# On Paramtetric and Implicit Algebraic Descriptions of Maximum Entropy models 

Ambedkar Dukkipati

## Model of independence for Binary random variables

## Independence model in "implicit" form

$X=\left(X_{1}, X_{2}\right)$ be a random vector, where $X_{1}$ and $X_{2}$ taking values from $\{0,1\}$.
Probability simplex in this case is

$$
\Delta=\left\{\left(p_{11}, p_{12}, p_{21}, p_{22}\right) \in \mathbb{R}_{\geq 0}^{4}: p_{11}+p_{12}+p_{21}+p_{22}=1\right\}
$$

with the understanding that $P\left(X_{1}=i, X_{2}=j\right)=p_{i j}, i, j \in\{1,2\}$.

## Model of independence for Binary random variables

## Independence model in "implicit" form

$X=\left(X_{1}, X_{2}\right)$ be a random vector, where $X_{1}$ and $X_{2}$ taking values from $\{0,1\}$.
Probability simplex in this case is

$$
\Delta=\left\{\left(p_{11}, p_{12}, p_{21}, p_{22}\right) \in \mathbb{R}_{\geq 0}^{4}: p_{11}+p_{12}+p_{21}+p_{22}=1\right\}
$$

with the understanding that $P\left(X_{1}=i, X_{2}=j\right)=p_{i j}, i, j \in\{1,2\}$.
$\triangleright X_{1}$ is independent of $X_{2}$ translates into

$$
p_{11} p_{22}-p_{12} p_{21}=0
$$

a polynomial equations in $k\left[p_{11}, p_{12}, p_{21}, p_{22}\right]$.
(when all probabilities are positive then this equivalent to the "odds ratio condition" for independence in $2 \times 2$ contingency tables.)

## Model of independence for Binary random variables

## Independence model in "implicit" form

$X=\left(X_{1}, X_{2}\right)$ be a random vector, where $X_{1}$ and $X_{2}$ taking values from $\{0,1\}$.
Probability simplex in this case is

$$
\Delta=\left\{\left(p_{11}, p_{12}, p_{21}, p_{22}\right) \in \mathbb{R}_{\geq 0}^{4}: p_{11}+p_{12}+p_{21}+p_{22}=1\right\}
$$

with the understanding that $P\left(X_{1}=i, X_{2}=j\right)=p_{i j}, i, j \in\{1,2\}$.
$\triangleright X_{1}$ is independent of $X_{2}$ translates into

$$
p_{11} p_{22}-p_{12} p_{21}=0
$$

a polynomial equations in $k\left[p_{11}, p_{12}, p_{21}, p_{22}\right]$.
(when all probabilities are positive then this equivalent to the "odds ratio condition" for independence in $2 \times 2$ contingency tables.)
$\triangleright$ We say that this model is in the algebraic variety

$$
\mathcal{V}\left(p_{11} p_{22}-p_{12} p_{21}\right)
$$

- On normalization
- Complex solutions


## Model of independence for Binary random variables (Contd...)

## Independence model in "parametric" form

$X=\left(X_{1}, X_{2}\right)$ be a random vector, where $X_{1}$ takes values from $\left[m_{1}\right]=\left\{1, \ldots, m_{1}\right\}$ and $X_{2}$ takes values from $\left[m_{2}\right]=\left\{1, \ldots, m_{2}\right\} . X=\left(X_{1}, X_{2}\right)$ be a random vector, where $X_{1}$ and $X_{2}$ taking values from $\{0,1\}$.
$\triangleright$ Probability simplex in this case is

$$
\Delta=\left\{\left(p_{11}, p_{12}, p_{21}, p_{22}\right) \in \mathbb{R}_{\geq 0}^{4}: p_{11}+p_{12}+p_{21}+p_{22}=1\right\}
$$

with the understanding that $P\left(X_{1}=i, X_{2}=j\right)=p_{i j}, i, j \in\{1,2\}$.

## Model of independence for Binary random variables (Contd...)

## Independence model in "parametric" form

$X=\left(X_{1}, X_{2}\right)$ be a random vector, where $X_{1}$ takes values from $\left[m_{1}\right]=\left\{1, \ldots, m_{1}\right\}$ and $X_{2}$ takes values from $\left[m_{2}\right]=\left\{1, \ldots, m_{2}\right\} . X=\left(X_{1}, X_{2}\right)$ be a random vector, where $X_{1}$ and $X_{2}$ taking values from $\{0,1\}$.
$\triangleright$ Probability simplex in this case is

$$
\Delta=\left\{\left(p_{11}, p_{12}, p_{21}, p_{22}\right) \in \mathbb{R}_{\geq 0}^{4}: p_{11}+p_{12}+p_{21}+p_{22}=1\right\}
$$

with the understanding that $P\left(X_{1}=i, X_{2}=j\right)=p_{i j}, i, j \in\{1,2\}$.
$\triangleright$ Let $\Theta=\left\{\left(\theta_{1}, \theta_{2}: 0 \leq \theta_{1}, \theta_{2} \leq 1\right\}\right.$ and consider a polynomial map

$$
\begin{aligned}
f: \quad \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2 \times 2} \\
\left(\theta_{1}, \theta_{2}\right) & \mapsto(\underbrace{\theta_{1} \theta_{2}}_{p_{11}}, \underbrace{\theta_{1}\left(1-\theta_{2}\right)}_{p_{12}}, \underbrace{\left(1-\theta_{1}\right) \theta_{2}}_{p_{21}}, \underbrace{\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)}_{p_{22}})
\end{aligned}
$$

## Model of independence for Binary random variables (Contd...)

## Independence model in "parametric" form

$X=\left(X_{1}, X_{2}\right)$ be a random vector, where $X_{1}$ takes values from $\left[m_{1}\right]=\left\{1, \ldots, m_{1}\right\}$ and $X_{2}$ takes values from $\left[m_{2}\right]=\left\{1, \ldots, m_{2}\right\} . X=\left(X_{1}, X_{2}\right)$ be a random vector, where $X_{1}$ and $X_{2}$ taking values from $\{0,1\}$.
$\triangleright$ Probability simplex in this case is

$$
\Delta=\left\{\left(p_{11}, p_{12}, p_{21}, p_{22}\right) \in \mathbb{R}_{\geq 0}^{4}: p_{11}+p_{12}+p_{21}+p_{22}=1\right\}
$$

with the understanding that $P\left(X_{1}=i, X_{2}=j\right)=p_{i j}, i, j \in\{1,2\}$.
$\triangleright$ Let $\Theta=\left\{\left(\theta_{1}, \theta_{2}: 0 \leq \theta_{1}, \theta_{2} \leq 1\right\}\right.$ and consider a polynomial map

$$
\begin{aligned}
f: \quad \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2 \times 2} \\
\left(\theta_{1}, \theta_{2}\right) & \mapsto(\underbrace{\theta_{1} \theta_{2}}_{p_{11}}, \underbrace{\theta_{1}\left(1-\theta_{2}\right)}_{p_{12}}, \underbrace{\left(1-\theta_{1}\right) \theta_{2}}_{p_{21}}, \underbrace{\left(1-\theta_{1}\right)\left(1-\theta_{2}\right)}_{p_{22}})
\end{aligned}
$$

$\triangleright f(\Theta)$ represents the independence model. Note that $f$ is a polynomial function.

## Maximum Likelihood Estimation

Model: Say our statistical model is given by the mapping

$$
\begin{equation*}
f \Theta \rightarrow \mathbb{R}^{m} \tag{1}
\end{equation*}
$$

assigning probabilities as $p_{j}=f_{j}(\theta), j=1, \ldots, m$, where $f_{j},: j=1, \ldots, m$ are polynomial (could be rational) functions.

## Maximum Likelihood Estimation

Model: Say our statistical model is given by the mapping

$$
\begin{equation*}
f \Theta \rightarrow \mathbb{R}^{m} \tag{2}
\end{equation*}
$$

assigning probabilities as $p_{j}=f_{j}(\theta), j=1, \ldots, m$, where $f_{j},: j=1, \ldots, m$ are polynomial (could be rational) functions.

Log-likelihood: Let $\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ sufficient statistic corresponding to sequence of an iid observations. We have log-likelihood function

$$
l(\theta)=\sum_{j=1}^{m} u_{j} \log f_{j}(\theta)
$$

## Maximum Likelihood Estimation

Model: Say our statistical model is given by the mapping

$$
\begin{equation*}
f \Theta \rightarrow \mathbb{R}^{m} \tag{3}
\end{equation*}
$$

assigning probabilities as $p_{j}=f_{j}(\theta), j=1, \ldots, m$, where $f_{j},: j=1, \ldots, m$ are polynomial (could be rational) functions.

Log-likelihood: Let $\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$ sufficient statistic corresponding to sequence of an iid observations. We have log-likelihood function

$$
l(\theta)=\sum_{j=1}^{m} u_{j} \log f_{j}(\theta)
$$

## Likelihood Equations:

$$
\frac{\partial l}{\partial \theta_{j}}=\frac{u_{1}}{f_{1}(\theta)} \frac{\partial f_{1}(\theta)}{\partial \theta_{j}}+\ldots+\frac{u_{m}}{f_{m}(\theta)} \frac{\partial f_{m}(\theta)}{\partial \theta_{j}}=0, \quad j=1, \ldots, d .
$$

## Maximum Likelihood Estimation (Contd. . .)

Estimation by algebraic methods: The ideal which represents the solutions is

$$
\mathfrak{a}=\widehat{\mathfrak{a}} \cap \mathbb{R}\left[\theta_{1}, \ldots, \theta_{d}\right]
$$

where

$$
\widehat{\mathfrak{a}}=\langle\underbrace{y_{1} f_{1}(\theta)-1, \ldots, y_{m} f_{m}(\theta)-1}, \underbrace{\sum_{j=1}^{m} u_{j} y_{j} \frac{\partial f_{j}}{\partial \theta_{1}}, \ldots, \sum_{j=1}^{m} u_{j} y_{j} \frac{\partial f_{j}}{\partial \theta_{d}}}\rangle
$$

Solving by Gröbner bases method Hoșten, Khetan \& Sturmfels, Solving the Likelihood equations, 2005.

What Commutative Algebra \& Algebraic Geometry could offer to Statistics

General role
$\triangleright$ Estimation
$\triangleright$ Elimination
$\triangleright$ Enumeration

## What Commutative Algebra \& Algebraic Geometry could offer to Statistics

## General role

$\triangleright$ Estimation
$\triangleright$ Elimination
$\triangleright$ Enumeration
$\triangleright$ Algebraic Geometric insights???

- (Inspired by Geometric Ideas in Minimum Cross-Entropy by Campbell, 2003)
- for which we need to embed models in algebraic varieties


## What Commutative Algebra \& Algebraic Geometry could offer to Statistics

## General role

$\triangleright$ Estimation
$\triangleright$ Elimination
$\triangleright$ Enumeration
$\triangleright$ Algebraic Geometric insights???

- (Inspired by Geometric Ideas in Minimum Cross-Entropy by Campbell, 2003)
- for which we need to embed models in algebraic varieties


## Broad Approaches

$\triangleright$ Reverse engineering of gene regulatory networks (Laubenbacher et al. , 2000 onwards)
$\triangleright$ Experimental design (Pistone et al. , 1998 onwards)
$\triangleright$ Analysis of graphical models and sampling (Diaconis, Sturmfels, Pactor et al. , 1998 onwards)

## Outline of the Talk

- Estimation of ME models as polynomial system solving
- Gröbner Bases (Buchberger, 1965 ) Fundamentals
$\triangleright$ Elimination Theorem and Its Application to Estimation
$\triangleright$ Embedding ME models in algebraic varieties
$\triangleright$ Concluding Remarks and Discussion

Estimation of ME models as polynomial system solving

## Kullback's minimum discrimination theorem

(Kullback 1959)
Given a probability space, $(X, \mathfrak{M}, R)$ define a probability measure $P$ as

$$
P(A)=Z^{-1} \int_{A} \exp (T) \mathrm{d} R, \quad \forall A \in \mathfrak{M}
$$

where $T$ a real valued function on $X$ such that $Z=\mathrm{E}_{[R]} \exp (T)<\infty$. Suppose $T$ is $P$ integrable Then

$$
I\left(P^{\prime} \| R\right) \geq I(P \| R)=\mathrm{E}_{[P]} T-\ln Z
$$

## ME model

## Set Up

$\triangleright X$ is discrete random variable taking values from the set $[m]=\{1,2, \ldots, m\}$.
$\triangleright$ The available information is in the form of expected values of some functions $t_{i}:[m] \rightarrow \mathbb{R}$, $i=1, \ldots, d$ (feature functions ). That is

$$
\sum_{j=1}^{m} t_{i}(j) p_{j}=T_{i}, i=1, \ldots d
$$

where $T_{i}, i=1, \ldots, d$, are assumed to be known.

## ME model

## Set Up

$\triangleright X$ is discrete random variable taking values from the set $[m]=\{1,2, \ldots, m\}$.
$\triangleright$ The available information is in the form of expected values of some functions $t_{i}:[m] \rightarrow \mathbb{R}$, $i=1, \ldots, d$ (feature functions ). That is

$$
\sum_{j=1}^{m} t_{i}(j) p_{j}=T_{i}, i=1, \ldots d
$$

where $T_{i}, i=1, \ldots, d$, are assumed to be known.

## Principle (Information theoretic approach to statistics)

$\triangleright$ choose the pmf that maximize the Shannon entropy functional

$$
S(p)=-\sum_{j=1}^{m} p_{j} \ln p_{j}
$$

(equivalent to minimizing Bayes loss in decision theory framework)

## ME model (Contd...)

## Lagrangian

$$
\Xi(p, \xi) \equiv S(p)-\xi_{0}\left(\sum_{j=1}^{m} p_{j}-1\right)-\sum_{i=1}^{d} \xi_{d}\left(\sum_{j=1}^{m} t_{i}(j) p_{j}-T_{i}\right)
$$

model
$\triangleright$ Holding $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right)$ fixed, the unconstrained maximum of Lagrangian $\Xi(p, \xi)$ over all $p \in$ $\Delta_{m-1}$ is given by an exponential family

$$
p_{j}(\xi)=Z(\xi)^{-1} \exp \left(-\sum_{i=1}^{d} \xi_{i} t_{i}(j)\right), j=1, \ldots, m,
$$

where $Z(\xi)$ is normalizing constant given by

$$
Z(\xi)=\sum_{j=1}^{m} \exp \left(-\sum_{i=1}^{d} \xi_{i} t_{i}(j)\right) .
$$

(For various values of $\xi \in \mathbb{R}$, this is known as "maximum entropy model".)

## ME model (Contd...)

## Lagrangian

$$
\Xi(p, \xi) \equiv S(p)-\xi_{0}\left(\sum_{j=1}^{m} p_{j}-1\right)-\sum_{i=1}^{d} \xi_{d}\left(\sum_{j=1}^{m} t_{i}(j) p_{j}-T_{i}\right)
$$

model
$\triangleright$ Holding $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right)$ fixed, the unconstrained maximum of Lagrangian $\Xi(p, \xi)$ over all $p \in$ $\Delta_{m-1}$ is given by an exponential family

$$
p_{j}(\xi)=Z(\xi)^{-1} \exp \left(-\sum_{i=1}^{d} \xi_{i} t_{i}(j)\right), j=1, \ldots, m,
$$

where $Z(\xi)$ is normalizing constant given by

$$
Z(\xi)=\sum_{j=1}^{m} \exp \left(-\sum_{i=1}^{d} \xi_{i} t_{i}(j)\right) .
$$

(For various values of $\xi \in \mathbb{R}$, this is known as "maximum entropy model".)

## Various Formulations

(i) Primal
(ii) Dual
(iii) Kullback-Csiszár Iteration

## Towards Algebraic methods

Proposition: The estimation of maximum entropy model amounts to solving a set of polynomial equations provided that the feature functions $t_{i}, i=1, \ldots, d$ are positive and integer valued.

Proof: By setting $\xi_{i}=-\ln \theta_{i}, i=1, \ldots, d$, we obtain maximum entropy model as

$$
p_{j}=Z(\theta)^{-1} \prod_{i=1}^{d} \theta_{i}^{t_{i}(j)}
$$

where

$$
Z(\theta)=\sum_{j=1}^{m} \prod_{i=1}^{d} \theta_{i}^{t_{i}(j)}
$$

Given the information in the form of expected values of feature functions $t_{i}, i=1, \ldots, d, \theta_{i}, i=$ $1, \ldots, d$ should satisfy following set of polynomial equations

$$
\sum_{j=1}^{m}\left(t_{i}(j)-T_{i}\right) \prod_{i=1}^{d} \theta_{i}^{t_{i}(j)}=0
$$

## Towards Algebraic methods (Contd...)

proposition: Given the "sample mean" hypothesis the problem of estimating the ME-model in duelmethod amounts to solving set of Laurent polynomial equations.

Proof: To retain the integer valued exponents in our final solution we consider the constrains of the form

$$
\begin{equation*}
N \sum_{j=1}^{m} t_{i}(j) p_{j}=\widetilde{S}_{i}, \quad i=1, \ldots d \tag{4}
\end{equation*}
$$

where $\widetilde{S}_{i}=\sum_{l=1}^{N} t_{i}\left(O_{l}\right)$ denotes the sample sum. In this case Lagrangian is

$$
\begin{gather*}
\widetilde{\Xi}(p, \xi) \equiv S(p)-\xi_{0}\left(\sum_{j=1}^{m} p_{j}-1\right)-\sum_{i=1}^{d} \widetilde{\xi}_{d} N\left(\sum_{j=1}^{m} p_{j} t_{i}(j)-\widetilde{S}_{i}\right)  \tag{5}\\
p_{j}(\xi)=\widetilde{Z}(\xi)^{-1} \exp \left(-N \sum_{i=1}^{d} \widetilde{\xi}_{i} t_{i}(j)\right), \quad j=1, \ldots, m
\end{gather*}
$$

where $\widetilde{Z}(\xi)$ is a normalizing constant.

## Towards Algebraic methods (Contd...)

To calculate the parameters we maximize the dual $\widetilde{\Psi}(\widetilde{\xi})$ of $\widetilde{\Xi}(p, \xi)$. That is we maximize the functional

$$
\begin{equation*}
\widetilde{\Psi}(\widetilde{\xi})=\ln \widetilde{Z}+\sum_{i=1}^{d} \widetilde{\xi}_{i} \widetilde{S}_{i} \tag{6}
\end{equation*}
$$

It is equivalent to optimizing the functional

$$
\widetilde{\Psi}^{\prime}(\widetilde{\xi})=\sum_{j=1}^{m} \exp \left(\sum_{i=1}^{d} \widetilde{\xi}_{i} \widetilde{S}_{i}-N \sum_{i=1}^{d} \widetilde{\xi}_{i} t_{i}(j)\right)
$$

By setting $\ln \widetilde{\theta}_{i}=\widetilde{\xi}$ we have

$$
\begin{equation*}
\tilde{\Psi}^{\prime}(\widetilde{\theta})=\sum_{j=1}^{m} \prod_{i=1}^{d} \widetilde{\theta}_{i}^{\left(\widetilde{S}_{i}-N t_{i}(j)\right)} \tag{7}
\end{equation*}
$$

The solution is given by solving the following set of equations

$$
\begin{equation*}
\frac{\partial \widetilde{\Psi}^{\prime}}{\partial \widetilde{\theta}_{j}}=0, j=1, \ldots d \tag{8}
\end{equation*}
$$

We have

$$
\begin{equation*}
\frac{\partial \widetilde{\Psi}^{\prime}}{\partial \widetilde{\theta}_{j}} \in k\left[\widetilde{\theta}_{1}^{ \pm}, \ldots, \widetilde{\theta}_{d}^{ \pm}\right], i=1, \ldots, d \tag{9}
\end{equation*}
$$

## Estimation by Minimum I-Divergence Principle

$\triangleright$ Given a prior estimate $r \in \Delta_{m}$ one would choose the pmf $p \in \Delta_{m}$ that minimizes the Kullback-Leibler divergence

$$
\begin{equation*}
I(p \| r)=\sum_{j=1}^{m} p_{j} \ln \frac{p_{j}}{r_{j}} \tag{10}
\end{equation*}
$$

with respect to the given constraints.
$\triangleright$ The corresponding minimum entropy distributions are in the form of

$$
\begin{equation*}
p_{j}(\xi)=Z(\xi)^{-1} r_{j} \exp \left(-\sum_{i=1}^{d} \xi_{i} t_{i}(j)\right), j=1, \ldots, m \tag{11}
\end{equation*}
$$

where $Z(\xi)$ is normalizing constant given by

$$
\begin{equation*}
Z(\xi)=\sum_{j=1}^{m} r_{j} \exp \left(-\sum_{i=1}^{d} \xi_{i} t_{i}(j)\right) . \tag{12}
\end{equation*}
$$

## Estimation by Minimum I-Divergence Principle

$\triangleright$ Given a prior estimate $r \in \Delta_{m}$ one would choose the pmf $p \in \Delta_{m}$ that minimizes the Kullback-Leibler divergence

$$
\begin{equation*}
I(p \| r)=\sum_{j=1}^{m} p_{j} \ln \frac{p_{j}}{r_{j}} \tag{13}
\end{equation*}
$$

with respect to the given constraints.
$\triangleright$ The corresponding minimum entropy distributions are in the form of

$$
\begin{equation*}
p_{j}(\xi)=Z(\xi)^{-1} r_{j} \exp \left(-\sum_{i=1}^{d} \xi_{i} t_{i}(j)\right), j=1, \ldots, m \tag{14}
\end{equation*}
$$

where $Z(\xi)$ is normalizing constant given by

$$
\begin{equation*}
Z(\xi)=\sum_{j=1}^{m} r_{j} \exp \left(-\sum_{i=1}^{d} \xi_{i} t_{i}(j)\right) . \tag{15}
\end{equation*}
$$

$\triangleright$ Estimation in this case can be translated to solving polynomial equations, when the feature functions are integer valued. Polynomial system one would solve in this case is

$$
\begin{equation*}
\sum_{i=1}^{m} r_{j}\left(t_{i}(j)-T_{i}\right) \prod_{i=1}^{d} \theta_{i}^{t_{i}(j)}=0 \tag{16}
\end{equation*}
$$

## Estimation by Kullback-Csiszár Iteration

Algorithm: The algorithm computes the distribution $p^{(N)}$ which minimizes $I\left(p^{(N)} \| p^{(N-1)}\right)$ with respect the $i^{\text {th }}$ constraint, $1 \leq i \leq d$ if $N=a d+i$, for any positive integer $a$.

## Estimation by Kullback-Csiszár Iteration

Algorithm: The algorithm computes the distribution $p^{(N)}$ which minimizes $I\left(p^{(N)} \| p^{(N-1)}\right)$ with respect the $i^{\text {th }}$ constraint, $1 \leq i \leq d$ if $N=a d+i$, for any positive integer $a$.
at $0^{\text {th }}$ iteration: $p^{(0)}=r$

## Estimation by Kullback-Csiszár Iteration

Algorithm: The algorithm computes the distribution $p^{(N)}$ which minimizes $I\left(p^{(N)} \| p^{(N-1)}\right)$ with respect the $i^{\text {th }}$ constraint, $1 \leq i \leq d$ if $N=a d+i$, for any positive integer $a$.
at $0^{\text {th }}$ iteration: $p^{(0)}=r$
at $1^{\text {st }}$ iteration: $p^{(1)}$ is given by

$$
p_{j}^{(1)}=r_{j}\left(Z^{(1)}\right)^{-1} \zeta_{1}^{t_{1}(j)}
$$

where $\left(Z^{(1)}\right)^{-1}=\sum_{j=1}^{m} r_{j} \zeta_{1}^{t_{1}(j)}$.
Considering the first constraint it can be estimated by solving polynomial equation

$$
\begin{equation*}
\sum_{j=1}^{m} r_{j}\left(t_{1}(j)-T_{1}\right) \zeta_{1}^{t_{1}(j)}=0 \tag{17}
\end{equation*}
$$

with indeterminate $\zeta_{1}$.

## Estimation by Kullback-Csiszár Iteration

Algorithm: The algorithm computes the distribution $p^{(N)}$ which minimizes $I\left(p^{(N)} \| p^{(N-1)}\right)$ with respect the $i^{\text {th }}$ constraint, $1 \leq i \leq d$ if $N=a d+i$, for any positive integer $a$.
at $0^{\text {th }}$ iteration: $p^{(0)}=r$
at $1^{\text {st }}$ iteration: $p^{(1)}$ is given by

$$
p_{j}^{(1)}=r_{j}\left(Z^{(1)}\right)^{-1} \zeta_{1}^{t_{1}(j)},
$$

where $\left(Z^{(1)}\right)^{-1}=\sum_{j=1}^{m} r_{j} \zeta_{1}^{t_{1}(j)}$. Considering the first constraint it can be estimated by solving polynomial equation

$$
\begin{equation*}
\sum_{j=1}^{m} r_{j}\left(t_{1}(j)-T_{1}\right) \zeta_{1}^{t_{1}(j)}=0 \tag{18}
\end{equation*}
$$

with indeterminate $\zeta_{1}$.
at $2^{\text {st }}$ iteration: Similarly we have

$$
p_{j}^{(2)}=r_{j}\left(Z^{(1)}\right)^{-1}\left(Z^{(2)}\right)^{-1} \zeta_{1}^{t_{1}(j)} \zeta_{2}^{t_{2}(j)}
$$

where $\left(Z^{(2)}\right)^{-1}=\sum_{j=1}^{m} \zeta_{2}^{t_{1}(j)}$.

## Estimation by Kullback-Csiszár Iteration (Contd...)

Considering the first two constrains in ME distribution can be estimated by solving

$$
\begin{equation*}
\sum_{j=1}^{m} r_{j}\left(t_{2}(j)-T_{2}\right) \zeta_{1}^{t_{1}(j)} \zeta_{2}^{t_{2}(j)}=0 \tag{19}
\end{equation*}
$$

along with the previous equations.

## Estimation by Kullback-Csiszár Iteration (Contd...)

Considering the first two constrains in ME distribution can be estimated by solving

$$
\begin{equation*}
\sum_{j=1}^{m} r_{j}\left(t_{2}(j)-T_{2}\right) \zeta_{1}^{t_{1}(j)} \zeta_{2}^{t_{2}(j)}=0 \tag{20}
\end{equation*}
$$

along with the previous equations.
at $N^{\text {th }}$ iteration: In general, when $N=a d+i$ for some positive integer $a, p_{j}^{(N)}$, for $N=1,2 \ldots$ is given by

$$
p_{j}^{(N)}=r_{j}\left(Z^{(1)}\right)^{-1} \ldots\left(Z^{(N)}\right)^{-1} \zeta_{1}^{t_{1}(j)} \ldots \zeta_{N}^{t_{N}(j)}
$$

and is determined by the following system of polynomial equations

$$
\left.\begin{array}{ll}
\sum_{j=1}^{m} r_{j}\left(t_{1}(j)-T_{1}\right) \zeta_{1}^{t_{1}(j)} & =0,  \tag{21}\\
\sum_{j=1}^{m} r_{j}\left(t_{2}(j)-T_{2}\right) \zeta_{1}^{t_{1}(j)} \zeta_{2}^{t_{2}(j)} & =0, \\
\vdots & \\
\sum_{j=1}^{m} r_{j}\left(t_{i}(j)-T_{i}\right) \zeta_{1}^{t_{1}(j)} \zeta_{2}^{t_{2}(j)} \ldots \zeta_{N}^{t_{i}(j)} & =0 .
\end{array}\right\}
$$

Gröbner Bases (Buchberger, 1965) Fundamentals

## Dictionary of Algebra \& Geometry

Basic problem of algebraic geometry is to understand the set of points $a=\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ satisfying a system of polynomial equations $f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{s}\left(x_{1}, \ldots, x_{n}\right)=0$ where $f_{1}, \ldots, f_{s} \in$ $k\left[x_{1}, \ldots, x_{n}\right]$.

## Dictionary of Algebra \& Geometry

Basic problem of algebraic geometry is to understand the set of points $a=\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ satisfying a system of polynomial equations $f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{s}\left(x_{1}, \ldots, x_{n}\right)=0$ where $f_{1}, \ldots, f_{s} \in$ $k\left[x_{1}, \ldots, x_{n}\right]$.

Algebraic Variety: $A$ set $V \subset k^{n}$ is said to be algebraic variety if there exists $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)=V=\left\{\left(c_{1}, \ldots c_{n}\right) \in k^{n}: f_{i}\left(c_{1}, \ldots c_{n}\right)=0,1 \leq i \leq s\right\} .
$$

$\triangleright \mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$ is uniquely determined by the ideal generated by $f_{1}, \ldots, f_{s}$.

## Dictionary of Algebra \& Geometry

Basic problem of algebraic geometry is to understand the set of points $a=\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ satisfying a system of polynomial equations $f_{1}\left(x_{1}, \ldots, x_{n}\right)=0, \ldots, f_{s}\left(x_{1}, \ldots, x_{n}\right)=0$ where $f_{1}, \ldots, f_{s} \in$ $k\left[x_{1}, \ldots, x_{n}\right]$.

Algebraic Variety: $A$ set $V \subset k^{n}$ is said to be algebraic variety if there exists $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)=V=\left\{\left(c_{1}, \ldots c_{n}\right) \in k^{n}: f_{i}\left(c_{1}, \ldots c_{n}\right)=0,1 \leq i \leq s\right\} .
$$

$\triangleright \mathcal{V}\left(f_{1}, \ldots, f_{s}\right)$ is uniquely determined by the ideal generated by $f_{1}, \ldots, f_{s}$.
Ideal: $A$ subset $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$ is said to be ideal if it satisfies:
(i) $0 \in \mathfrak{a}$
(ii) $f, g \in \mathfrak{a}$, then $f+g \in \mathfrak{a}$
(iii) $f \in \mathfrak{a}$ and $h \in k\left[x_{1}, \ldots, x_{n}\right]$ and then $h f \in \mathfrak{a}$.
$\triangleright$ Ideal generated by $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$ :

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: \sum_{i=1}^{s} h_{s} f_{s}, h_{s} \in k\left[x_{1}, \ldots, x_{s}\right]\right\}
$$

## Dictionary of Algebra \& Geometry (Contd...)

Vanishing Ideal of a variety: Let $E \subset k^{n}$ be an variety. Then vanishing ideal of a variety is defined as

$$
\mathcal{I}(E)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(a)=0, \forall a \in E\right\}
$$

(Can be extended to any arbitrary subset of $k^{n}$ )

## Dictionary of Algebra \& Geometry (Contd...)

Vanishing Ideal of a variety: Let $E \subset k^{n}$ be an variety. Then vanishing ideal of a variety is defined as

$$
\mathcal{I}(E)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(a)=0, \forall a \in E\right\}
$$

(Can be extended to any arbitrary subset of $k^{n}$ )

## Ideal Variety relations

$\triangleright \mathcal{V}\left(f_{1}, \ldots, f_{s}\right)=\mathcal{V}\left(\left\langle f_{1}, \ldots, f_{s}\right\rangle\right)$
$\triangleright\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle \Longrightarrow \mathcal{V}\left(f_{1}, \ldots, f_{s}\right)=\mathcal{V}\left(g_{1}, \ldots, g_{t}\right)$
$\triangleright\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathcal{I}\left(\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)\right)$
$\triangleright V=W \Longleftrightarrow \mathcal{I}(V)=\mathcal{I}(W)$

## Dictionary of Algebra \& Geometry (Contd...)

Vanishing Ideal of a variety: Let $E \subset k^{n}$ be an variety. Then vanishing ideal of a variety is defined as

$$
\mathcal{I}(E)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(a)=0, \forall a \in E\right\}
$$

(Can be extended to any arbitrary subset of $k^{n}$ )

## Ideal Variety relations

$\triangleright \mathcal{V}\left(f_{1}, \ldots, f_{s}\right)=\mathcal{V}\left(\left\langle f_{1}, \ldots, f_{s}\right\rangle\right)$
$\triangleright\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle \Longrightarrow \mathcal{V}\left(f_{1}, \ldots, f_{s}\right)=\mathcal{V}\left(g_{1}, \ldots, g_{t}\right)$
$\triangleright\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathcal{I}\left(\mathcal{V}\left(f_{1}, \ldots, f_{s}\right)\right)$
$\triangleright V=W \Longleftrightarrow \mathcal{I}(V)=\mathcal{I}(W)$
(Hilbert Nullstellensatz: Given a variety, we can recover the ideal up to its radical only in the case of algebraically closed fields.)

## Multivariate Division Algorithm and Hilbert Bases Theorem

Division algorithm in $\boldsymbol{k}[\boldsymbol{x}]$ : Let $g \in k[x]$. Then for any $f \in k[x], \exists$ unique $q, r \in k[x]$ and $\operatorname{deg} r<\operatorname{deg} g$ or $r=0$ such that $f=q g+r$.
$\triangleright k[x]$ is a principle ideal domain (PID).

## Multivariate Division Algorithm and Hilbert Bases Theorem

Division algorithm in $\boldsymbol{k}[\boldsymbol{x}]$ : Let $g \in k[x]$. Then for any $f \in k[x], \exists$ unique $q, r \in k[x]$ and $\operatorname{deg} r<\operatorname{deg} g$ or $r=0$ such that $f=q g+r$.
$\triangleright k[x]$ is a principle ideal domain (PID).
Division algorithm in $\boldsymbol{k}\left[x_{1}, \ldots, x_{n}\right]$ : Consider a monomial order $\prec$ on $\mathbb{Z}_{\geq 0}^{n}$, and let $F=$ $\left(f_{1}, \ldots, f_{s}\right)$ be an ordered $s$-tuple of polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then every $f \in k\left[x_{1}, \ldots, x_{n}\right]$ can be written as

$$
f=\sum_{i=1}^{s} q_{i} f_{i}+r
$$

where $q_{i} \in k\left[x_{1}, \ldots, x_{n}\right], i=1, \ldots, s$ and $r \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $r=0$ or none of the terms in $r$ are divisible by any of $\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)$

## Multivariate Division Algorithm and Hilbert Bases Theorem

Division algorithm in $\boldsymbol{k}[\boldsymbol{x}]$ : Let $g \in k[x]$. Then for any $f \in k[x], \exists$ unique $q, r \in k[x]$ and $\operatorname{deg} r<\operatorname{deg} g$ or $r=0$ such that $f=q g+r$.
$\triangleright k[x]$ is a principle ideal domain (PID).
Division algorithm in $k\left[x_{1}, \ldots, x_{n}\right]$ : Consider a monomial order $\prec$ on $\mathbb{Z}_{\geq 0}^{n}$, and let $F=$ $\left(f_{1}, \ldots, f_{s}\right)$ be an ordered $s$-tuple of polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then every $f \in k\left[x_{1}, \ldots, x_{n}\right]$ can be written as

$$
f=\sum_{i=1}^{s} q_{i} f_{i}+r
$$

where $q_{i} \in k\left[x_{1}, \ldots, x_{n}\right], i=1, \ldots, s$ and $r \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $r=0$ or none of the terms in $r$ are divisible by any of $\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)$

Hilbert Basis theorem: Every ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ has a finite generating set.

## Multivariate Division Algorithm and Hilbert Bases Theorem

Division algorithm in $\boldsymbol{k}[\boldsymbol{x}]$ : Let $g \in k[x]$. Then for any $f \in k[x], \exists$ unique $q, r \in k[x]$ and $\operatorname{deg} r<\operatorname{deg} g$ or $r=0$ such that $f=q g+r$.
$\triangleright k[x]$ is a principle ideal domain (PID).
Division algorithm in $k\left[x_{1}, \ldots, x_{n}\right]$ : Consider a monomial order $\prec$ on $\mathbb{Z}_{\geq 0}^{n}$, and let $F=$ $\left(f_{1}, \ldots, f_{s}\right)$ be an ordered $s$-tuple of polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then every $f \in k\left[x_{1}, \ldots, x_{n}\right]$ can be written as

$$
f=\sum_{i=1}^{s} q_{i} f_{i}+r
$$

where $q_{i} \in k\left[x_{1}, \ldots, x_{n}\right], i=1, \ldots, s$ and $r \in k\left[x_{1}, \ldots, x_{n}\right]$ such that $r=0$ or none of the terms in $r$ are divisible by any of $\mathrm{LT}_{\prec}\left(f_{1}\right), \ldots, \mathrm{LT}_{\prec}\left(f_{s}\right)$

Hilbert Basis theorem: Every ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ has a finite generating set.
The ascending chain condition: Let $\mathfrak{a}_{n} \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a sequence of ideals such that

$$
\mathfrak{a}_{1} \subset \mathfrak{a}_{2} \subset \ldots \mathfrak{a}_{n} \subset \ldots
$$

Then $\exists N \geq 1$ such that $\mathfrak{a}_{N}=\mathfrak{a}_{N+i}$ for all $i \geq 1$.

## Monomial Ideals \& Dickson's Lemma

Monomial Order or term order on $k\left[x_{1}, \ldots, x_{n}\right]$ is a relation $\prec$ (we use $\succ$ for corresponding 'greater than' on $\mathbb{Z}_{\geq 0}^{n}$ which satisfies following conditions
(i) $\prec$ is a total (or linear) ordering on $\mathbb{Z}_{\geq 0}^{n}$,
(ii) if $\alpha \succ \beta$, for $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$ and for any $\gamma \in \mathbb{Z}_{\geq 0}^{n}$ we have $\alpha+\gamma \succ \beta+\gamma$, and
(iii) $\prec$ is a well-ordering on $\mathbb{Z}_{\geq 0}^{n}$.

## Monomial Ideals \& Dickson's Lemma

Monomial Order or term order on $k\left[x_{1}, \ldots, x_{n}\right]$ is a relation $\prec$ (we use $\succ$ for corresponding 'greater than' on $\mathbb{Z}_{\geq 0}^{n}$ which satisfies following conditions
(i) $\prec$ is a total (or linear) ordering on $\mathbb{Z}_{\geq 0}^{n}$,
(ii) if $\alpha \succ \beta$, for $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$ and for any $\gamma \in \mathbb{Z}_{\geq 0}^{n}$ we have $\alpha+\gamma \succ \beta+\gamma$, and
(iii) $\prec$ is a well-ordering on $\mathbb{Z}_{\geq 0}^{n}$.

## Monomial Ideal

An ideal $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$ is monomial ideal if there is a set $A \subset \mathbb{Z}_{\geq 0}^{n}$ (possibly infinite) such that $\mathfrak{a}=\left\langle x^{\alpha}: \alpha \in A\right\rangle$.

## Monomial Ideals \& Dickson's Lemma

Monomial Order or term order on $k\left[x_{1}, \ldots, x_{n}\right]$ is a relation $\prec$ (we use $\succ$ for corresponding 'greater than' on $\mathbb{Z}_{\geq 0}^{n}$ which satisfies following conditions
(i) $\prec$ is a total (or linear) ordering on $\mathbb{Z}_{\geq 0}^{n}$,
(ii) if $\alpha \succ \beta$, for $\alpha, \beta \in \mathbb{Z}_{\geq 0}^{n}$ and for any $\gamma \in \mathbb{Z}_{\geq 0}^{n}$ we have $\alpha+\gamma \succ \beta+\gamma$, and
(iii) $\prec$ is a well-ordering on $\mathbb{Z}_{\geq 0}^{n}$.

## Monomial Ideal

An ideal $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$ is monomial ideal if there is a set $A \subset \mathbb{Z}_{\geq 0}^{n}$ (possibly infinite) such that $\mathfrak{a}=\left\langle x^{\alpha}: \alpha \in A\right\rangle$.

Dickson's Lemma: Any monomial ideal is finitely generated.

## Proof of Hilbert Basis theorem

if $\mathfrak{a}=0$ then we are done

## Proof of Hilbert Basis theorem

if $\mathfrak{a}=0$ then we are done from Dickson's lemma $\exists f_{1}, \ldots, f_{s} \in \mathfrak{a}$ such that

$$
\mathrm{LT}_{\prec}(\mathfrak{a})=\left\langle\mathrm{LT} \mathrm{C}_{\prec}(\mathfrak{a})\right\rangle=\left\langle\mathrm{LT}\left(f_{1}\right), \ldots, \mathrm{LT}\left(f_{s}\right)\right\rangle
$$

## Proof of Hilbert Basis theorem

if $\mathfrak{a}=0$ then we are done
from Dickson's lemma $\exists f_{1}, \ldots, f_{s} \in \mathfrak{a}$ such that

$$
\mathrm{LT}_{\prec}(\mathfrak{a})=\left\langle\mathrm{LT}_{\prec}(\mathfrak{a})\right\rangle=\left\langle\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{s}\right)\right\rangle
$$

claim: $\mathfrak{a}=\left\langle f_{1}, \ldots, f_{s}\right\rangle$
Enough to show that $\mathfrak{a} \subset\left\langle f_{1}, \ldots, f_{s}\right\rangle$
Pick $f \in \mathfrak{a}$ arbitrary.
Apply division algorithm:

$$
f=\sum_{i=1}^{s} q_{i} f_{i}+r
$$

we have: no term of $r$ is divisible by $L T\left(f_{i}\right)$ for $i=1, \ldots s$.
We have $r \in \mathfrak{a}$ and hence $L T(r) \in\langle\mathrm{LT}(\mathfrak{a})\rangle$.
Hence $\mathrm{LT}(r)$ is divided by one of $\mathrm{LT}\left(g_{i}\right), \Longrightarrow \Longleftarrow$
Hence $r=0$ and hence $f \in\left\langle f_{1}, \ldots, f_{s}\right\rangle$

## Gröbner Bases

## definition

Consider $k\left[x_{1}, \ldots, x_{n}\right]$ and fix a monomial order. Given any ideal $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$, a finite subset $G=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathfrak{a}$ is said to be Gröbner basis if

$$
\langle\operatorname{LT}(\mathfrak{a})\rangle=\left\langle\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{s}\right)\right\rangle
$$

## Gröbner Bases

## definition

Consider $k\left[x_{1}, \ldots, x_{n}\right]$ and fix a monomial order. Given any ideal $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$, a finite subset $G=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathfrak{a}$ is said to be Gröbner basis if

$$
\langle\operatorname{LT}(\mathfrak{a})\rangle=\left\langle\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{s}\right)\right\rangle
$$

## Other characterizations of Gröbner Bases

$\triangleright G \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a Gröbner bases if and only if for any $f \in \mathfrak{a}$ there exists $g \in G$ such that $\operatorname{LM}(g) \mid \operatorname{LM}(f)$
$\triangleright G \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a Gröbner bases if and only if for any $f \in k\left[x_{1}, \ldots, x_{n}\right]$ we have $f \in \mathfrak{a} \Leftrightarrow \eta_{G}(f)=0$

## Gröbner Bases

## definition

Consider $k\left[x_{1}, \ldots, x_{n}\right]$ and fix a monomial order. Given any ideal $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$, a finite subset $G=\left\{g_{1}, \ldots, g_{s}\right\} \subset \mathfrak{a}$ is said to be Gröbner basis if

$$
\langle\operatorname{LT}(\mathfrak{a})\rangle=\left\langle\operatorname{LT}\left(f_{1}\right), \ldots, \operatorname{LT}\left(f_{s}\right)\right\rangle
$$

## Other characterizations of Gröbner Bases

$\triangleright G \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a Gröbner bases if and only if for any $f \in \mathfrak{a}$ there exists $g \in G$ such that $\operatorname{LM}(g) \mid \operatorname{LM}(f)$
$\triangleright G \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a Gröbner bases if and only if for any $f \in k\left[x_{1}, \ldots, x_{n}\right]$ we have $f \in \mathfrak{a} \Leftrightarrow \eta_{G}(f)=0$

## Buchberger's algorithm ....

## Some Applications

$\triangleright$ Solving system of polynomial equations
$\triangleright$ Intersection Ideals
$\triangleright$ Kernel of ring homeomorphism
$\triangleright$ Quotient Ideals
$\triangleright$ Basis for $k$ vector space $k\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{a}$

$$
\mathcal{B}=\left\{x^{\alpha}: \alpha \in \mathbb{Z}_{\geq 0}^{n}, \quad \operatorname{LM}\left(g_{i}\right) \nmid x^{\alpha}, \quad i=1,2, \ldots, s\right\}
$$

where $G=\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis.
$\triangleright$ Elimination methods

Elimination Theorem and Its Application to Estimation

## Elimination Theorem

(Buchberger 1987)
Elimination order: Consider $k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ a polynomial ring in indeterminate $x_{1}, \ldots, x_{n}$, $y_{1}, \ldots, y_{m}$. We refer to $\left\{x_{1}, \ldots, x_{n}\right\}$ as $x$-variables and $\left\{y_{1}, \ldots, y_{m}\right\}$ as $y$-variables. Let $\prec_{x}$ and $\prec_{y}$ be monomial orderings on $x$ and $y$ variables respectively. Define an ordering relation $\prec$ on $\mathbb{Z}_{\geq 0}^{n+m}$ (i.e set of all monomials in indeterminate $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ ) as follows:

$$
x^{\alpha^{(1)}} y^{\beta^{(1)}} \prec_{[x \succ y]} x^{\alpha^{(2)}} y^{\beta^{(2)}} \Longleftrightarrow\left\{\begin{array}{l}
\alpha^{(1)} \prec_{x} \alpha^{(2)} \\
\text { or } \\
\alpha^{(1)}=\alpha^{(2)} \text { and } \beta^{(1)} \prec_{\mathrm{y}} \beta^{(2)}
\end{array}\right.
$$

where $\alpha^{(1)}, \alpha^{(2)} \in \mathbb{Z}_{\geq 0}^{n}$ and $\beta^{(1)}, \beta^{(2)} \in \mathbb{Z}_{\geq 0}^{m}$. The term order $\prec_{[x \succ y]}$ is called elimination order with the $x$ variables larger than the $y$ variables (which is indeed a term order).

## Elimination Theorem

(Buchberger 1987)
Elimination order: Consider $k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ a polynomial ring in indeterminate $x_{1}, \ldots, x_{n}$, $y_{1}, \ldots, y_{m}$. We refer to $\left\{x_{1}, \ldots, x_{n}\right\}$ as $x$-variables and $\left\{y_{1}, \ldots, y_{m}\right\}$ as $y$-variables. Let $\prec_{x}$ and $\prec_{y}$ be monomial orderings on $x$ and $y$ variables respectively. Define an ordering relation $\prec$ on $\mathbb{Z}_{\geq 0}^{n+1}$ (i.e set of all monomials in indeterminate $\left.x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ as follows:

$$
x^{\alpha^{(1)}} y^{\beta^{(1)}} \prec_{[x \succ y]} x^{\alpha^{(2)}} y^{\beta^{(2)}} \Longleftrightarrow\left\{\begin{array}{l}
\alpha^{(1)} \prec_{x} \alpha^{(2)} \\
\text { or } \\
\alpha^{(1)}=\alpha^{(2)} \text { and } \beta^{(1)} \prec_{\mathrm{y}} \beta^{(2)}
\end{array}\right.
$$

where $\alpha^{(1)}, \alpha^{(2)} \in \mathbb{Z}_{\geq 0}^{n}$ and $\beta^{(1)}, \beta^{(2)} \in \mathbb{Z}_{\geq 0}^{m}$. The term order $\prec_{[x \succ y]}$ is called elimination order with the $x$ variables larger than the $y$ variables (which is indeed a term order).

Elimination Ideal: $l^{\text {th }}$-elimination ideal of an ideal $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$ with respect to an elimination order $x_{1} \succ x_{2} \ldots \succ x_{n}$ is defined as $\mathfrak{a}_{l}=\mathfrak{a} \cap k\left[x_{l+1}, \ldots, x_{n}\right]$.

## Elimination Theorem

(Buchberger 1987)
Elimination order: Consider $k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ a polynomial ring in indeterminate $x_{1}, \ldots, x_{n}$, $y_{1}, \ldots, y_{m}$. We refer to $\left\{x_{1}, \ldots, x_{n}\right\}$ as $x$-variables and $\left\{y_{1}, \ldots, y_{m}\right\}$ as $y$-variables. Let $\prec_{x}$ and $\prec_{y}$ be monomial orderings on $x$ and $y$ variables respectively. Define an ordering relation $\prec$ on $\mathbb{Z}_{\geq 0}^{n+1}$ (i.e set of all monomials in indeterminate $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ ) as follows:

$$
x^{\alpha^{(1)}} y^{\beta^{(1)}} \prec_{[x \succ y]} x^{\alpha^{(2)}} y^{\beta^{(2)}} \Longleftrightarrow\left\{\begin{array}{l}
\alpha^{(1)} \prec_{x} \alpha^{(2)} \\
\text { or } \\
\alpha^{(1)}=\alpha^{(2)} \text { and } \beta^{(1)} \prec_{\mathrm{y}} \beta^{(2)}
\end{array}\right.
$$

where $\alpha^{(1)}, \alpha^{(2)} \in \mathbb{Z}_{\geq 0}^{n}$ and $\beta^{(1)}, \beta^{(2)} \in \mathbb{Z}_{\geq 0}^{m}$. The term order $\prec_{[x \succ y]}$ is called elimination order with the $x$ variables larger than the $y$ variables (which is indeed a term order).

Elimination Ideal: $l^{\text {th }}$-elimination ideal of an ideal $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$ with respect to an elimination order $x_{1} \succ x_{2} \ldots \succ x_{n}$ is defined as $\mathfrak{a}_{l}=\mathfrak{a} \cap k\left[x_{l+1}, \ldots, x_{n}\right]$.

Elimination Theorem: Let $\mathfrak{a} \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal and let $G \subset k\left[x_{1}, \ldots, x_{n}\right]$ be a Gröbner basis of $\mathfrak{a}$ with respect to term order $x_{1} \succ x_{2} \succ \ldots \succ x_{n}$. Then for every $0 \leq l \leq n$ the set $G_{l}=G \cap k\left[x_{l+1}, \ldots, x_{n}\right]$ is a Gröbner basis of lth elimination ideal $\mathfrak{a}_{l}$.

## Application to Maximum Likelihood Estimation

Recall...
The ideal which represents the solutions to likelihood equations

$$
\frac{\partial l}{\partial \theta_{j}}=\frac{u_{1}}{f_{1}(\theta)} \frac{\partial f_{1}(\theta)}{\partial \theta_{j}}+\ldots+\frac{u_{m}}{f_{m}(\theta)} \frac{\partial f_{m}(\theta)}{\partial \theta_{j}}=0, \quad j=1, \ldots, d
$$

is

$$
\mathfrak{a}=\widehat{\mathfrak{a}} \cap \mathbb{R}\left[\theta_{1}, \ldots, \theta_{d}\right]
$$

where

$$
\widehat{\mathfrak{a}}=\langle\underbrace{y_{1} f_{1}(\theta)-1, \ldots, y_{m} f_{m}(\theta)-1}, \underbrace{\left.\sum_{j=1}^{m} u_{j} y_{j} \frac{\partial f_{j}}{\partial \theta_{1}}, \ldots, \sum_{j=1}^{m} u_{j} y_{j} \frac{\partial f_{j}}{\partial \theta_{d}}\right\rangle}
$$

## Application to Maximum Likelihood Estimation

Recall...
The ideal which represents the solutions to likelihood equations

$$
\frac{\partial l}{\partial \theta_{j}}=\frac{u_{1}}{f_{1}(\theta)} \frac{\partial f_{1}(\theta)}{\partial \theta_{j}}+\ldots+\frac{u_{m}}{f_{m}(\theta)} \frac{\partial f_{m}(\theta)}{\partial \theta_{j}}=0, \quad j=1, \ldots, d .
$$

is

$$
\mathfrak{a}=\widehat{\mathfrak{a}} \cap \mathbb{R}\left[\theta_{1}, \ldots, \theta_{d}\right],
$$

where

$$
\widehat{\mathfrak{a}}=\langle\underbrace{y_{1} f_{1}(\theta)-1, \ldots, y_{m} f_{m}(\theta)-1}, \underbrace{\sum_{j=1}^{m} u_{j} y_{j} \frac{\partial f_{j}}{\partial \theta_{1}}, \ldots, \sum_{j=1}^{m} u_{j} y_{j} \frac{\partial f_{j}}{\partial \theta_{d}}}\rangle
$$

## Estimation by Gröbner bases

step 1: Calculate a Gröbner basis $\widehat{G}$ for the ideal $\widehat{\mathfrak{a}}$.

## Application to Maximum Likelihood Estimation

## Recall...

The ideal which represents the solutions to likelihood equations

$$
\frac{\partial l}{\partial \theta_{j}}=\frac{u_{1}}{f_{1}(\theta)} \frac{\partial f_{1}(\theta)}{\partial \theta_{j}}+\ldots+\frac{u_{m}}{f_{m}(\theta)} \frac{\partial f_{m}(\theta)}{\partial \theta_{j}}=0, \quad j=1, \ldots, d .
$$

is

$$
\mathfrak{a}=\widehat{\mathfrak{a}} \cap \mathbb{R}\left[\theta_{1}, \ldots, \theta_{d}\right],
$$

where

$$
\widehat{\mathfrak{a}}=\langle\underbrace{y_{1} f_{1}(\theta)-1, \ldots, y_{m} f_{m}(\theta)-1}, \underbrace{\sum_{j=1}^{m} u_{j} y_{j} \frac{\partial f_{j}}{\partial \theta_{1}}, \ldots, \sum_{j=1}^{m} u_{j} y_{j} \frac{\partial f_{j}}{\partial \theta_{d}}}\rangle
$$

## Estimation by Gröbner bases

step 1: Calculate a Gröbner basis $\widehat{G}$ for the ideal $\widehat{\mathfrak{a}}$.
step 2: Polynomials in $\widehat{G}$ which doesn't involve $y_{1}, \ldots, y_{m}$ forms a Gröbner basis whose variety gives the solution to the ML estimation.

## Application to Minimax estimation and Feature selection

Recall... Ideal which represents the maximum entropy solution

$$
\mathfrak{a}=\left\langle\sum_{j=1}^{m}\left(t_{i}(j)-T_{i}\right) \prod_{i=1}^{d} \theta_{i}^{t_{i}(j)}: i=1, \ldots, d\right\rangle
$$

## Application to Minimax estimation and Feature selection

Recall... Ideal which represents the maximum entropy solution

$$
\mathfrak{a}=\left\langle\sum_{j=1}^{m}\left(t_{i}(j)-T_{i}\right) \prod_{i=1}^{d} \theta_{i}^{t_{i}(j)}: \quad i=1, \ldots, d\right\rangle
$$

## Zhu-Mumford method of estimation and feature selection

$\triangleright$ Let $X$ be a rv, let $l$ be the true distribution. Let $p^{*}$ be the ME distribution with respect to the feature functions $t_{i}, i=1, \ldots, d$.
$\triangleright \mathrm{KL}$-distance from $p^{*}$ to $l$ is

$$
I\left(l \| p^{*}\right)=S(p *)-S(l)
$$

$\triangleright$ Feature selection by minimizing $I\left(l \| p^{*}\right)$ with respect to the feature subsets.
$\triangleright$ Zhu-Mumford algorithm requires estimation of ME-distribution with respect to the various feature subsets.

## Application to Minimax estimation and Feature selection

Recall... Ideal which represents the maximum entropy solution

$$
\mathfrak{a}=\left\langle\sum_{j=1}^{m}\left(t_{i}(j)-T_{i}\right) \prod_{i=1}^{d} \theta_{i}^{t_{i}(j)}: i=1, \ldots, d\right\rangle
$$

## Zhu-Mumford method of estimation and feature selection

$\triangleright$ Let $X$ be a rv, let $l$ be the true distribution. Let $p^{*}$ be the ME distribution with respect to the feature functions $t_{i}, i=1, \ldots, d$.
$\triangleright \mathrm{KL}$-distance from $p^{*}$ to $l$ is

$$
I\left(l \| p^{*}\right)=S(p *)-S(l)
$$

$\triangleright$ Feature selection by minimizing $I\left(l \| p^{*}\right)$ with respect to the feature subsets.
$\triangleright$ Zhu-Mumford algorithm requires estimation of ME-distribution with respect to the various feature subsets.

Application of elimination theorem to Zhu-Mumford algorithms...

## Embedding ME models in Algebraic Varieties

## Algebraic Formulations

Semi-algebraic set: A set $\Theta \subseteq \mathbb{R}$ is called semi-algebraic set, if there are two finite collection of polynomials $F \subset k\left[x_{1}, \ldots, x_{d}\right]$ and $G \subset k\left[x_{1}, \ldots, x_{d}\right]$ such that

$$
\Theta=\left\{\theta \in \mathbb{R}^{d}: f(\theta)=0, \forall f \in F \text { and } g(\theta) \geq 0, \forall g \in G\right\} .
$$

## Algebraic Formulations

Semi-algebraic set: A set $\Theta \subseteq \mathbb{R}$ is called semi-algebraic set, if there are two finite collection of polynomials $F \subset k\left[x_{1}, \ldots, x_{d}\right]$ and $G \subset k\left[x_{1}, \ldots, x_{d}\right]$ such that

$$
\Theta=\left\{\theta \in \mathbb{R}^{d}: f(\theta)=0, \forall f \in F \text { and } g(\theta) \geq 0, \forall g \in G\right\}
$$

## Statistical model as image of a rational function:

Let $\Delta_{m-1}$ be a probability simplex and $\Theta \subset \mathbb{R}$ be a semi-algebraic set. Let $\kappa: \mathbb{R} \rightarrow \mathbb{R}^{>}$be a rational function such that $\kappa(\Theta) \subseteq \Delta_{m-1}$. Then the image $\mathcal{M}=\kappa(\Theta)$ is a parametric algebraic statistical model.

## Algebraic Formulations

Semi-algebraic set: A set $\Theta \subseteq \mathbb{R}$ is called semi-algebraic set, if there are two finite collection of polynomials $F \subset k\left[x_{1}, \ldots, x_{d}\right]$ and $G \subset k\left[x_{1}, \ldots, x_{d}\right]$ such that

$$
\Theta=\left\{\theta \in \mathbb{R}^{d}: f(\theta)=0, \forall f \in F \text { and } g(\theta) \geq 0, \forall g \in G\right\}
$$

## Statistical model as image of a rational function:

Let $\Delta_{m-1}$ be a probability simplex and $\Theta \subset \mathbb{R}$ be a semi-algebraic set. Let $\kappa: \mathbb{R} \rightarrow \mathbb{R}^{>}$be a rational function such that $\kappa(\Theta) \subseteq \Delta_{m-1}$. Then the image $\mathcal{M}=\kappa(\Theta)$ is a parametric algebraic statistical model.

How Commutative algebra and Algebraic geometry plays a role:
Parametric representation of statistical models $p_{j}=f_{j}\left(\theta_{1}, \ldots, \theta_{d}\right), j=1, \ldots, m$ can be viewed in three different ways

## Algebraic Formulations

Semi-algebraic set: A set $\Theta \subseteq \mathbb{R}$ is called semi-algebraic set, if there are two finite collection of polynomials $F \subset k\left[x_{1}, \ldots, x_{d}\right]$ and $G \subset k\left[x_{1}, \ldots, x_{d}\right]$ such that

$$
\Theta=\left\{\theta \in \mathbb{R}^{d}: f(\theta)=0, \forall f \in F \text { and } g(\theta) \geq 0, \forall g \in G\right\}
$$

## Statistical model as image of a rational function:

Let $\Delta_{m-1}$ be a probability simplex and $\Theta \subset \mathbb{R}$ be a semi-algebraic set. Let $\kappa: \mathbb{R} \rightarrow \mathbb{R}^{>}$be a rational function such that $\kappa(\Theta) \subseteq \Delta_{m-1}$. Then the image $\mathcal{M}=\kappa(\Theta)$ is a parametric algebraic statistical model.

How Commutative algebra and Algebraic geometry plays a role:
Parametric representation of statistical models $p_{j}=f_{j}\left(\theta_{1}, \ldots, \theta_{d}\right), j=1, \ldots, m$ can be viewed in three different ways
$\triangleright$ parametric description of a curve in $m$ dimentional space

## Algebraic Formulations

Semi-algebraic set: A set $\Theta \subseteq \mathbb{R}$ is called semi-algebraic set, if there are two finite collection of polynomials $F \subset k\left[x_{1}, \ldots, x_{d}\right]$ and $G \subset k\left[x_{1}, \ldots, x_{d}\right]$ such that

$$
\Theta=\left\{\theta \in \mathbb{R}^{d}: f(\theta)=0, \forall f \in F \text { and } g(\theta) \geq 0, \forall g \in G\right\}
$$

## Statistical model as image of a rational function:

Let $\Delta_{m-1}$ be a probability simplex and $\Theta \subset \mathbb{R}$ be a semi-algebraic set. Let $\kappa: \mathbb{R} \rightarrow \mathbb{R}^{>}$be a rational function such that $\kappa(\Theta) \subseteq \Delta_{m-1}$. Then the image $\mathcal{M}=\kappa(\Theta)$ is a parametric algebraic statistical model.

How Commutative algebra and Algebraic geometry plays a role:
Parametric representation of statistical models $p_{j}=f_{j}\left(\theta_{1}, \ldots, \theta_{d}\right), j=1, \ldots, m$ can be viewed in three different ways
$\triangleright$ parametric description of a curve in $m$ dimentional space
$\triangleright$ homeomorphism of the ring $k\left[p_{1}, \ldots, p_{m}\right]$ to $k\left[\theta_{1}, \ldots, \theta_{d}\right]$ identified by $p_{j} \mapsto f_{j}\left(\theta_{1}, \ldots, \theta_{d}\right)$

## Algebraic Formulations

Semi-algebraic set: A set $\Theta \subseteq \mathbb{R}$ is called semi-algebraic set, if there are two finite collection of polynomials $F \subset k\left[x_{1}, \ldots, x_{d}\right]$ and $G \subset k\left[x_{1}, \ldots, x_{d}\right]$ such that

$$
\Theta=\left\{\theta \in \mathbb{R}^{d}: f(\theta)=0, \forall f \in F \text { and } g(\theta) \geq 0, \forall g \in G\right\}
$$

## Statistical model as image of a rational function:

Let $\Delta_{m-1}$ be a probability simplex and $\Theta \subset \mathbb{R}$ be a semi-algebraic set. Let $\kappa: \mathbb{R} \rightarrow \mathbb{R}^{>}$be a rational function such that $\kappa(\Theta) \subseteq \Delta_{m-1}$. Then the image $\mathcal{M}=\kappa(\Theta)$ is a parametric algebraic statistical model.

How Commutative algebra and Algebraic geometry plays a role:
Parametric representation of statistical models $p_{j}=f_{j}\left(\theta_{1}, \ldots, \theta_{d}\right), j=1, \ldots, m$ can be viewed in three different ways
$\triangleright$ parametric description of a curve in $m$ dimentional space
$\triangleright$ homeomorphism of the ring $k\left[p_{1}, \ldots, p_{m}\right]$ to $k\left[\theta_{1}, \ldots, \theta_{d}\right]$ identified by $p_{j} \mapsto f_{j}\left(\theta_{1}, \ldots, \theta_{d}\right)$
$\triangleright$ solution of polynomial equations (then projected to $k^{m}$ ) $p_{j}-f_{j}\left(\theta_{1}, \ldots, \theta_{d}\right)=0$

## Implicit ME-model: Main Theorem

Given positive integer valued functions $t_{i}, i=1, \ldots, d$ we have maximum entropy model as image of

$$
\begin{align*}
f: k^{d} & \rightarrow k^{m}-W \\
\left(\theta_{1}, \ldots, \theta_{d}\right) & \mapsto\left(\frac{\prod_{i=1}^{d} \theta_{i}^{t_{i}(1)}}{\sum_{j=1}^{m} \prod_{i=1}^{d} t_{i}^{t_{i}^{(j)}}}, \ldots, \frac{\prod_{i=1}^{d} \theta_{i}^{t_{i}(m)}}{\sum_{j=1}^{m} \prod_{i=1}^{d} \theta_{i}^{t_{i}^{(m)}}}\right) . \tag{22}
\end{align*}
$$

where $W=\mathcal{V}\left(\sum_{j=1}^{m} \prod_{i=1}^{d} \theta_{i}^{t_{i}(m)}\right)$

## Implicit ME-model: Main Theorem

Given positive integer valued functions $t_{i}, i=1, \ldots, d$ we have maximum entropy model as image of

$$
\begin{align*}
f: k^{d} & \rightarrow k^{m}-W \\
\left(\theta_{1}, \ldots, \theta_{d}\right) & \mapsto\left(\frac{\prod_{i=1}^{d} \theta_{i}^{t_{i}(1)}}{\sum_{j=1}^{m} \prod_{i=1}^{d} \theta_{i}^{t_{i}(j)}}, \ldots, \frac{\prod_{i=1}^{d} \theta_{i}^{t_{i}(m)}}{\sum_{j=1}^{m} \prod_{i=1}^{d} \theta_{i}^{t_{i}(m)}}\right) . \tag{23}
\end{align*}
$$

where $W=\mathcal{V}\left(\sum_{j=1}^{m} \prod_{i=1}^{d} \theta_{i}^{t_{i}(m)}\right)$
theorem Let $f$ be a polynomial functions which parameterize maximum entropy model with respect to sufficient statistic $t_{i}: \mathbb{R} \rightarrow \mathbb{Z}_{\geq 0}$ according to (28). Then

$$
\begin{equation*}
\operatorname{im}(\mathrm{f}) \subseteq \underbrace{\mathcal{V}\left(\operatorname{ker}\left(\tilde{f}^{*}\right)\right)} \cap \underbrace{\mathcal{V}\left(\sum_{j=1}^{m} p_{j}-1\right)} \tag{24}
\end{equation*}
$$

## Implicit ME-model: Main Theorem

Given positive integer valued functions $t_{i}, i=1, \ldots, d$ we have maximum entropy model as image of

$$
\begin{align*}
f: k^{d} & \rightarrow k^{m}-W \\
\left(\theta_{1}, \ldots, \theta_{d}\right) & \mapsto\left(\frac{\prod_{i=1}^{d} \theta_{i}^{t_{i}^{(1)}}}{\sum_{j=1}^{m} \prod_{i=1}^{d} t_{i}^{t_{i}(j)}}, \ldots, \frac{\prod_{i=1}^{d} \theta_{i}^{t_{i}(m)}}{\sum_{j=1}^{m} \prod_{i=1}^{d} \theta_{i}^{t_{i}^{(m)}}}\right) . \tag{25}
\end{align*}
$$

where $W=\mathcal{V}\left(\sum_{j=1}^{m} \prod_{i=1}^{d} \theta_{i}^{t_{i}(m)}\right)$
theorem Let $f$ be a polynomial functions which parameterize maximum entropy model with respect to sufficient statistic $t_{i}: \mathbb{R} \rightarrow \mathbb{Z}_{\geq 0}$ according to (28). Then

$$
\begin{equation*}
\operatorname{im}(\mathrm{f}) \subseteq \underbrace{\mathcal{V}\left(\operatorname{ker}\left(\tilde{f}^{*}\right)\right)} \cap \underbrace{\mathcal{V}\left(\sum_{j=1}^{m} p_{j}-1\right)} \tag{26}
\end{equation*}
$$

where $\tilde{f}^{*}$ is a $k$-algebra homeomorphism

$$
\begin{align*}
\tilde{f}^{*}: k\left[p_{1}, \ldots, p_{m}\right] & \rightarrow k\left[\theta_{0}, \ldots, \theta_{d}\right] \\
p_{j} & \mapsto \theta_{0} \prod_{i=1}^{d} \theta_{i}^{t_{i}(j)} . \tag{27}
\end{align*}
$$

## Implicit ME-model: Main Theorem

Given positive integer valued functions $t_{i}, i=1, \ldots, d$ we have maximum entropy model as image of

$$
\begin{align*}
f: k^{d} & \rightarrow k^{m}-W \\
\left(\theta_{1}, \ldots, \theta_{d}\right) & \mapsto\left(\frac{\prod_{i=1}^{d} \theta_{i}^{t_{i}^{(1)}}}{\sum_{j=1}^{m} \prod_{i=1}^{d} t_{i}^{t_{i}(j)}}, \ldots, \frac{\prod_{i=1}^{d} \theta_{i}^{t_{i}(m)}}{\sum_{j=1}^{m} \prod_{i=1}^{d} \theta_{i}^{t_{i}^{(m)}}}\right) . \tag{28}
\end{align*}
$$

where $W=\mathcal{V}\left(\sum_{j=1}^{m} \prod_{i=1}^{d} \theta_{i}^{t_{i}(m)}\right)$
theorem Let $f$ be a polynomial functions which parameterize maximum entropy model with respect to sufficient statistic $t_{i}: \mathbb{R} \rightarrow \mathbb{Z}_{\geq 0}$ according to (28). Then

$$
\begin{equation*}
\operatorname{im}(\mathrm{f}) \subseteq \underbrace{\mathcal{V}\left(\operatorname{ker}\left(\tilde{f}^{*}\right)\right)} \cap \underbrace{\mathcal{V}\left(\sum_{j=1}^{m} p_{j}-1\right)} \tag{29}
\end{equation*}
$$

where $\tilde{f}^{*}$ is a $k$-algebra homeomorphism

$$
\begin{align*}
\tilde{f}^{*}: k\left[p_{1}, \ldots, p_{m}\right] & \rightarrow k\left[\theta_{0}, \ldots, \theta_{d}\right] \\
p_{j} & \mapsto \theta_{0} \prod_{i=1}^{d} \theta_{i}^{t_{i}(j)} \tag{30}
\end{align*}
$$

***The inclusion should be understand from the point of "closure" or "Zariski Closure"

## Ideal and Gröbner bases representation

## Corollary:

$$
\begin{equation*}
\operatorname{im}(\mathrm{f}) \subseteq \underbrace{\mathcal{V}\left(\mathfrak{a} \cap k\left[p_{1}, \ldots, p_{m}\right]\right)} \cap \underbrace{\mathcal{V}\left(\sum_{j=1}^{m} p_{j}-1\right)} \tag{31}
\end{equation*}
$$

where

$$
\mathfrak{a}=\left\langle p_{j}-\theta_{0} \prod_{i=1}^{d} \theta_{i}^{t_{1}(j)}: j=1, \ldots, m\right\rangle \subseteq k\left[p_{1}, \ldots, p_{m}, \theta_{1}, \ldots, \theta_{d}\right]
$$

## Ideal and Gröbner bases representation

## Corollary:

$$
\begin{equation*}
\operatorname{im}(\mathrm{f}) \subseteq \underbrace{\mathcal{V}\left(\mathfrak{a} \cap k\left[p_{1}, \ldots, p_{m}\right]\right)} \cap \underbrace{\mathcal{V}\left(\sum_{j=1}^{m} p_{j}-1\right)} \tag{32}
\end{equation*}
$$

where

$$
\mathfrak{a}=\left\langle p_{j}-\theta_{0} \prod_{i=1}^{d} \theta_{i}^{t_{1}(j)}: j=1, \ldots, m\right\rangle \subseteq k\left[p_{1}, \ldots, p_{m}, \theta_{1}, \ldots, \theta_{d}\right]
$$

Corollary: (By Elimination theorem)

$$
\begin{equation*}
\operatorname{im}(\mathrm{f}) \subseteq \underbrace{\mathcal{V}\left(G \cap k\left[p_{1}, \ldots, p_{m}\right]\right)} \cap \underbrace{\mathcal{V}\left(\sum_{j=1}^{m} p_{j}-1\right)} \tag{33}
\end{equation*}
$$

where $G$ is the Gröbner basis of

$$
\mathfrak{a}=\left\langle p_{j}-\theta_{0} \prod_{i=1}^{d} \theta_{i}^{t_{1}(j)}: j=1, \ldots, m\right\rangle \subseteq k\left[p_{1}, \ldots, p_{m}, \theta_{1}, \ldots, \theta_{d}\right]
$$

## Ideal and Gröbner bases representation

## Corollary:

$$
\begin{equation*}
\operatorname{im}(\mathrm{f}) \subseteq \underbrace{\mathcal{V}\left(\mathfrak{a} \cap k\left[p_{1}, \ldots, p_{m}\right]\right)} \cap \underbrace{\mathcal{V}\left(\sum_{j=1}^{m} p_{j}-1\right)} \tag{34}
\end{equation*}
$$

where

$$
\mathfrak{a}=\left\langle p_{j}-\theta_{0} \prod_{i=1}^{d} \theta_{i}^{t_{1}(j)}: j=1, \ldots, m\right\rangle \subseteq k\left[p_{1}, \ldots, p_{m}, \theta_{1}, \ldots, \theta_{d}\right]
$$

Corollary: (By Elimination theorem)

$$
\begin{equation*}
\operatorname{im}(\mathrm{f}) \subseteq \underbrace{\mathcal{V}\left(G \cap k\left[p_{1}, \ldots, p_{m}\right]\right)} \cap \underbrace{\mathcal{V}\left(\sum_{j=1}^{m} p_{j}-1\right)} \tag{35}
\end{equation*}
$$

where $G$ is the Gröbner basis of

$$
\mathfrak{a}=\left\langle p_{j}-\theta_{0} \prod_{i=1}^{d} \theta_{i}^{t_{1}(j)}: j=1, \ldots, m\right\rangle \subseteq k\left[p_{1}, \ldots, p_{m}, \theta_{1}, \ldots, \theta_{d}\right]
$$

with a term order $\left\{p_{1}, \ldots, p_{m}\right\} \prec\left\{\theta_{1}, \ldots, \theta_{d}\right\}$

## ME model as a rational parameterization

## Theorem

$$
\begin{equation*}
\operatorname{im}(\mathrm{f}) \subseteq \mathcal{V}\left(\mathfrak{b} \cap \mathrm{k}\left[\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right]\right) \tag{36}
\end{equation*}
$$

where

$$
\mathfrak{b}=\left\langle Z p_{j}-\prod_{i=1}^{d} \theta_{i}^{t_{i}(j)}: j=1, \ldots, m, 1-Z^{m} y\right\rangle \subseteq k\left[p_{1}, \ldots, p_{m}, \theta_{1}, \ldots, \theta_{d}, y\right]
$$

( $Z$ is the partition function)
**** probably difficult to compute

## Example

$$
\begin{aligned}
& p_{1}=\theta_{0} \theta_{1}{ }^{2} \theta_{2} \\
& p_{2}=\theta_{0} \theta_{1} \theta_{2}{ }^{2} \\
& p_{3}=\theta_{0} \theta_{1}{ }^{3} \theta_{2} \\
& p_{4}=\theta_{0} \theta_{1} \theta_{2}{ }^{4} \\
& p_{5}=\theta_{0} \theta_{1}{ }^{5} \theta_{2}{ }^{3}{ }^{2}=\theta_{0}{ }^{2} \theta_{2}{ }^{3} \\
& p_{7}=\theta_{0} \theta_{1} \theta_{2}
\end{aligned}
$$

## Example (Contd...)



```
fgy-bc,bcy-ex,g\mp@subsup{z}{}{2}-b,c\mp@subsup{z}{}{2}-fy,b\mp@subsup{z}{}{2}-d,exz-fc,cxz-bgy,g}z-ax,eggz-fcy
cgz-a,bgz-fx,c z-eg,dcz-f,bcz-fa,fgg-bcx,bcg-ex,a - egx, ca - eg,
far-bex,d a - frg,fca-beg,fra-dex,d c
```





```
3 2 5 5 6 % 3
d eg-f x,f-b d ce]
```

Change of symbols
$p_{1} \rightarrow a, p_{2} \rightarrow b, p_{3} \rightarrow c, p_{4} \rightarrow d, p_{5} \rightarrow e, p_{6} \rightarrow f, p_{7} \rightarrow g$
and
$\theta_{0} \rightarrow x, \theta_{1} \rightarrow y, \theta_{2} \rightarrow z$

## Example (Contd...)

Maximum entropy model is contained in

$$
\begin{array}{r}
V_{\text {model }}=\mathcal{V}\left(p_{1} p_{2}-p_{6} p_{7},\right. \\
p_{2} p_{6}-p_{4} p_{1}, \\
p_{2}-p_{4} p_{7}, \\
p_{3} p_{1}^{2}-p_{5} p_{7}^{2}, \\
p_{4} p_{1}^{2}-p_{6}^{2} p_{7}, \\
p_{6} p_{3} p_{1}-p_{2} p_{5} p_{7}, \\
p_{6}^{2} p_{3}-p_{4} p_{5} p_{7}, \\
p_{6}^{6}-p_{2} p_{4}^{3} p_{3} p_{5} \\
\left.\sum_{i=1}^{7} p_{i}-1\right)
\end{array}
$$

## Example (Contd...)

Maximum entropy model is contained in

$$
\begin{array}{r}
V_{\text {model }}=\mathcal{V}\left(p_{1} p_{2}-p_{6} p_{7},\right. \\
p_{2} p_{6}-p_{4} p_{1}, \\
p_{2}-p_{4} p_{7}, \\
p_{3} p_{1}^{2}-p_{5} p_{7}^{2}, \\
p_{4} p_{1}^{2}-p_{6}^{2} p_{7}, \\
p_{6} p_{3} p_{1}-p_{2} p_{5} p_{7}, \\
p_{6}^{2} p_{3}-p_{4} p_{5} p_{7}, \\
p_{6}^{6}-p_{2} p_{4}^{3} p_{3} p_{5} \\
\left.\sum_{i=1}^{7} p_{i}-1\right)
\end{array}
$$

Maximum entropy distribution is contained in $V_{\text {model }} \cap V_{\text {data }}$.

## Summary

## Parametric

$\triangleright$ Estimation of ME models can be transformed to solving system of polynomial equations

- Primal - System of polynomial equations
- Dual - System of Laurent polynomial equations
- Kullback-Csiszár - A triangular system (A decreasing sequence of dimension of quotient vector spaces modulo ideals)


## Summary

## Parametric

$\triangleright$ Estimation of ME models can be transformed to solving system of polynomial equations

- Primal - System of polynomial equations
- Dual - System of Laurent polynomial equations
- Kullback-Csiszár - A triangular system (A decreasing sequence of dimension of quotient vector spaces modulo ideals)
$\triangleright$ Gröbner bases can be used in the estimation of ME-models


## Summary

## Parametric

$\triangleright$ Estimation of ME models can be transformed to solving system of polynomial equations

- Primal - System of polynomial equations
- Dual - System of Laurent polynomial equations
- Kullback-Csiszár - A triangular system (A decreasing sequence of dimension of quotient vector spaces modulo ideals)
$\triangleright$ Gröbner bases can be used in the estimation of ME-models
$\triangleright$ Elimination theorem comes in handy (for both ML and ME)


## Summary

## Parametric

$\triangleright$ Estimation of ME models can be transformed to solving system of polynomial equations

- Primal - System of polynomial equations
- Dual - System of Laurent polynomial equations
- Kullback-Csiszár - A triangular system (A decreasing sequence of dimension of quotient vector spaces modulo ideals)
$\triangleright$ Gröbner bases can be used in the estimation of ME-models
$\triangleright$ Elimination theorem comes in handy (for both ML and ME)


## Implicit

$\triangleright$ ME-models can be treated with Toric ideals (One can relax positivity of feature functions)

## Summary

## Parametric

$\triangleright$ Estimation of ME models can be transformed to solving system of polynomial equations

- Primal - System of polynomial equations
- Dual - System of Laurent polynomial equations
- Kullback-Csiszár - A triangular system (A decreasing sequence of dimension of quotient vector spaces modulo ideals)
$\triangleright$ Gröbner bases can be used in the estimation of ME-models
$\triangleright$ Elimination theorem comes in handy (for both ML and ME)


## Implicit

$\triangleright$ ME-models can be treated with Toric ideals (One can relax positivity of feature functions)
$\triangleright$ ME-models can be embedded in Toric varieties (elegant but can we characterize the margin)

## Concluding Remarks

## Potential Problems

$\triangleright$ Elimination in "implicit models"

## Concluding Remarks

## Potential Problems

$\Delta$ Elimination in "implicit models"
$\triangleright$ "Zero dimensional ideals" and " $k$-vector dimension of quotient ring modulo ideal" describing ME models

## Concluding Remarks

## Potential Problems

$\triangleright$ Elimination in "implicit models"
$\triangleright$ "Zero dimensional ideals" and " $k$-vector dimension of quotient ring modulo ideal" describing ME models
$\triangleright$ Universal Gröbner bases, term order

## Concluding Remarks

## Potential Problems

$\triangle$ Elimination in "implicit models"
$\triangleright$ "Zero dimensional ideals" and " $k$-vector dimension of quotient ring modulo ideal" describing ME models
$\triangleright$ Universal Gröbner bases, term order

## Finally...

In the case of $M E$, both model and data can be represented by algebraic varieties '(implicitly')

## Concluding Remarks

## Potential Problems

$\Delta$ Elimination in "implicit models"
$\triangleright$ "Zero dimensional ideals" and " $k$-vector dimension of quotient ring modulo ideal" describing ME models
$\triangleright$ Universal Gröbner bases, term order

## Finally...

In the case of $M E$, both model and data can be represented by algebraic varieties '(implicitly')--- probably this result paves a way to algebraic geometry of information theoretic statistics

