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Outline

• The Problem: Lossy Data Compression

• Codes as Probability Distributions

• Selecting good codes as an estimation problem

• Proposing new estimators based on “lossy likelihood”

• Consistency of proposed estimators

• MLE/MDL Dichotomy + Examples

• Comments and conclusions



The Problem: Data Compression

Data Xn = (X1, X2, . . . , Xn) in An

Quantized version X̂n = (X̂1, X̂2, . . . , X̂n) in discrete Cn ⊂ Ân

Binary codeword for X̂n is a binary string en(X̂n) (e.g., 010010)

Goal

Find an efficient and approximate representation

X̂n = qn(X
n)

for Xn

qn en
−→ −→ 0010111010110

101101000 . . .



“Efficient” and “Approximate”

Efficient

Codelength Ln(Xn) is the # of bits in en(X̂n)

We wish to minimize the codelength per symbol

Approximate

Distortion function dn(xn, yn) = 1
n

∑n
i=1 d1(xi, yi)

Examples: A = Â = {0, 1} d1(x, y) = 1{x=y}

A = Â = R d1(x, y) = (x− y)2

We wish to keep the distortion small



“Efficient” and “Approximate”

Efficient

Codelength Ln(Xn) is the # of bits in en(X̂n)

We wish to minimize the codelength per symbol

Approximate

Distortion function dn(xn, yn) = 1
n

∑n
i=1 d1(xi, yi)

Distortion ball B(xn, D) :=
{

yn ∈ Ân : dn(xn, yn) ≤ D
}

A code operates at distortion level D if

x̂n = qn(x
n) ∈ B(xn, D) for all xn ∈ An



Reminder: Classical Estimation and Data
Compression

1. Probability Distributions correspond to (Lossless) Codes

Ln(x
n) ≈ − log Qn(x

n)

! Maximum Likelihood is Minimum Codelength

2. Log likelihood ratios per symbol converge to a relative entropy
! Consistency of the MLE

3. Model too big or too small creates major problems
! Do not know which class of codes to pick

4. Minimizing description length
! Total description requires description of the selected code
! Penalized MLE also controls overfitting

Lossless data compression suggests a way to think about estimation and
model selection



Lossy Codes as Probability Distributions

Recall Ln(xn) is the codelength in bits used to represent xn

For lossy codes, Ln(Xn) ≈ − log Qn(B(Xn, D))

Why? (K&Z’02)

Let

Qn(y
n) ∝

{
2−Ln(yn) if yn is a codeword
0 otherwise

Then for all xn :

Ln(x
n) = Ln(x̂

n) = − log Qn(x̂
n) ≥ − log Qn(B(xn, D)) bits

with equality if the codewords are D-separated



Random Code Construction

Construction

Given Qn,

1. Generate a random codebook by drawing independent strings using Qn:

Y n(1) Y n(2) Y n(3) . . .

2. The quantizer maps the data Xn to the first D-close match X̂n =
Y n(Wn), where

Wn = min{i : dn(X
n, Y n(i)) ≤ D}

3. The encoder represents Xn by Wn written in binary

Performance

For any process {Xn} and any reasonable sequence of probability distri-
butions Qn on Ân, the code constructed in this way operates at distortion
level D, and its codelength satisfies (K&Z’02)

Ln(X
n) ≤ − log Qn(B(Xn, D)) + 2 log n bits, eventually, w.p.1



Fundamental limits and a generalized AEP

Asymptotic Equipartition Property (AEP)

If the process {Xn} ∼ P is IID, the (lossless) compression performance
w.r.t any IID sequence of distributions {Qn} is given by

− 1

n
log Qn(Xn) → H(P ) + D(P‖Q) bits/symbol, as n →∞, w.p.1

where H is entropy, and D is relative entropy or Kullback-Leibler distance

A Generalized AEP (L&S’97, Y&K’98, Y&Z’99, D&K’98)

If the process {Xn} ∼ P is stationary and ergodic, and dn is a single-
letter distortion function, the compression performance w.r.t any sequence
of “nice” distributions {Qn} = Q is given by

− 1

n
log Qn(B(Xn, D)) → R(P, Q, D)

bits/symbol, as n →∞, w.p.1

where the rate function R(P, Q, D) is well-defined



Representations of the rate function

Information-theoretic representation

When a code based on Q is used to encode process based on P is

R(P, Q, D) = inf
W

D(W‖P ×Q),

where the inf is taken over all W such that (X, Y ) ∼ W satisfies X ∼ P
and Eρ(X, Y ) ≤ D.

Large deviations representation

R(P, Q, D) is the convex dual in the last argument of

Λ(P, Q, λ) := EP

[
log EQeλρ(X,Y )

]
,

i.e., R(P, Q, D) = supλ≤0[λD − Λ(P, Q, λ)].



What is a good code?

The IID Case

Lossless coding Lossy coding
Want a code based on the Q∗ that
minimizes H(P ) + D(P‖Q)

Want a code based on “the” Q∗ that
minimizes R(P, Q, D)

The optimal Q∗ is true process
distribution P

For D > 0, optimal Q∗ achieves
Shannon’s r.d.f. R(P, D) =
infQ R(P, Q, D)

Selecting a good code is like estimat-
ing a process distribution from data

Selecting a good code is an indirect
estimation problem

Goal: Restated

Approximate the performance of the optimal coding distribution Q∗ ,

i.e., find Q that yields code-lengths

Ln(X
n) = − log Qn

(
B(Xn, D)

)
bits

close to those of the optimal “lossy Shannon code”:

L∗n(X
n) = − log Qn

∗
(
B(Xn, D)

)
bits



Coding with P known

Suppose the data Xn
1 is IID, and its distribution P is known.

Let Q̃n achieve

Kn(D)
.
= inf

Qn
E[− log Qn(B(Xn, D))]

Then a code based on Q̃n (K&Z’02)

– is competitively optimal

– asymptotically achieves the rate R(P, D)
.
= infQ R(P, Q, D)

– no other code can have a better rate

– asymptotically behaves like a code based on Qn
∗ , where

R(P, D) = R(P, Q∗, D)



Compression and Statistics

Our problem is code selection, not estimating a true distribution

Yet we observe:

Code (Ln) Probability distribution (Qn)
Classes of codes Statistical models {Qθ : θ ∈ Θ}
Code selection Estimation : find optimal θ∗ ∈

Θ (i.e., one which minimizes
R(P, Qθ, D))

Code class selection Model selection



Coding with Unknown P

Definition

Choose a parametric family of probability distributions {Qθ : θ ∈ Θ}
corresponding to a convenient class of codes

The lossy likelihood is Qn
θ (B(Xn, D)) (NOT like a traditional likelihood!)

The lossy version of the negative log likelihood function is

LL(θ; Xn) = − log Qn
θ (B(Xn, D))

An equivalent notion

The codelength can be approximated using the empirical distribution P̂Xn

of the data (D&K’98, Y&Z’98, M&K’04) :

− log Qn
θ (B(Xn, D)) = nR(P̂Xn, Qθ, D)+ 1

2 log n+O(1) eventually w.p.1

This suggests that the empirical rate function

R̂(θ; Xn) = nR(P̂Xn, Qθ, D)

can be used in place of LL(θ; Xn)



mile-marker

What we have:

! A characterization of the optimal coding distribution Qθ∗ as that achiev-
ing

inf
θ∈Θ

R(P, Qθ, D)

! A notion (in fact, two) of lossy likelihood for parametric families of
codes / distributions

What we want:

! Ways to estimate θ∗

What can we learn from classical theory?

! Maximum likelihood and related ideas



The MALL and SMALL Estimators

Choose a parametric family of probability distributions {Qθ : θ ∈ Θ}
corresponding to a convenient class of codes

Definitions

The MAximum Lossy Likelihood (MALL) and pSeudo-MALL (SMALL)
estimators are

θ̂MALL

n ≡ arg min
θ∈Θ

[− log Qθ(B(Xn, D))]

θ̃SMALL

n ≡ arg min
θ∈Θ

R(P̂Xn, Qθ, D)



The MALL and SMALL Estimators

Choose a parametric family of probability distributions {Qθ : θ ∈ Θ}
corresponding to a convenient class of codes

Definitions

The MAximum Lossy Likelihood (MALL) and pSeudo-MALL (SMALL)
estimators are

θ̂MALL

n ≡ arg min
θ∈Θ

[− log Qθ(B(Xn, D))]

θ̃SMALL

n ≡ arg min
θ∈Θ

R(P̂Xn, Qθ, D)

The MALL/SMALL estimators are nice...

The MALL and SMALL estimators are consistent in great generality:

Theorem 1: Under weak conditions, as n →∞,

θ̂MALL

n → θ∗ w.p.1

θ̃SMALL

n → θ∗ w.p.1



Consistency: Comments on Proof

Key Idea

A uniform, second-order expansion of the empirical rate function:

nR(P̂Xn, Qθ, D) = nR(P, Qθ, D) +
n∑

i=1

g(Xi) + O(log log n)

eventually w.p.1, uniformly in θ

Comments

– Very fine large deviation estimates

– Uses a uniform LIL (A&T’78), based on VC theory

– Technically very hard

– This approach works for IID case; an even more abstract approach yields
even more general results



The MALL and SMALL Estimators

The MALL/SMALL estimators are nice...

The MALL and SMALL estimators are consistent in great generality

But Problems with MALL/SMALL

• Overfitting

• Not real codes



Lossy MDL Estimators

Definitions

The Lossy Minimum Description Length (LMDL) and the pSeudo Lossy
Minimum Description Length (SLMDL) Estimators are

θ̂LMDL

n ≡ arg min
θ∈Θ

[− log Qθ(B(Xn, D)) + $n(θ)],

θ̃SLMDL

n ≡ arg min
θ∈Θ

[nR(P̂Xn, Qθ, D) + $n(θ)]

where $n(θ) = o(n) is a given “penalty function”



Lossy MDL Estimators

Definitions

The Lossy Minimum Description Length (LMDL) and the pSeudo Lossy
Minimum Description Length (SLMDL) Estimators are

θ̂LMDL

n ≡ arg min
θ∈Θ

[− log Qθ(B(Xn, D)) + $n(θ)],

θ̃SLMDL

n ≡ arg min
θ∈Θ

[nR(P̂Xn, Qθ, D) + $n(θ)]

where $n(θ) = o(n) is a given “penalty function”

LMDL/SLMDL are nice...

The LMDL and SLMDL estimators are consistent in great generality:

Theorem 2: Under weak conditions, as n →∞,

θ̂LMDL

n → θ∗ w.p.1

θ̃SLMDL

n → θ∗ w.p.1

Do LMDL/SLMDL solve the problems of MALL/SMALL?



Illustration: Gaussian example

Consider IID coding distributions Qθ ∼ N(0, θ), θ ∈ (0,∞) , and the
penalty function

$n(θ) =

{
0 if θ = θ0
1
2 log n if θ 0= θ0

where the lower-dimensional set {θ0} ⊂ (0,∞) is declared to be our
“preferred” set

If P ∼ N(0, σ2) and d1(x, y) = (x − y)2 then optimal Q∗ ∼ N(0, θ∗) ,
with

θ∗ = σ2 −D

If θ∗ is indeed in our preferred set (i.e., θ∗ = θ0), we wish to know it in finite
time



Illustration: Gaussian example (contd.)

E.g. σ2 = 1 , D = 0.05

Under the null hypothesis that θ∗ = θ0 ,

0 100 200 300 400 500 600 700 800
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Scaled data size (n/3)

P
a

ra
m

e
te

r 
!

Dotted = {θ = θ∗}, Dashed = SMALL estimator, Solid = SLMDL estimator



Nested Discrete Parametric Families

Setting

• Source distribution P takes values in a finite alphabet A

• Θ parametrizes the simplex of all IID probability distributions on Â = A

• Arbitrary single-letter distortion function

Complexity

• Suppose L1 ⊂ L2 ⊂ ... ⊂ Ls ⊂ Θ are increasingly complicated “mod-
els”, and k1 < k2 < . . . < ks = kmax are the corresponding complexity
coefficients

• Preference for simpler models is expressed by using the penalty

$n(θ) = k(θ) log n

where
k(θ) ≡ min{ki : θ ∈ Li}

is the index of the simplest Li containing θ



Lossy MDL works

L3

L1

L2

Theorem 3: Under reasonable restrictions on P and if k(θ∗) < kmax ,

1. θ̃SMALL

n /∈ Lk(θ∗) i.o. w.p.1

2. θ̃SLMDL

n ∈ Lk(θ∗) eventually w.p.1

3. θ̂LMDL

n ∈ Lk(θ∗) eventually w.p.1



Model Identification: Outline of Proof

Step 1. Let Qθ∗(β) be the optimal coding distribution for Pβ

Then θ̃SMALL

n = θ∗(β̂)

Step 2. θ∗(β̂) − θ∗(β) is Taylor expanded, justified by repeated uses of
Implicit Function Theorem

Step 3. Multivariate LIL is applied to obtain

[θ̃SMALL

n − θ∗]j ≈
√

log log n

n
for each coordinate j

This gives Part 1: “SMALL fluctuates forever”

Step 4. A Taylor expansion of R̂(θ) = nR(P̂Xn, Qθ, D) gives

R̂(θ∗)− R̂(θ̃SMALL

n ) ≈ log log n eventually w.p.1

Step 5. A sample path argument yields Part 2; approximation yields Part 3



Remarks

• Our estimator “finds” the optimal model class in finite time with any
penalty function of form k(θ)c(n), as long as

c(n) = o(1) and
log log n

c(n)
= o(1)

• Penalty of form k(θ)
2 log n has total description length motivation

• Analogous to the findings of Hannan–Quinn ’79 and Rissanen in classical
estimation / lossless coding context

• State-of-the-art algorithms for compression (such as Gray’s Gaussian mix-
ture vector quantizers) have associated model selection problems

• The idea of lossy MDL has been used for clustering by MDHW ’07 and
YWMS ’08

• The plug-in estimator for Shannon’s r.d.f. R(P, D) is seen to be accu-
rate

• These results are initial illustrations; the ideas are very general



Conclusions

• We proposed maximum likelihood and MDL-type estimators for the pur-
pose of finding good lossy codes

• These estimators are consistent (i.e., they eventually yield optimal codes)

• Lossy MDL has better code selection properties than lossy MLE

• Theoretical framework for lossy coding via its statistical interpretation

◦ − ◦ − ◦



·

Extras

◦ − ◦ − ◦



Lossy MDL Proof (details)

Step 5. The sample path argument:

Let
l(θ) = R̂(θ) + k(θ) log n

be the “description length” that is minimized to obtain SLMDL estimator

For n such that k(θ̃SMALL

n ) ≤ k(θ∗) ,

k(θ̃SLMDL

n ) ≤ k(θ̃SMALL

n ) ≤ k(θ∗)

For n such that k(θ̃SMALL

n ) > k(θ∗) ,

l(θ̃SLMDL

n ) ≤ l(θ∗)

< R̂(θ̃SMALL

n ) + δ log n + k(θ∗) log n

≤ R̂(θ̃SLMDL

n ) + [k(θ∗) + δ] log n

(1)

so that k(θ̃SLMDL

n ) < k(θ∗) + δ eventually w.p.1



Additional Comments

Why not estimate P first and then use Q∗ for that P ?

• Goal is to finding good code from available family, Q∗ may not be in
family

• Optimal coding distribution may not be a continuous function of P

• R(P, D) very hard to compute, let alone Q∗(P, D)


