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Outline

e The Problem: Lossy Data Compression

e Codes as Probability Distributions

e Selecting good codes as an estimation problem

e Proposing new estimators based on “lossy likelihood"
e Consistency of proposed estimators

e MLE/MDL Dichotomy + Examples

e Comments and conclusions



The Problem: Data Compression

Data X" = (Xl,XQ,...,Xn) in A"
Quantized version X" = (X’l, X, ... ,Xn) in discrete C,, C A"
Binary codeword for X" is a binary string e,(X") (e.g., 010010)

Goal

Find an efficient and approximate representation

for X"

— 0010111010110
101101000 ..




“Efficient” and “Approximate”

Efficient
Codelength L, (X") is the # of bits in e,(X")
We wish to minimize the codelength per symbol

Approximate

Distortion function  d,(z",y") = %2?21 di(z;, y;)

= A=1{0,1} di(2,y) = Loy
:A:R d1<$7y>:<x_y)2

Examples:

We wish to keep the distortion small



“Efficient” and “Approximate”

Efficient
Codelength L, (X") is the # of bits in e,(X")

We wish to minimize the codelength per symbol

Approximate
Distortion function  d,(z",y") = %Z;Ll di(x;, y;)

Distortion ball  B(z", D) := {y" e A" d,(z",y") < D}

A code operates at distortion level D if
" = qu(2") € B(z",D) forall 2" e A"



Reminder: Classical Estimation and Data
Compression

1. Probability Distributions correspond to (Lossless) Codes
Ln<$n> ~ — log Qn(xn>
~+  Maximum Likelihood is Minimum Codelength

2. Log likelihood ratios per symbol converge to a relative entropy
~+  Consistency of the MLE

3. Model too big or too small creates major problems
~+ Do not know which class of codes to pick

4. Minimaizing description length
~~+ Total description requires description of the selected code
~> Penalized MLE also controls overfitting

Lossless data compression suggests a way to think about estimation and
model selection



Lossy Codes as Probability Distributions

Recall L, (x") is the codelength in bits used to represent x"

For lossy codes, L, (X"™) ~ —log Qn(B(X", D))

Why? (K&Z'02)

e 2-Lny") " if 4™ is a codeword
@nly") o {O otherwise
Then for all z" :
Lu(@") = Lu(@") = —logQu(i") > —logQ,(B(z",D)) bits

with equality if the codewords are D-separated



Random Code Construction

Construction
Given (),

1. Generate a random codebook by drawing independent strings using (),
YU o Y"e)  Y"@)
2. The quantizer maps the data X" to the first D-close match X" =
Y"™(W,), where
W, =min{i : d,(X",Y"(7)) < D}

3. The encoder represents X" by IV, written in binary

Performance

For any process { X,,} and any reasonable sequence of probability distri-

butions (),, on A", the code constructed in this way operates at distortion
level D, and its codelength satisfies (K&Z'02)

L,(X") < —log@Q,(B(X", D))+ 2logn bits, eventually, w.p.1



Fundamental limits and a generalized AEP

Asymptotic Equipartition Property (AEP)

If the process { X} ~ P is lID, the (lossless) compression performance
w.r.t any |ID sequence of distributions {Q)"} is given by

1
——logQ"(X") — H(P)+ D(P||Q) bits/symbol, as n — oo, w.p.1
n

where H is entropy, and D is relative entropy or Kullback-Leibler distance

A Generalized AEP (L&S'97, Y&K'98, Y&Z'99, D&K'98)

If the process {X,,} ~ P is stationary and ergodic, and d,, is a single-
letter distortion function, the compression performance w.r.t any sequence
of “nice” distributions {Q,,} = Q is given by

1
- 1Og Qn<B<Xn7 D)) — R(R Qa D)
n
bits/symbol, as n — oo, w.p.1

where the rate function R(P,Q, D) is well-defined



Representations of the rate function

Information-theoretic representation

When a code based on () is used to encode process based on P is

R(P.Q.D) = i D(W|[P x Q)
where the inf is taken over all W such that (X,Y) ~ W satisfies X ~ P
and Fp(X,Y) < D.

Large deviations representation

R(P,Q, D) is the convex dual in the last argument of
AP, Q,\) = Ep [log EQMX:Y)] |
i'e" R(P7 Q7 D) — Sup)\SOP\D o A(Pa Qa A)]



What is a good code?

The IID Case

Lossless coding

Lossy coding

minimizes H(P) + D(P||Q)

Want a code based on the (), that

Want a code based on “the” (), that
minimizes R(P,Q, D)

distribution P

The optimal (), is true process

For D > 0, optimal (), achieves
Shannon's r.d.f. R(P,D) =
infg R(P,Q, D)

Selecting a good code is like estimat-
ing a process distribution from data

Selecting a good code is an indirect
estimation problem

Goal: Restated

Approximate the performance of the optimal coding distribution (), ,

i.e., find () that yields code-lengths

L,(X") = —logQ"(B(X",D)) bits
close to those of the optimal “lossy Shannon code”:

Li(X") = —logQ!(B(X",D)) bits




Coding with P known

Suppose the data X7 is IID, and its distribution P is known.

Let (), achieve

Ky(D) 2 inf B~ log Q(B(X", D))

Then a code based on @,  (K&Z'02)
— is competitively optimal
— asymptotically achieves the rate R(P, D) = infg R(P,Q, D)
— no other code can have a better rate

— asymptotically behaves like a code based on ()" , where

R(P,D)= R(P,Q., D)



Compression and Statistics

Our problem is code selection, not estimating a true distribution

Yet we observe:

Code (L) Probability distribution (@)

Classes of codes Statistical models {Qy : 0§ € ©}

Code selection Estimation : find optimal 6* €
© (i.e., one which minimizes
R<Pa Q97 D))

Code class selection Model selection




Coding with Unknown P

Definition
Choose a parametric family of probability distributions {Qy : 6 € O}
corresponding to a convenient class of codes

The lossy likelihood is Q3 (B(X™, D)) (NOT like a traditional likelihood!)

The lossy version of the negative log likelihood function is

LL(#; X") = —log Qy(B(X", D))

An equivalent notion

The codelength can be approximated using the empirical distribution Pyn
of the data (D&K'98, Y&Z'98, M&K'04) :

—log Qy(B(X", D)) = nR<an, Q. D)‘I—% logn+O(1) eventually w.p.1
This suggests that the empirical rate function
R(0; X™) = nR(Px», Qy, D)
can be used in place of LL(6; X")



mile-marker

What we have:

~> A characterization of the optimal coding distribution Qg+ as that achiev-
ing
inf R(P, QQ, D)
0coO

~» A notion (in fact, two) of lossy likelihood for parametric families of
codes / distributions

What we want:

~+ Ways to estimate 6*

What can we learn from classical theory?

~ Maximum likelihood and related ideas



The MALL and SMALL Estimators

Choose a parametric family of probability distributions {Qy : 6 € O}
corresponding to a convenient class of codes

Definitions
The MAximum Lossy Likelihood (MALL) and pSeudo-MALL (SMALL)

estimators are

0" = arg min[— log Q¢(B(X™, D))]
ASS

" = arg min R(Pxn, Q, D)
0cO



The MALL and SMALL Estimators

Choose a parametric family of probability distributions {Qy : 6 € O}
corresponding to a convenient class of codes

Definitions
The MAximum Lossy Likelihood (MALL) and pSeudo-MALL (SMALL)

estimators are

QA?“QALL = arg min|— log Qy(B(X", D))]
0cO

" = arg min R(Pxn, Q, D)
0cO

The MALL/SMALL estimators are nice...
The MALL and SMALL estimators are consistent in great generality:

Theorem 1: Under weak conditions, as n — o0,

é,“,”LALL — 0*  w.p.l

g — 0* wop.l



Consistency: Comments on Proof

Key ldea

A uniform, second-order expansion of the empirical rate function:

R(Pxn,Qp, D) = nR(P,Qy, D +Zg ) + O(loglog n)

eventually w.p.1, uniformly in 6

Comments

— Very fine large deviation estimates
— Uses a uniform LIL (A&T'78), based on VC theory
— Technically very hard

— This approach works for [ID case; an even more abstract approach yields
even more general results



The MALL and SMALL Estimators

The MALL/SMALL estimators are nice...
The MALL and SMALL estimators are consistent in great generality

But Problems with MALL/SMALL

e Overfitting

e Not real codes



Lossy MDL Estimators

Definitions

The Lossy Minimum Description Length (LMDL) and the pSeudo Lossy
Minimum Description Length (SLMDL) Estimators are

HA;MDL = arg min[— log Qy(B(X", D)) + £,(6)],

0eO
gt = arg min[nR(Pxn, Qg, D) + £,(6)]
0eO

where £,(0) = o(n) is a given “penalty function”



Lossy MDL Estimators

Definitions

The Lossy Minimum Description Length (LMDL) and the pSeudo Lossy
Minimum Description Length (SLMDL) Estimators are

é;MDL = arg min|— log Qg(B(X", D)) + £,(0)],

0eO
gt = arg min[nR(Pxn, Qg, D) + £,(6)]
0eO

where £,(0) = o(n) is a given “penalty function”

LMDL/SLMDL are nice...

The LMDL and SLMDL estimators are consistent in great generality:

Theorem 2: Under weak conditions, as n — o0,

g — 0% w.p.l

gt — 0* wop.l

Do LMDL/SLMDL solve the problems of MALL/SMALL?



lllustration: Gaussian example

Consider 1ID coding distributions Q9 ~ N(0,0), 6 € (0,00), and the
penalty function

J0 if 0 =6,
tn(6) = { logn if 6 +# 6,

where the lower-dimensional set {6y} C (0, 00) is declared to be our
“preferred” set

If P~ N(0,0%) and di(z,y) = (x — y)? then optimal Q. ~ N(0,6%),
with
0*=0>—D

If 6% is indeed in our preferred set (i.e., 8* = 6), we wish to know it in finite
time



lllustration: Gaussian example (contd.)

Eg o2=1, D=0.05
Under the null hypothesis that 6* = 6,
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Dotted = {6 = *}, Dashed = SMALL estimator, Solid = SLMDL estimator



Nested Discrete Parametric Families

Setting

e Source distribution P takes values in a finite alphabet A
e O parametrizes the simplex of all [ID probability distributions on A=A

e Arbitrary single-letter distortion function
Complexity

e Suppose L1 C Ly C ... C Ly C O are increasingly complicated “mod-
els’", and k1 < ky < ... < kg = k. are the corresponding complexity
coefficients

e Preference for simpler models is expressed by using the penalty
(,(0) = k(0)logn

where
k(0) = min{k; : 0 € L;}

is the index of the simplest L; containing 6



Lossy MDL works

Theorem 3: Under reasonable restrictions on P and if k(0%) < Kpax,

1. é%MALL gé Lk(@*) 1.0. Wp].
2. éf;MDL € Ly(p+) eventually w.p.1

3. HA;LMDL € Ly(p+) eventually w.p.1



Model Identification: Outline of Proof

Step 1. Let Qp+(3) be the optimal coding distribution for Pg

AN

Then 6 = 6*(3)

AN

Step 2. 6*(B) — 6*(3) is Taylor expanded, justified by repeated uses of
Implicit Function Theorem

Step 3. Multivariate LIL is applied to obtain

loglogn

[é;LMALL . 8*]] ~

for each coordinate
n

This gives Part 1: “SMALL fluctuates forever”
Step 4. A Taylor expansion of R(0) = nR(Pxn, Qy, D) gives
R(0%) — R(0°"*) ~ loglog n eventually w.p.1

Step 5. A sample path argument yields Part 2; approximation yields Part 3



Remarks

e Our estimator “finds” the optimal model class in finite time with any
penalty function of form k(f)c(n), as long as

log logn
c(n) =o0(1) and o) = o(1)
e Penalty of form @logn has total description length motivation

e Analogous to the findings of Hannan—Quinn '79 and Rissanen in classical
estimation / lossless coding context

e State-of-the-art algorithms for compression (such as Gray’'s Gaussian mix-
ture vector quantizers) have associated model selection problems

e The idea of lossy MDL has been used for clustering by MDHW '07 and
YWMS '08

e The plug-in estimator for Shannon’s r.d.f. R(P, D) is seen to be accu-
rate

e These results are initial illustrations; the ideas are very general



Conclusions

e We proposed maximum likelihood and MDL-type estimators for the pur-
pose of finding good lossy codes

e These estimators are consistent (i.e., they eventually yield optimal codes)
e Lossy MDL has better code selection properties than lossy MLE

e Theoretical framework for lossy coding via its statistical interpretation

© — O — O



EXTRAS

o — O — O



Lossy MDL Proof (details)

Step 5. The sample path argument:

Let

AN

[(6) = R(0) + k(0)logn
be the “description length” that is minimized to obtain SLMDL estimator

For n such that k(62+) < k(6%),
k) < K) < KO

For n such that k(6°") > k(6*),
0

15) < 1(6°)
< R(6™™) + §logn + k(6)log n (1)
< R(6™™) + [k(0%) 4 6] logn

il
so that  k(6°*™) < k(6*) + 6 eventually w.p.1



Additional Comments

Why not estimate P first and then use ()* for that P?
e Goal is to finding good code from available family, )* may not be in
family
e Optimal coding distribution may not be a continuous function of P

e R(P, D) very hard to compute, let alone Q*(P, D)



