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Maximum entropy distributions

I Maximum entropy distributions often take simple form.

I Fix mean and variance:
continuous entropy h maximised by the normal.

I Positive support and fixed mean:
discrete entropy H maximised by geometric.
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Standard proof by Gibbs inequality

Theorem
For any function f , on fixing

∑
p(x)f (x), the maximum entropy

mass function is φ(x) = α exp(−βf (x)).

Proof.

−
∑
x

p(x) log φ(x) =
∑
x

p(x) (− log α + βf (x))

= −
∑
x

φ(x) log φ(x)

Hence (in fact enough that −
∑

p log φ ≤ −
∑

φ log φ):

−H(p) + H(φ) =
∑
x

p(x) log p(x)−
∑
x

p(x) log φ(x)

= D(p‖φ) ≥ 0.
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More complicated classes

I Gibbs formalism answers the wrong question?

I Answer very nice for Gaussians, but misleading?

I What about Poisson distribution Πλ with mean λ?

I Natural well-behaved class over which Πλ maximises entropy?

I Similarly, stable laws, in particular Cauchy, parameter c .

I Has anyone ever calculated E log X ! (Poisson) or
E log(c2 + X 2) (Cauchy) . . . other than to find entropy?

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol, UK

Some results in maximum entropy: EPFL/MLV meeting, Lausanne, 8th–9th September 2008



The problem Poisson distributions Compound Poisson distributions Entropy Power Inequality

More complicated classes

I Gibbs formalism answers the wrong question?

I Answer very nice for Gaussians, but misleading?

I What about Poisson distribution Πλ with mean λ?

I Natural well-behaved class over which Πλ maximises entropy?

I Similarly, stable laws, in particular Cauchy, parameter c .

I Has anyone ever calculated E log X ! (Poisson) or
E log(c2 + X 2) (Cauchy) . . . other than to find entropy?

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol, UK

Some results in maximum entropy: EPFL/MLV meeting, Lausanne, 8th–9th September 2008



The problem Poisson distributions Compound Poisson distributions Entropy Power Inequality

More complicated classes

I Gibbs formalism answers the wrong question?

I Answer very nice for Gaussians, but misleading?

I What about Poisson distribution Πλ with mean λ?

I Natural well-behaved class over which Πλ maximises entropy?

I Similarly, stable laws, in particular Cauchy, parameter c .

I Has anyone ever calculated E log X ! (Poisson) or
E log(c2 + X 2) (Cauchy) . . . other than to find entropy?

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol, UK

Some results in maximum entropy: EPFL/MLV meeting, Lausanne, 8th–9th September 2008



The problem Poisson distributions Compound Poisson distributions Entropy Power Inequality

More complicated classes

I Gibbs formalism answers the wrong question?

I Answer very nice for Gaussians, but misleading?

I What about Poisson distribution Πλ with mean λ?

I Natural well-behaved class over which Πλ maximises entropy?

I Similarly, stable laws, in particular Cauchy, parameter c .

I Has anyone ever calculated E log X ! (Poisson) or
E log(c2 + X 2) (Cauchy) . . . other than to find entropy?

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol, UK

Some results in maximum entropy: EPFL/MLV meeting, Lausanne, 8th–9th September 2008



The problem Poisson distributions Compound Poisson distributions Entropy Power Inequality

More complicated classes

I Gibbs formalism answers the wrong question?

I Answer very nice for Gaussians, but misleading?

I What about Poisson distribution Πλ with mean λ?

I Natural well-behaved class over which Πλ maximises entropy?

I Similarly, stable laws, in particular Cauchy, parameter c .

I Has anyone ever calculated E log X ! (Poisson) or
E log(c2 + X 2) (Cauchy) . . . other than to find entropy?

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol, UK

Some results in maximum entropy: EPFL/MLV meeting, Lausanne, 8th–9th September 2008



The problem Poisson distributions Compound Poisson distributions Entropy Power Inequality

More complicated classes

I Gibbs formalism answers the wrong question?

I Answer very nice for Gaussians, but misleading?

I What about Poisson distribution Πλ with mean λ?

I Natural well-behaved class over which Πλ maximises entropy?

I Similarly, stable laws, in particular Cauchy, parameter c .

I Has anyone ever calculated E log X ! (Poisson) or
E log(c2 + X 2) (Cauchy) . . . other than to find entropy?

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol, UK

Some results in maximum entropy: EPFL/MLV meeting, Lausanne, 8th–9th September 2008



The problem Poisson distributions Compound Poisson distributions Entropy Power Inequality

More complicated classes

I Gibbs formalism answers the wrong question?

I Answer very nice for Gaussians, but misleading?

I What about Poisson distribution Πλ with mean λ?

I Natural well-behaved class over which Πλ maximises entropy?

I Similarly, stable laws, in particular Cauchy, parameter c .

I Has anyone ever calculated E log X ! (Poisson) or
E log(c2 + X 2) (Cauchy)

. . . other than to find entropy?

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol, UK

Some results in maximum entropy: EPFL/MLV meeting, Lausanne, 8th–9th September 2008



The problem Poisson distributions Compound Poisson distributions Entropy Power Inequality

More complicated classes

I Gibbs formalism answers the wrong question?

I Answer very nice for Gaussians, but misleading?

I What about Poisson distribution Πλ with mean λ?

I Natural well-behaved class over which Πλ maximises entropy?

I Similarly, stable laws, in particular Cauchy, parameter c .

I Has anyone ever calculated E log X ! (Poisson) or
E log(c2 + X 2) (Cauchy) . . . other than to find entropy?

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol, UK

Some results in maximum entropy: EPFL/MLV meeting, Lausanne, 8th–9th September 2008



The problem Poisson distributions Compound Poisson distributions Entropy Power Inequality

Manifesto
“Find conditions under which certain limit laws appearing
in limit theorems of probability theory possess extremal
entropy properties. Immediate candidates to be subjected
to such analysis are, of course, stable laws . . . ”

– Gnedenko and Korolev

I Want ‘natural’ conditions for maximum entropy.

I Want them to depend on (pseudo)moments or other simple
conditions.

I Want stability – that is, classes preserved on summation.

I Work in progress – with Harremoës, Kontoyiannis and
Madiman.

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol, UK

Some results in maximum entropy: EPFL/MLV meeting, Lausanne, 8th–9th September 2008



The problem Poisson distributions Compound Poisson distributions Entropy Power Inequality

Manifesto
“Find conditions under which certain limit laws appearing
in limit theorems of probability theory possess extremal
entropy properties. Immediate candidates to be subjected
to such analysis are, of course, stable laws . . . ”

– Gnedenko and Korolev

I Want ‘natural’ conditions for maximum entropy.

I Want them to depend on (pseudo)moments or other simple
conditions.

I Want stability – that is, classes preserved on summation.

I Work in progress – with Harremoës, Kontoyiannis and
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Poisson distribution

I Harremoës (2001) defines

Bn(λ) =

{
S : ES = λ, S =

n∑
i=1

Xi , Xi independent Bernoulli

}
.

I Harremoës (2001) proved Πλ has maximum entropy property:

sup
S∈
S

n Bn(λ)
H(S) = H(Πλ) for any λ.

I We give new proof, and larger closed class ULC(λ).
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I Harremoës (2001) proved Πλ has maximum entropy property:

sup
S∈
S

n Bn(λ)
H(S) = H(Πλ) for any λ.

I We give new proof, and larger closed class ULC(λ).

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol, UK

Some results in maximum entropy: EPFL/MLV meeting, Lausanne, 8th–9th September 2008



The problem Poisson distributions Compound Poisson distributions Entropy Power Inequality

Poisson distribution
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Ultra-log-concavity

Definition
For any λ, define the class of random variables V with mass
function pV satisfying

ULC(λ) = {V : EV = λ and pV (i)/Πλ(i) is log-concave}.

That is

ipV (i)2 ≥ (i + 1)pV (i + 1)pV (i − 1), for all i .
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Equivalent characterization of ULC(λ)

‘Entropy and the Law of Small Numbers’ (I. Kontoyiannis,
P. Harremoës, O. Johnson)
IEEE Trans. Inform. Theory, Vol 51/2, 2005, pages 466–472

Definition
For random variable V with mean λ, define scaled score function

ρV (i) =
(i + 1)pV (i + 1)

λpV (i)
− 1,

and scaled Fisher information K (V ) = λEρV (V )2.

I Equivalently ULC(λ) is class of random variables V with
mean λ and decreasing score ρV .
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Properties of ULC

Lemma
(None of these are new results)

1. Poisson Πλ ∈ ULC(λ).

2. For independent U ∈ ULC(λ) and V ∈ ULC(µ),
U + V ∈ ULC(λ + µ).

3. B∞(λ) ⊆ ULC(λ).
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Maximum entropy and ULC(λ)

O.T. Johnson ‘Log-concavity and the maximum entropy property
of the Poisson distribution’
Stoch. Proc. Appl. Vol 117/6, 2007, pages 791-802.

Theorem
If X ∈ ULC(λ) and Y ∼ Πλ then

H(X ) ≤ H(Y ),

with equality if and only if X ∼ Πλ.
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Adding and thinning

Definition

1. Given random variable X , define SβX ∼ X + Πβ

2. Given random variable Y , define the α-thinned rv

TαY =
Y∑

i=1

Bi ,

where B1,B2 . . . i.i.d. Bernoulli(α), independent of Y .

3. Given λ, define the combined map

Uα = Sλ(1−α) ◦ Tα.

Note: if X has mean λ then UαX has mean λ.
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Key properties in the proof

Lemma
If Y ∈ ULC(µ) then UαY ∈ ULC(µ).

Lemma
U has semigroup structure: Uα1α2 = Uα1 ◦ Uα2 .

Lemma
Take X with mean λ. Writing Pα(z) = P(UαX = z), then

∂

∂α
Pα(z) =

λ

α
∆∗(Pα(z)ρα(z)),

Here ∆f (x) = f (x + 1)− f (x) and ∆∗g(x) = g(x − 1)− g(x).
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Key properties in the proof

Lemma
If Y ∈ ULC(µ) then UαY ∈ ULC(µ).

Lemma
U has semigroup structure: Uα1α2 = Uα1 ◦ Uα2 .

Lemma
Take X with mean λ. Writing Pα(z) = P(UαX = z), then

∂

∂α
Pα(z) =

λ

α
∆∗(Pα(z)ρα(z)),

Here ∆f (x) = f (x + 1)− f (x) and ∆∗g(x) = g(x − 1)− g(x).
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Proof of Maximum Entropy Property

− ∂

∂α

∑
z

Pα(z) log Πλ(z) = −λ

α

∑
z

∆∗ (Pα(z)ρα(z)) log Πλ(z)

= −λ

α

∑
z

Pα(z)ρα(z)∆ log Πλ(z)

=
λ

α

∑
z

Pα(z)ρα(z) log

(
z + 1

λ

)

I This = Cov (decreasing, increasing) ≤ 0.

I X ∈ ULC(λ) makes
−

∑
x Pα(x) log Πλ(x) a decreasing function of α.
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Proof of Maximum Entropy Property (cont.)

I Since U0X ∼ Πλ, and U1X = X , deduce that

−
∑
x

P(x) log Πλ(x) ≤ −
∑
x

Πλ(x) log Πλ(x).

I Deduce that

−H(P) + H(Πλ) ≥ D(P‖Πλ) ≥ 0.
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Similar ideas work for compound Poisson

Definition
Fix cluster distribution Q and write Q∗y for the y th convolution
power of Q. Given distribution P of number of clusters, the
corresponding Q-compound mass function

CQP(x) =
∑
y

P(y)Q∗y (x).

Example

Compound Poisson mass function

CQΠλ(x) =
∑
y

Πλ(y)Q∗y (x).
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Compound score and Fisher information

Definition
Given mass function P with mean λ, define score function

ρCQP(x) =

∑∞
y=0(y + 1)P(y + 1)Q∗y (x)

λ
∑∞

y=0 P(y)Q∗y (x)
− 1,

and define corresponding Fisher information

KQ(X ) = λ(EQ)EρCQP(X )2.

I KQ has similar subadditivity/monotonicity properties to those
of ‘simple Fisher information’ K – hence compound Poisson
approximation bounds.
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Maximum entropy property

Theorem (JKM)

If Q and CQΠλ are both log-concave, then for any P ∈ ULC(λ)

H(CQP) ≤ H(CQΠλ).

I Proof v similar - semigroup acts on cluster distribution P.

I Again, key property is decreasing score ρCQP .

I Hard part is proving conditions for CQΠλ to be LC.

I Works if Q is Bernoulli or geometric.

I Similar theorem holds for compound Binomial distribution.
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Real Entropy Power Inequality

I Define E(t) = h(N(0, t)) = 1/2 log2(2πet).

I Define V (X ) = E−1(h(X )) = 22h(X )/(2πe).

Theorem
Consider independent continuous random variables X and Y . Then

V (X + Y ) ≥ V (X ) + V (Y ),

with equality if and only if X and Y are Gaussian.

I First stated by Shannon

I Lots of proofs (Stam/Blachman, Dembo/Cover/Thomas,
Tulino/Verdu/Guo)

I Restricted versions easier to prove? (Costa)
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Natural conjecture

I Define E(t) = h(Po(t)), an increasing, concave function.

I Define V (X ) = E−1(H(X )).

Conjecture

Consider independent discrete random variables X and Y . Then

V (X + Y ) ≥ V (X ) + V (Y ),

with equality if and only if X and Y are Poisson.

I Turns out not to be true!

I Even natural restrictions e.g. ULC, Bernoulli sums don’t help

I Counterexample (not mine!): X ∼ Y ,
PX (0) = 1/6, PX (1) = 2/3, PX (2) = 1/6.

I A lot easier to make conjectures than prove things!
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Thinned Entropy Power Inequality

Conjecture (TEPI)

Consider independent discrete ULC random variables X and Y .
For any α, conjecture that

V (TαX + T1−αY ) ≥ αV (X ) + (1− α)V (Y ).

I Sharp for Poisson ULC

I Or maybe not all α?

I Natural conjecture for more variables, implies monotonicity of
entropy in thinning Poisson convergence regime.

I Taking Y ∼ Π0, TEPI ⇒ RTEPI below.
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Restricted, Thinned Entropy Power Inequality

Conjecture (RTEPI)

Consider ULC random variable X . For any α, conjecture that

V (TαX ) ≥ αV (X ).

I Theorem: True for X Bernoulli(p).
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Weaker: Thinned entropy concavity inequality

Conjecture (TECI)

Consider independent ULC random variables X and Y . For any α,
conjecture that

H(TαX + T1−αY ) ≥ αH(X ) + (1− α)H(Y ).

I TECI relates to Shepp-Olkin conjecture.

I Concavity of E means TEPI ⇒ TECI.

I Continuous versions EPI ⇔ ECI (Dembo/Cover/Thomas).

I Theorem: TECI holds when Y is Poisson.
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Close to the TEPI?

Theorem
Consider independent ULC random variables X and Y . For any β,
γ such that

β

1− γ
≤ V (Y )

V (X )
≤ 1− β

γ
,

if RTEPI and TECI hold then

V (TβX + TγY ) ≥ βV (X ) + γV (Y ).

I Note restrictions appearing on coefficients.
I In general β + γ < 1.
I Rephrase as

V (TβX+TγY +T1−β−γΠ0) ≥ βV (X )+γV (Y )+(1−β−γ)H(Π0).
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