to understand the set of points a = (a1, ...,a,) € k" sat-
isfying a system of polynomial equations fi(xy1,...,2z,) = 0,..., fo(x1,...,2,) = 0 where f1,..., fs €
klxy, ...,z

Algebraic Variety: A set V' C k" is said to be algebraic variety if there exists f1,..., fs € k[xy,..., x,)]

such that
V(fl,...,fs):V:{(cl,...cn)Ek”:fi(cl,...cn):O,l§i§3} .

> V(f1,..., fs) is uniquely determined by the ideal generated by fi, ..., fs.

Ideal: A subset a C k|x1,...,x,] is said to be ideal if it satisfies:
(Y0€a
(i) f,g€a, then f+g€a
(iii) f € aand h € k[xl,...,xn] and then hf € a.

> |deal generated by f1,..., fs € k[z1,..., 2]

(fi,. s fo) = {fek[:cl,...,xn}:z:hsfs,hs Ek[ml,...,xs]}




Dictionary of Algebra & Geometry (Contd...)

Vanishing ldeal of a variety: Let &/ C k" be an variety. Then vanishing ideal of a variety is
defined as

I(FE)=A{f€klxy,...,z,): fla) =0,Ya € E}
(Can be extended to any arbitrary subset of k")




Dictionary of Algebra & Geometry (Contd...)

Vanishing ldeal of a variety: Let &/ C k" be an variety. Then vanishing ideal of a variety is
defined as

I(FE)=A{f€klxy,...,z,): fla) =0,Ya € E}
(Can be extended to any arbitrary subset of k")

Ideal Variety relations

> V(f1, .o fs) = V({{f1, -, [s)
D<f1,...,f8>:<gl,...,gt>:>V(f1,...,fs):V(gl,...,gt)

> (Fioeo o £ STV, fy)
>V =W < I(V) = (W)




Dictionary of Algebra & Geometry (Contd...)

Vanishing ldeal of a variety: Let &/ C k" be an variety. Then vanishing ideal of a variety is
defined as

I(FE)=A{f€klxy,...,z,): fla) =0,Ya € E}
(Can be extended to any arbitrary subset of k")

Ideal Variety relations

> V(fi,.o o o) =V{(fi, 0 )

> (fi,.... fs) =91, -, q) = V(f1,..., fs) =V(g1, -, G)
> (f1,.- 5 fs) SZV(f1,-- -0 [s))

>V = W e (V) = T(W)

(Hilbert Nullstellensatz: Given a variety, we can recover the ideal up to its radical only in the
case of algebraically closed fields.)




Multivariate Division Algorithm and Hilbert Bases Theorem

Division algorithm in k[x|: Let g € k[x]. Then for any f € k[z|, 3 unique ¢,r € k[z] and
degr < deg g or r = 0 such that f = qg +r.

> k|z] is a principle ideal domain (PID).
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degr < deg g or r = 0 such that f = qg +r.
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Division algorithm in k[z,,...,x,]: Consider a monomial order < on ZZ%, and let F' =

(f1, ..., fs) be an ordered s-tuple of polynomials in k[z1,...,x,]. Then every f € klxy, ..., )]
can be written as

f= Z%’f@ +r
i=1

where ¢; € k[zy,...,x,], i =1,...,s and r € k[zy,...,x,] such that » = 0 or none of the
terms in r are divisible by any of LT (f1),...,LT<(fs)
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Multivariate Division Algorithm and Hilbert Bases Theorem

Division algorithm in k[x|: Let g € k[x]. Then for any f € k[z|, 3 unique ¢,r € k[z] and
degr < deg g or r = 0 such that f = qg +r.

> k|z] is a principle ideal domain (PID).

Division algorithm in k[z,,...,x,]: Consider a monomial order < on ZZ%, and let F' =

(f1, ..., fs) be an ordered s-tuple of polynomials in k[z1,...,x,]. Then every f € klxy, ..., )]
can be written as

f= Z%’f@ +r
i=1

where ¢; € k[zy,...,x,], i =1,...,s and r € k[zy,...,x,] such that » = 0 or none of the
terms in r are divisible by any of LT (f1),...,LT<(fs)

Hilbert Basis theorem: Every ideal in k|z, ..., x,] has a finite generating set.

The ascending chain condition: Let a, C k[x1,...,x,| be a sequence of ideals such that
GqCaC...a, C...

Then AN > 1 such that ay = ay,; for all i > 1.




Monomial ldeals & Dickson's Lemma

Monomial Order or term order on k[zy,...,x,] is a relation < (we use > for corresponding
‘greater than’ on Z%, which satisfies following conditions

(i) < is a total (or linear) ordering on Z,,

(ii) if o = 3, for o, B € ZZ, and for any v € Z%, we have o +y = (3 4, and

(iii) < is a well-ordering on ZY,,.
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Monomial ldeals & Dickson's Lemma

Monomial Order or term order on k[zy,...,x,] is a relation < (we use > for corresponding

‘greater than’ on Z%, which satisfies following conditions

(i) < is a total (or linear) ordering on Z,,
(ii) if o = 3, for o, B € ZZ, and for any v € Z%, we have o +y = (3 4, and

(iii) < is a well-ordering on ZY,,.

Monomial ldeal
An ideal a C k[xy,...,x,] is monomial ideal if there is a set A C Z%, (possibly infinite) such

that a = (2% : a € A).

Dickson’s Lemma: Any monomial ideal is finitely generated.




Proof of Hilbert Basis theorem

if a = 0 then we are done




Proof of Hilbert Basis theorem

if a = 0 then we are done
from Dickson’s lemma 3f;, ..., f; € a such that

LT (a) = (LT<(a)) = (LT(f1), -, LT(f))




Proof of Hilbert Basis theorem

if a = 0 then we are done
from Dickson’s lemma df;, ..., f; € a such that

LT-(a) = (LT<(a)) = (LT(f1), ..., LT(fs))
claim: a=(f1,..., fs)

Enough to show that a C (f1,..., fs)
Pick f € a arbitrary.
Apply division algorithm:

= Z%fi +r
i=1

we have: no term of r is divisible by LT(f;) fori =1,...s.
We have r € a and hence LT(r) € (LT(a)).

Hence LT(r) is divided by one of LT(g;), =<«

Hence » = 0 and hence f € (f1,..., fs)




Grobner Bases

definition

Consider k|xy,...,z,| and fix a monomial order. Given any ideal a C k[zy,...,z,)], a
finite subset G = {¢1,...,9s} C ais said to be Grobner basis if

(LT(a)) = (LT(A), -, LT (o))
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> G C k[xy,...,x,] is a Grobner bases if and only if for any f € a there exists g € G such
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> G C klxy,...,x,] is a Grobner bases if and only if for any f € klx1,...,x,] we have
feas ng(f) =0




Grobner Bases

definition

Consider k|xy,...,z,| and fix a monomial order. Given any ideal a C k[zy,...,z,)], a
finite subset G = {¢1,...,9s} C ais said to be Grobner basis if

(LT(a)) = (LT(A), -, LT (o))

Other characterizations of Grobner Bases

> G C k[xy,...,x,] is a Grobner bases if and only if for any f € a there exists g € G such
that LM(g)|LM(f)

> G C klxy,...,x,] is a Grobner bases if and only if for any f € klx1,...,x,] we have
feas ng(f) =0

Buchberger’s algorithm ....




Some Applications

> Solving system of polynomial equations
> Intersection ldeals

> Kernel of ring homeomorphism

> Quotient Ideals

> Basis for k vector space k[zy,...,x,]/a

B={z":aecZ, LM(g){fx", i
where G = {¢g1,...,gs} is a Grobner basis.

> Elimination methods

=1,2,...




Elimination Theorem and lts Application to Estimation




Elimination Theorem

(Buchberger 1987)

Elimination order: Consider k[zy,..., T, Y1, .., Ym| @ polynomial ring in indeterminate z1, . . ., x,,
Yy - - - Ym- We refer to {x1,...,2,} as x-variables and {y1, ...,y } as y-variables. Let <, and <,
be monomial orderings on x and y variables respectively. Define an ordering relation < on ZZ;™ (i.e
set of all monomials in indeterminate x1,..., %y, Y1, ..., Ym) as follows: B

&(1) -<33 &(2)

r vy <=y T Y — or
al) = a® and g <y 53

)

where o), o2 ¢ 7%, and CAONGICN= ZLZy. The term order <, is called elimination order with
the z variables larger than the y variables (which is indeed a term order).
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(Buchberger 1987)

Elimination order: Consider k[zy,..., T, Y1, .., Ym| @ polynomial ring in indeterminate z1, . . ., x,,
Yy - - - Ym- We refer to {x1,...,2,} as x-variables and {y1, ...,y } as y-variables. Let <, and <,
be monomial orderings on x and y variables respectively. Define an ordering relation < on Z%l (i.e
set of all monomials in indeterminate x1,..., %y, Y1, ..., Ym) as follows: B

&(1) -<33 &(2)
r oy <[$>y] r oy < or ,
al) = a® and g <y 53
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Elimination Theorem

(Buchberger 1987)

Elimination order: Consider k[zy,..., T, Y1, .., Ym| @ polynomial ring in indeterminate z1, . . ., x,,
Yy - - - Ym- We refer to {x1,...,2,} as x-variables and {y1, ...,y } as y-variables. Let <, and <,
be monomial orderings on x and y variables respectively. Define an ordering relation < on Z%l (i.e
set of all monomials in indeterminate x1,..., %y, Y1, ..., Ym) as follows: B

&(1) -<33 &(2)
r vy <=y T Y — or )
al) = a® and g <y 53

where o), o2 ¢ 7%, and CAONGICN= ZLZy. The term order <, is called elimination order with
the z variables larger than the y variables (which is indeed a term order).

Elimination Ideal: /t_elimination ideal of an ideal a C klxy,...,x,] with respect to an elimination
order 1 >~ xo... > x, is defined as aq; = a N k[x;q, ..., 2,

Elimination Theorem: Let a C k|x1,...,x,] be an ideal and let G C k[x,...,x,| be a Grébner
basis of a with respect to term order x1 >~ x9 > ... >= x,. Then for every 0 < [ < n the set

G =GN klxq, ...,z is a Grébner basis of [th elimination ideal a;.
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Application to Maximum Likelihood Estimation

Recall...
The ideal which represents the solutions to likelihood equations

8[ o U1 8f1(9)+ X Um 8fm(9) _

00;  f(0) 00; T fu.(0) 06,
IS
a=anR[b,...,04 ,
where
a - df; n of
a—<y1f1(9)—1,...,ymfm(9)—52%%8_5}_”72%%8_5»
~ — 2

Estimation by Grobner bases

step 1: Calculate a Grobner basis G for the ideal @.

step 2: Polynomials in GG which doesn’t involve v, ..., 1, forms a Grobner basis whose variety gives
the solution to the ML estimation.
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Recall... |deal which represents the maximum entropy solution

m d
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Recall... |deal which represents the maximum entropy solution
m d
a= <Z(ti(j) - [[e" : i= 1,...,d>
j=1 1=1
Zhu-Mumford method of estimation and feature selection

> Let X be a rv, let [ be the true distribution. Let p* be the ME distribution with respect to the
feature functions ¢;, 1 =1,...,d.

> KL-distance from p* to [ is
I(l|p") = S(px) = S(0)
> Feature selection by minimizing I(||p*) with respect to the feature subsets.

> Zhu-Mumford algorithm requires estimation of ME-distribution with respect to the various feature
subsets.




Application to Minimax estimation and Feature selection

Recall... |deal which represents the maximum entropy solution
m d
a= <Z(ti(j) - [[e" : i= 1,...,d>
j=1 1=1
Zhu-Mumford method of estimation and feature selection

> Let X be a rv, let [ be the true distribution. Let p* be the ME distribution with respect to the
feature functions ¢;, 1 =1,...,d.

> KL-distance from p* to [ is
I(l|p") = S(px) = S(0)
> Feature selection by minimizing I(||p*) with respect to the feature subsets.

> Zhu-Mumford algorithm requires estimation of ME-distribution with respect to the various feature
subsets.

Application of elimination theorem to Zhu-Mumford algorithms...




Embedding ME models in Algebraic Varieties
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Algebraic Formulations

Semi-algebraic set: A set © C R is called semi-algebraic set, if there are two finite collection of
polynomials F' C klx1,..., x4 and G C k[xy, ..., x4] such that

O={0cR’: f()=0,Vf € Fandg(d) >0,Vg € G} .

Statistical model as image of a rational function:
Let A,,_1 be a probability simplex and © C R be a semi-algebraic set. Let x : R — R> be a rational

function such that k(©) C A,,_1. Then the image M = k(O) is a parametric algebraic statistical
model.

How Commutative algebra and Algebraic geometry plays a role:
Parametric representation of statistical models p; = f;(61,...,604), 7 = 1,...,m can be viewed in
three different ways

> parametric description of a curve in m dimentional space
> homeomorphism of the ring k[p1, ..., pn| to k[0, ..., 0] identified by p; — f;(61,...,64)

> solution of polynomial equations (then projected to &™) p; — f;(01,...,64) =0




Implicit ME-model: Main Theorem

Given positive integer valued functions ¢;,,7 = 1, ..., d we have maximum entropy model as image

of
fikd =k —W

(6 0y) — ( [, o I, o™ ) (22)
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Implicit ME-model: Main Theorem

Given positive integer valued functions ¢;,,7 = 1, ..., d we have maximum entropy model as image

of
fikd =k —W

01,...,0,) H( I, o 1, o™ ) (25)
17.-.7 d m d t'i(j)7---7 ) .
Zy:l Hz:l 9@ Z]Zl HZ=1 91

where W = V(Z?Ll H;lzl in(m))

theorem Let f be a polynomial functions which parameterize maximum entropy model with
respect to sufficient statistic ¢; : R — Z>( according to (28). Then

m(f) € Y(ker(F))n v<j§;pj 1) (26)
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where f* is a k-algebra homeomorphism

_f*Ik[pl,...,pm} —>k[90,...,9d]
d

p; 90 H gfz(])
1=1

(27)




Implicit ME-model: Main Theorem

Given positive integer valued functions ¢;,,7 = 1, ..., d we have maximum entropy model as image
of
fikt —km—W

i1=1 i. =1
O, o) v [Tt [ o (28)
17 R d m d tz(j)’ e e ey ) .
Z]:l HZ:]_ 9@ 2]21 HZ:1 91

where W = V(Z;ﬂ:l H;lzl in(m))
theorem Let f be a polynomial functions which parameterize maximum entropy model with
respect to sufficient statistic ¢; : R — Z>( according to (28). Then

m(f) € Y(ker(F))n v<j§;pj 1) (29)

A\ . 4
Ve

where f* is a k-algebra homeomorphism

f* . k{pl;---apm} — k[&o,...,ﬁd]
d
1) (30)
pj — 6 ]]6
1=1

***The inclusion should be understand from the point of “closure” or “Zariski Closure”




|deal and Grobner bases representation

Corollary:

where

(31)
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Corollary:

7

im(f) € V(an k[p},, )N V(Z p;—1) (32)

where ;
a= <pj—90H9§1<j> Zj: 1,...,m> gk[pl,...,pm,el,...,ed]
1=1

Corollary: (By Elimination theorem)
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|deal and Grobner bases representation

Corollary:

7

im(f) € V(an k[p},, )N V(Z p;—1) (34)

where ;
a= <pj—90H9§1<j> L] = 1,...,m> gk[pl,...,pm,el,...,ed]
i=1

Corollary: (By Elimination theorem)

m(f) gy((;mk[pvl,...,pm]zmwzpj— 1) | (35)

where (G is the Grobner basis of

d
a= <pj—90H921<3> :j—l,...,m> C klp1,. -, Dm, b1, ..., 04
i=1

with a term order {p1,...,pn} < {bh,..., 04}




ME model as a rational parameterization

Theorem

where

d
b — <ij—H9?(‘7) :jzl,...,m,l—Zmy> CEkp1,-- s Dm, b1y, 04,9
i=1

(Z is the partition function)
Fdkx probably difficult to compute

(36)




Example

P1

P2 =
= 000,°6;
= 00,0,

P3
P4

Ps =
= 090,06,

Pe

pr =

= 040,°0,

0,00

0061°0°

00010




Example (Contd...)

+ X ¥, ay -—¢,az-by, fz-dy,ag-cx,ab-fg, bf-da, b -—-dg, by -cz, gzy-a, bzy -,
2 2 2 2

fgy -bc, bcy -ex, gz -b, cz -fy, bz -d exz-fc, cxz-bgy, g z-ax, eqz-*tcy,

2 2 = Z 2z 3 2z 2

cgz-a,bgz-fx, c »-eqg,dcz-f bcz-fa fqg -bcx, bcg-ex,a egx, ca -eg,

2 2 2 2 2 2 2 = 2
fa -bex, da -f g fca-beg, £ a-dex, dc —fFex, bc —aex, f c-deg, Fy -e, dgy -Ffa,

Z = 2 2 P 2 2 2 2 2
fcy -ae, dcy -be, f v -bez eqg y-ac,dg yvy-fax,bg v-a X,begy-fc,dcgy-bex,
2 2 2 2 3 3 3 2 3 2 3 2 2 2 2
bdgy-f X, fc v -a e, d cy-f , f v -bde,eqg -c¢c ax,dg -fax, K bg a x ,beg -fc x

= 2 2 — 2 Z 2 3 3 3 2 4 3 5
dcg -bex ; bdg -f x,fc g-a ex, d ¢g-f x,f g-bdex, fc - g, dy ~ez, d eqgy-°f,

3 2 5 6 3
d eg -Ff x, F -bd c el

Change of symbols

p1—a,pp— b ps—c pr—d ps—eps— f,pr—g
and

Op—x,00—y th— 2z




Example (Contd...)

Maximum entropy model is contained in

Vinodet = V(p1p2 — pepr,
P2pP6 — P4pP1,
P2 — P4pr,
pspi — P53,
papi — PepT,
PeP3P1 — P2P5P7,
Peps — Papspr,
P — papipaps

7
> pi—1)
1=1




Example (Contd...)

Maximum entropy model is contained in

Vinodet = V(p1p2 — pepr,
P2pP6 — P4pP1,
P2 — P4pr,
pspi — P53,
papi — PepT,
PeP3P1 — P2P5P7,
Peps — Papspr,
P — papipaps

7
> pi—1)
1=1

Maximum entropy distribution is contained in V401 N Viara.
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Summary

Parametric

> Estimation of ME models can be transformed to solving system of polynomial equations

o Primal — System of polynomial equations
o Dual — System of Laurent polynomial equations

o Kullback-Csiszar — A triangular system (A decreasing sequence of dimension of quotient vector
spaces modulo ideals)

> Grobner bases can be used in the estimation of ME-models

> Elimination theorem comes in handy (for both ML and ME)

Implicit

> ME-models can be treated with Toric ideals (One can relax positivity of feature functions)

> ME-models can be embedded in Toric varieties (elegant but can we characterize the margin)
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Concluding Remarks

Potential Problems

> Elimination in “implicit models”
> “Zero dimensional ideals” and “k-vector dimension of quotient ring modulo ideal” describing
ME models

> Universal Grobner bases, term order

Finally...
In the case of ME, both model and data can be represented by algebraic
varieties ‘‘implicitly’’--- probably this result paves a way to algebraic

geometry of information theoretic statistics




