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Outline of talk
Classical theory of testing goodness-of-�t

The idea

The rate distortion test

Some results on why this is not a bad idea

Conclusion
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The Neyman Pearson Lemma
Consider the hypotheses Q = P1 vs. Q = P0. For r 2 [0; 1] let Ac (r) be
the acceptance region de�ned by

Ac (r) =
�

ω j d (P
n
1 )

d (Pn0 )
(ω) � r

�
=

�
ω j EEmpn(ω)

�
log

d (P1)
d (P0)

�
� 1
n
log r

�
.

Theorem (Neyman-Pearson Lemma)

Let X1,X2, ...,Xn be independent distributed according to Q. Let the error
probabilities be de�ned by

α�0 = P
n
0 (Ac (r)) ;

α�1 = P
n
1

�
{Ac (r)

�
.

Let B be another decision region with error probabilities α0 and α1. Then
if α0 � α�0 then α1 � α�1.
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Testing goodness-of-�t
Consider a random variable with an unknown continuous distribution
function F

Based on a sample of size n we want to to test the hypothesis that
F = G for some known distribution function G .

Divide R into k bins.

Popular choice is k interval with equal probability according to G , i.e.�
G�1

�
j � 1
k

�
;G�1

�
j
k

��
where j = 1, 2, ..., k.

Test if the empirical distribution on the bins is uniform.

Let k grow with the sample size n.
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Power divergence statistics
The goodness-of-�t statistic is usually one of the power divergence
statistics de�ned by

Dα(P,Q) =
k

∑
j=1
qj φα

�
pj
qj

�
, α 2 R,

for the power function φα of order α 2 R given in the domain t > 0 by the
formula

φα(t) =

8><>:
tα�α(t�1)�1

α(α�1) when α(α� 1) 6= 0
� ln t + t � 1 when α = 0
t ln t � t + 1 when α = 1

.
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Important examples
The Pearson statistic (α = 2),

The Neyman statistic (α = �1),
The log-likelihood ratio (α = 1),

The reversed log-likelihood ratio (α = 0)

The Freeman-Tukey statistic (α = 1/2).

Note that

Dα(P,U) =
kα�1ICα (P)� 1

α (α� 1)
where ICα is the index of coincidence

ICα (P) =
k

∑
j=1
pα
j = e

(1�α)Hα(P ) .

and Hα (P) is the Rényi entropy of order α
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E¢ ciency
The test is e¢ cient in the sense of Lehman and hodge.

If n/k tend to a constant then the Pearson statistic is most Pitman
e¢ cient.

We focus on the typical situation where k = kn satis�es a conditions
of the type

n
k log k

! ∞ for n! ∞.

In this case the Pitman asymptotic relative e¢ ciencies of all statistics
Dα, α 2 R coincide.

In this situation preferences between these statistics must be based on
the Bahadur e¢ ciencies BE(Dα1 j Dα2).

BE(D1 j D2) = ∞ (Quine and Robinson, 1985).
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Consistency
For α 2 R and a sequence of alternatives Pn we say that the model
satis�es the Bahadur condition if there exists a constatnt ∆α > 0 such
that

Dα(Pn,U) = ∆α .

The statistic Dα(P̂n,U) is consistent if the Bahadur condition holds and

Dα(P̂n,U) �! 0 under U in probability

Dα(P̂n,U) �! ∆α under Pn in probability.

Theorem

The divergence Dα(P̂n,U) is consistent if

lim
n!∞

k
n
= 0 for α 2 [0; 2] ,

lim
n!∞

k log k
n

= 0 for α > 2.

Consistency holds for all f -divergences that are uniformly continuous.
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Bahadur function and Bahadur e¢ ciency
For α 2 R we say that the Bahadur function for the statistic
Dα(P̂n,U) exists if there exists a sequence cα,n > 0 and a continuous
function gα : (0,∞)! (0,∞) such that under H

lim
n!∞

�cα,n

n
ln P(Dα(P̂n,U) � ∆) = gα(∆), ∆ > 0.

Assume that the statistics Dα1(P̂n,U) and Dα2(P̂n,U) are consistent
and that the corresponding Bahadur functions gα1 and gα2 exist. The
Bahadur e¢ ciency is de�ned by

BE (Dα1 j Dα2) =
gα1(∆α1)

gα2(∆α2)
lim
n!∞

cα1,n

cα2,n
.
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Case α � 1

Theorem
If k = kn increases so slowly that

n
k log k

! ∞

then the Bahadur e¢ ciency of the statistic Dα1 with respect to Dα2

satis�es the relation
BE(Dα1 j Dα2) = ∞

for all 1 � α1 < α2.

Proof.
See Harremoës and Vajda IEEE Trans. Inform. Theory Jan. 2008 and
Haremoës and Vajda ISIT 2008.
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Case 0 < α � 1
Theorem
If k = kn increases so slowly that

n
k log k

! ∞

then the Bahadur e¢ ciency of the statistic Dα1 with respect to Dα2

satis�es the relation

BE(Dα1 j Dα2) =
∆1
∆2

for all 0 < α1 < α2 � 1.

Proof.
The extreme case is a sequence of alternatives that are uniform on subsets.
In this case

Dα1 (PnkU) = Dα2 (PnkU) = log
jsupport of Pn j

k
.
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Discussion
A core observation is that

inf
Dα(P ,U )�∆

D (P,U)
�
= 0 for α > 1
> 0 for α 2 ]0; 1[ .

Absolute continuity Note that D (PkQ) < ∞ implies that P � Q.

Contiguity Similarly D (PnkQn)! ∆ implies that Pn C Qn.
Assume that P = δa and Q is continuous. Then Pn 6C Qn.

Theorem (Informal version)
Information divergence is more Bahadur e¢ cient than any Rényi divergence
of order α 2 ]0, 1[ for testing a P against Q when P 6� Q except if P?Q.

In practice Da is not very e¢ cient if D (PkQ) is large.
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Open questions
How many bins should be chosen? I.e. How should we choose k as a
function of n?
How should we choose the shapes of the bins?

Should the bins be chosen with equal probability or are some less
uniform choice of bins better?
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A di¤erent approach to testing
Let X1,X2, � � � denote a sequence of binary random variables. We want to
test the null hypothesis that they come from a Bernoulli
(1/2, 1/2)-source.
If H0 is true the entropy of the sequence is maximal and it is not possible
to compress it.
Choose your favorite data compressor and see how much it is able to
compress X n1 .
If no or only a little compression is obtained accept H0. Otherwise reject.
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A rate distortion version of the previous idea
Let d : X � X̂ ! R be a distortion function. At some distortion level d0
rate distortion theory tells us how optimally to compress data at distortion
level d0 if the distribution of of X is Q. Compress data into a binary
sequence and test if the sequence is Bernoulli (1/2, 1/2) .
Problems:

Depends on data compressor.

Is hard to analyse.
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The rate distortion test
Let d : X � X̂ ! R be a distortion function and Q a probability
distribution on X . Choose a sequence of distortion levels dn such that
dn ! 0 for n! ∞. For each n �nd the Markov kernel Ψn such that Ψn

gives the optimal coupling corresponding to distortion level dn. Use

D (Ψn (Empn (ω)) kΨn (Q))

as statistic.
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Example: test of uniformity
We consider a set A with l elements. The set has no particular structure
so we use Hamming distortion as distortion function. Our null hypothesis
is P = U where u denotes the uniform distribution on A. In this case the
Markov kernel Ψd0 has the form

Ψd0 : x ! αδx + (1� α)U

for some value α 2 [0; 1] determined by d0. The Markov kernel maps the
uniform distribution into the uniform distribution. Therefore the statistic
of the rate distortion test has the for

D (αEmpn (ω) + (1� α)UkU) .

If α is small the statistic can be approximated by the Pearson statistic that
is Pitman e¢ cient.
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Example: Test of normality
We consider the real numbers with squared Euclidian distance as distortion
function. Our null hypothesis is P = Φ where Φ denotes the standard
Gaussian distribution. The optimal Markov kernel for the rate distortion
problem sends x into the distribution of αx +

�
1� α2

�1/2 Z where Z is a
standard Gaussian random variable. We see that the Gaussian distribution
is mapped into it self. Thus the statistic of the rate distortion test is

D
�

αX +
�
1� α2

�1/2
ZkΦ

�
where we have identi�ed the random variable αX +

�
1� α2

�1/2 Z with its
distribution. This Markov kernel can be rewritten as

D
�

αX +
�
1� α2

�1/2
ZkΦ

�
= D

 
X +

�
1
α2
� 1
�1/2

ZkΦ
�
0, α2

�!
so the Markov kernels essentially smooth data by adding an independent
Gaussian random variable with variance α�2 � 1. The idea of smoothing
data is well-known in statistics.
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Example: Angular data
We consider data with values on the circle s1 that we can identify with
R/2πZ. As distortion function we shall use 4 cos2

�
θ2�θ1
2

�
. We shall test

the hypothesis P = U where U denotes the uniform distribution on the
circle. The optimal Markov kernel is a smoothing by adding a von Mises
distribution

exp (κ cos (θ))
2πI0 (κ)

where I0 is the modi�ed Bessel function of order 0 with parameter κ
determined by the distortion level. The Markov kernel maps the uniform
distribution into the uniform distribution.
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Consistency
If data is generated by P then

D (Ψn (Empn (ω)) kΨn (Q))! D (PkQ)

in probability.
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E¢ ciency
The rate distortion test is e¢ cient in the sense of Hodge and Lehman.

We have no results on the Pitman e¢ ciency of the rate distortion test
but conjecture that it is Pitman e¢ cient under regularity conditions.

What can be said about Bahadur e¢ ciency?
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Exponential families
Let Pµ denote an exponential family in its mean value representation.
De�ne a distortion function by

d (λ, µ) = D
�
PλkPµ

�
.

Then d is a Bregman divergence and characerizes the exponential family.
The rate distortion test is Bahadur e¢ cient against alternatives in the
exponential family.
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Bahadur e¢ ciency
Theorem
Let G denote a compact group and let d denote a distortion function that
is continuous and invariant under the group action. Then the rate
distortion test is Bahadur e¢ cient.

This result can be extended to compact sets under regularity conditions for
which we have no counterexamples.
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Conclusion
In the rate distortion test the question of the shape and probability of
the bins can be replaced with the question of choosing a distortion
function.

The question of the number of bins (or the rate of the rate distortion
test) can be discussed without confusion of the other now solved
problems.

All our results on e¢ ciency are positive.

Open questions
Asymptotic normality.

More e¢ ciency results.
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