Compression of Quantum Mixed State Sources

Emina Soljanin
Bell Labs, visiting EPFL

UMLV\&EPFL Entropy Workshop
Lausanne, September 2008

A Classical Source of Information

- Discrete: produces sequences of letters.
- Letters belong to a finite alphabet X.
- Memoryless: each letter is produced independently.
- Probability of letter a is P_{x}.
- Example: coin tossing with $X=\{\mathrm{H}, \mathrm{T}\}$.
- Shannon Entropy: $-\sum_{x} P_{x} \log P_{x}$

A Quantum Source of Information

- Quantum letters are represented as unit-length vectors in \mathcal{H}_{d}.
- A qubit is a vector in \mathcal{H}_{2}.
- Example: Alphabet $X=\{0,1,2,3\}$ mapped onto 4 qubits

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=\alpha_{0}\left|e_{0}\right\rangle+\beta_{0}\left|e_{1}\right\rangle \quad\left|\psi_{1}\right\rangle=\alpha_{1}\left|e_{0}\right\rangle+\beta_{1}\left|e_{1}\right\rangle \\
& \left|\psi_{2}\right\rangle=\alpha_{2}\left|e_{0}\right\rangle+\beta_{2}\left|e_{1}\right\rangle \quad\left|\psi_{3}\right\rangle=\alpha_{3}\left|e_{0}\right\rangle+\beta_{3}\left|e_{1}\right\rangle .
\end{aligned}
$$

where $\left|e_{0}\right\rangle$ and $\left|e_{1}\right\rangle$ are the basis vectors of 2D space \mathcal{H}_{2} :

$$
\left|e_{0}\right\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left|e_{1}\right\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- We will deal with (sequences of) qubits, WOLG.

The Density Matrix and Entropy

- Source density matrix:

$$
\rho=\sum_{a \in x} P_{x} \underbrace{\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right.}_{\rho_{x}} .
$$

The Density Matrix and Entropy

- Source density matrix:

$$
\rho=\sum_{a \in X} P_{x} \underbrace{\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|}_{\rho_{x}} .
$$

- Von Neumann entropy of the source:

$$
\begin{aligned}
S(\rho) & =-\operatorname{Tr} \rho \log \rho \\
& =-\sum_{i} \lambda_{i} \log \lambda_{i},
\end{aligned}
$$

where λ_{i} are the eigenvalues of ρ.

THE MB EXAMPLE

$$
\left.\begin{array}{rlr}
X & =\{1,2,3\} \quad P_{1}=P_{2}=P_{3}=1 / 3 \\
\rho & =\frac{1}{3}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{1}{3}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\frac{1}{3}\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right| \\
& =\frac{1}{2} \mathrm{I} \\
S(\rho) & =1 & \left|\psi_{3}\right\rangle=\left[\begin{array}{c}
1 \\
0
\end{array}\right] \\
-\sqrt{3} / 2
\end{array}\right] \quad\left|\psi_{2}\right\rangle=\left[\begin{array}{c}
-1 / 2 \\
\sqrt{3} / 2
\end{array}\right]
$$

Vector Sequences

- Source vector-sequence (state)

$$
\left|\Psi_{x}\right\rangle=\left|\psi_{x_{1}}\right\rangle \otimes\left|\psi_{x_{2}}\right\rangle \otimes \cdots \otimes\left|\psi_{x_{n}}\right\rangle, \quad x_{i} \in X,
$$

appears with probability $\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{x}_{1}} \cdot \mathrm{P}_{\mathrm{x}_{2}} \cdot \ldots \cdot \mathrm{P}_{\mathrm{x}_{n}}$.

- Typical states $\left|\Psi_{x}\right\rangle \in \mathcal{H}^{2^{n}}$ correspond to typical sequences χ.
- There are approximately $2^{\mathrm{nH}}{ }^{(\mathrm{P})}$ typical states.

Lossless Quantum Data Compression

- Source vector-sequence $\left|\Psi_{x}\right\rangle$ is in $\mathcal{H}^{2^{n}},\left(x \in X^{n}\right)$
- Vector $\left|\Psi_{x}\right\rangle$ is compressed and then reproduced as $\left|\widehat{\Psi_{x}}\right\rangle$.
- Fidelity between $\left|\Psi_{x}\right\rangle$ and $\left|\widehat{\Psi_{x}}\right\rangle$:

$$
\left.F\left(\left|\Psi_{x}\right\rangle, \widehat{\Psi_{x}}\right\rangle\right)=\left|\left\langle\Psi_{x} \mid \widehat{\Psi_{x}}\right\rangle\right|^{2}
$$

Lossless Quantum Data Compression

- Source vector-sequence $\left|\Psi_{x}\right\rangle$ is in $\mathcal{H}^{2^{n}},\left(x \in X^{n}\right)$
- Vector $\left|\Psi_{x}\right\rangle$ is compressed and then reproduced as $\left|\widehat{\Psi_{x}}\right\rangle$.
- Fidelity between $\left|\Psi_{x}\right\rangle$ and $\left|\widehat{\Psi_{x}}\right\rangle$:

$$
F\left(\left|\Psi_{\chi}\right\rangle,\left|\widehat{\Psi_{x}}\right\rangle\right)=\left|\left\langle\Psi_{x} \mid \widehat{\Psi_{x}}\right\rangle\right|^{2}
$$

- For asymptotically lossless compression, the average fidelity

$$
\overline{\mathrm{F}}=\sum_{x \in X^{n}} \mathrm{P}(x) \mathrm{F}\left(\left|\Psi_{x}\right\rangle,\left|\widehat{\Psi_{x}}\right\rangle\right)
$$

should approach 1 as $n \rightarrow \infty$.

Typical States and Visible Compression

- Visible: the encoder Alice knows sequence χ.
- She can compress with perfect fidelity the typical states.
- Instead of \mathfrak{n} qubits, she can transmit $\mathrm{nH}(\mathrm{P})$ bits.
- The decoder Bob prepares $\left|\Psi_{x}\right\rangle$ as $\left|\widehat{\Psi_{x}}\right\rangle$ for typical \boldsymbol{x}.

Typical States and Visible Compression

- Visible: the encoder Alice knows sequence χ.
- She can compress with perfect fidelity the typical states.
- Instead of n qubits, she can transmit $n H(P)$ bits.
- The decoder Bob prepares $\left|\Psi_{\chi}\right\rangle$ as $\left|\widehat{\Psi_{x}}\right\rangle$ for typical \boldsymbol{x}.
- Can $\left|\Psi_{x}\right\rangle$ be compressed to fewer than $\mathrm{nH}(\mathrm{P})$ qubits so that
- the compression is asymptotically lossless
- Alice does not know x
- Alice and Bob perform legal quantum operations

What Can be Done - Evolution (Reversible)

State ρ can be transformed to another state $\mathcal{E}(\rho)$ only by a physical process consistent with the lows of quantum theory:

What Can be Done - Evolution (Reversible)

State ρ can be transformed to another state $\mathcal{E}(\rho)$ only by a physical process consistent with the lows of quantum theory:

- unitary evolution:

$$
\mathcal{E}(\rho)=\mathrm{U}_{\mathrm{L}} \mathrm{U}^{\dagger} \text { where } \mathrm{UU}^{\dagger}=\mathrm{I},
$$

What Can be Done - Evolution (Reversible)

State ρ can be transformed to another state $\mathcal{E}(\rho)$ only by a physical process consistent with the lows of quantum theory:

- unitary evolution:

$$
\mathcal{E}(\rho)=\mathrm{U}_{\mathrm{L}} \mathrm{U}^{\dagger} \text { where } \mathrm{UU}^{\dagger}=\mathrm{I},
$$

- completely positive, trace-preserving map:

$$
\mathcal{E}(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger} \text { where } \sum_{k} E_{k}^{\dagger} E_{k}=I .
$$

What Can be Done - Measurement (Irreversible)

- Von Neumann:
- A set of pairwise orthogonal projection operators $\left\{\Pi_{i}\right\}$.
- They form a complete resolution of the identity: $\sum_{i} \Pi_{i}=I$.
- $\left|\psi_{j}\right\rangle$ is measured as $\Pi_{i}\left|\psi_{j}\right\rangle$ with probability $\left\langle\psi_{j}\right| \Pi_{i}\left|\psi_{j}\right\rangle$.

What Can be Done - Measurement (Irreversible)

- Von Neumann:
- A set of pairwise orthogonal projection operators $\left\{\Pi_{i}\right\}$.
- They form a complete resolution of the identity: $\sum_{i} \Pi_{i}=I$.
- $\left|\psi_{j}\right\rangle$ is measured as $\Pi_{i}\left|\psi_{j}\right\rangle$ with probability $\left\langle\psi_{\mathfrak{j}}\right| \Pi_{\mathfrak{i}}\left|\psi_{\mathfrak{j}}\right\rangle$.
- Positive Operator-Valued Measure (POVM):
- Any set of positive-semidefinite operators $\left\{E_{i}\right\}$.
- They form a complete resolution of the identity: $\sum_{i} E_{i}=I$.
- $\left|\psi_{j}\right\rangle$ is measured as $E_{i}\left|\psi_{j}\right\rangle$ with probability $\left\langle\psi_{j}\right| E_{i}\left|\psi_{j}\right\rangle$.

What Cannot be Done?

What Cannot be Done?

- The No-Cloning Principle:

There is no physical process that leads to an evolution

$$
|\phi\rangle \otimes|s\rangle \rightarrow|\phi\rangle \otimes|\phi\rangle
$$

where $|\phi\rangle$ is an arbitrary state and $|s\rangle$ is a fixed state.

What Cannot be Done?

- The No-Cloning Principle:

There is no physical process that leads to an evolution

$$
|\phi\rangle \otimes|s\rangle \rightarrow|\phi\rangle \otimes|\phi\rangle
$$

where $|\phi\rangle$ is an arbitrary state and $|s\rangle$ is a fixed state.

- The No-Broadcasting Principle - generalization of no-cloning.

What Cannot be Done?

- The No-Cloning Principle:

There is no physical process that leads to an evolution

$$
|\phi\rangle \otimes|s\rangle \rightarrow|\phi\rangle \otimes|\phi\rangle
$$

where $|\phi\rangle$ is an arbitrary state and $|\mathrm{s}\rangle$ is a fixed state.

- The No-Broadcasting Principle - generalization of no-cloning.
- The No-Deleting Principle:

There is no physical process that leads to an evolution

$$
|\phi\rangle \otimes|\phi\rangle \rightarrow|\phi\rangle \otimes|\mathrm{s}\rangle
$$

where $|\phi\rangle$ is an arbitrary state and $|\mathrm{s}\rangle$ is a fixed state.

Typical Subspace

- Typical states $\left|\Psi_{\chi}\right\rangle \in \mathcal{H}^{2^{n}}$ "live" in the typical subspace Λ_{n}.

- The dimension of Λ_{n} is approximately $2^{n S(\rho)}$.

The Typical Subspace Λ_{n}

- We represent the source density matrix

$$
\rho=\sum_{a \in X} P(x)\left|\psi_{x}\right\rangle\left\langle\psi_{x}\right|
$$

in terms of its eigenvectors and eigenvalues:

$$
\rho=\lambda_{0}\left|\varphi_{0}\right\rangle\left\langle\varphi_{0}\right|+\lambda_{1}\left|\varphi_{1}\right\rangle\left\langle\varphi_{1}\right| .
$$

- Note that $\lambda=\left\{\lambda_{0}, \lambda_{1}\right\}$ is a PD on $\{0,1\}$ and $\left\langle\varphi_{0} \mid \varphi_{1}\right\rangle=0$.
- T_{λ}^{n} denotes the set of λ-typical sequences.
- Λ_{n} is the subspace spanned by $\left|\Phi_{z}\right\rangle, z \in T_{\lambda}^{n}$.

Compression by Measurement

- Measurement is defined by $\Pi+\Pi^{\perp}=I_{2^{n}}$ where
- $\Pi=\sum_{z \in T_{\lambda}^{n}}\left|\Phi_{z}\right\rangle\left\langle\Phi_{z}\right|$ is the projector to Λ_{n}.
- $\Pi^{\perp}=\sum_{z_{\in\{0,1\}^{n}} \backslash \mathrm{~T}_{\lambda}^{n}}\left|\Phi_{z}\right\rangle\left\langle\Phi_{z}\right|$ is the projector to Λ_{n}^{\perp}.
- State after measurement:
- $\Pi \cdot\left|\Psi_{x}\right\rangle$ with probability $\left.\left|\left\langle\Psi_{x}\right| \Pi\right| \Psi_{x}\right\rangle\left.\right|^{2}$
- $\Pi^{\perp} \cdot\left|\Psi_{x}\right\rangle$ with probability $\left.\left|\left\langle\Psi_{x}\right| \Pi^{\perp}\right| \Psi_{x}\right\rangle\left.\right|^{2}$

Compression by Measurement

- Measurement is defined by $\Pi+\Pi^{\perp}=I_{2^{n}}$ where
- $\Pi=\sum_{z_{\in \top_{\lambda}^{n}}^{n}}\left|\Phi_{z}\right\rangle\left\langle\Phi_{z}\right|$ is the projector to Λ_{n}.
- $\Pi^{\perp}=\sum_{z \in\{0,1\}^{n} \backslash T_{\lambda}^{n}}\left|\Phi_{z}\right\rangle\left\langle\Phi_{z}\right|$ is the projector to Λ_{n}^{\perp}.
- State after measurement:
- $\Pi \cdot\left|\Psi_{x}\right\rangle$ with probability $\left.\left|\left\langle\Psi_{x}\right| \Pi\right| \Psi_{x}\right\rangle\left.\right|^{2}$
- $\Pi^{\perp} \cdot\left|\Psi_{x}\right\rangle$ with probability $\left.\left|\left\langle\Psi_{x}\right| \Pi^{\perp}\right| \Psi_{x}\right\rangle\left.\right|^{2}$
- Expected probability of outcome $\Pi \cdot\left|\Psi_{x}\right\rangle$:

$$
\begin{aligned}
\left.\sum_{\boldsymbol{x} \in X^{n}} \mathrm{P}(\boldsymbol{x})\left|\left\langle\Psi_{x}\right| \Pi\right| \Psi_{x}\right\rangle\left.\right|^{2} & \geqslant-1+2 \operatorname{Tr}\left(\Pi \rho^{\otimes n}\right) \\
& =-1+2 \operatorname{Tr}\left\{\left[\sum_{z \in T_{\lambda}^{n}}\left|\Phi_{z}\right\rangle\left\langle\Phi_{z}\right|\right] \cdot\left[\sum_{z \in\{0,1\}^{n}} \lambda(z)\left|\Phi_{z}\right\rangle\left\langle\Phi_{z}\right|\right]\right\} \\
& =1-2 \epsilon_{n}
\end{aligned}
$$

Sources of Mixed Quantum States

- To a source letter $x \in \mathcal{X}$ corresponds quantum state $\left|\psi_{y}\right\rangle, y \in \mathcal{y}$, with probability $W(y \mid x)$.
- Note that outputs are distributed as

$$
Q(y)=\sum_{x \in X} P(x) W(y \mid x) .
$$

Sources of Mixed Quantum States

- To a source letter $x \in \mathcal{X}$ corresponds quantum state $\left|\psi_{y}\right\rangle, y \in \mathcal{Y}$, with probability $W(y \mid x)$.
- Note that outputs are distributed as

$$
\mathrm{Q}(\mathrm{y})=\sum_{x \in X} \mathrm{P}(x) W(y \mid x) .
$$

- The density matrix corresponding to x is

$$
\rho_{x}=\sum_{b \in y} W(y \mid x)\left|\psi_{y}\right\rangle\left\langle\psi_{y}\right|, x \in X
$$

- Compression is asymptotically lossless when

$$
\sum_{\boldsymbol{x} \in X^{n}} \mathrm{P}(\boldsymbol{x}) \mathrm{F}\left(\boldsymbol{\rho}_{x}, \hat{\boldsymbol{\rho}}_{x}\right) \rightarrow 1 \text { as } n \rightarrow \infty .
$$

Sources of Mixed Quantum States

- Produce sequences of sources, e.g., coins:

Sources of Mixed Quantum States

- Produce sequences of sources, e.g., coins:

- A quantum example:

$$
\begin{aligned}
& \rho_{1}=\frac{2}{3}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{1}{3}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right| \\
& \rho_{2}=\frac{1}{3}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\frac{2}{3}\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right| \\
& \rho=\frac{1}{2} \rho_{1}+\frac{1}{2} \rho_{2} \\
&=\frac{1}{3}\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\frac{1}{3}\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\frac{1}{3}\left|\psi_{3}\right\rangle\left\langle\psi_{3}\right| \\
&=\frac{1}{2} \mathrm{I} \\
&\left|\psi_{3}\right\rangle=\left[\begin{array}{c}
-1 / 2 \\
-\sqrt{3} / 2
\end{array}\right]
\end{aligned}
$$

Distances Between Density Matrices ρ and σ

- Uhlman fidelity:

$$
F(\sigma, \omega)=\left\{\operatorname{Tr}\left[(\sqrt{\sigma} \omega \sqrt{\sigma})^{1 / 2}\right]\right\}^{2}
$$

Distances Between Density Matrices ρ and σ

- Uhlman fidelity:

$$
F(\sigma, \omega)=\left\{\operatorname{Tr}\left[(\sqrt{\sigma} \omega \sqrt{\sigma})^{1 / 2}\right]\right\}^{2} .
$$

- Trace distance:

$$
\mathrm{D}(\sigma, \omega)=\frac{1}{2} \operatorname{Tr}|\sigma-\omega|,
$$

$|A|$ denotes the positive square root of $A^{\dagger} A$.

- $1-\mathrm{F}(\sigma, \omega) \leqslant \mathrm{D}(\sigma, \omega) \leqslant \sqrt{1-\mathrm{F}(\sigma, \omega)^{2}}$

Distances Between Density Matrices ρ and σ

- Uhlman fidelity:

$$
F(\sigma, \omega)=\left\{\operatorname{Tr}\left[(\sqrt{\sigma} \omega \sqrt{\sigma})^{1 / 2}\right]\right\}^{2} .
$$

- Trace distance:

$$
\mathrm{D}(\sigma, \omega)=\frac{1}{2} \operatorname{Tr}|\sigma-\omega|,
$$

$|A|$ denotes the positive square root of $A^{\dagger} A$.

- $1-F(\sigma, \omega) \leqslant D(\sigma, \omega) \leqslant \sqrt{1-F(\sigma, \omega)^{2}}$
- Frobenius (Hilbert-Schmidt)?

Distances Between PD's - An Example

- $\mathcal{A}_{\mathrm{N}}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{N}}\right\}$
- $N=2^{\mathrm{K}}$ and $\mathrm{n}=2^{\mathrm{k}}$, with $\mathrm{k} / \mathrm{K}=\mathrm{c}<1$.
- Distributions P and Q :

$$
P\left(a_{i}\right)=\left\{\begin{array}{cc}
1 / n, & 1 \leqslant i \leqslant n \\
0 & n+1 \leqslant i \leqslant N
\end{array} \text { and } Q\left(a_{i}\right)=\frac{1}{N}\right.
$$

- $\mathrm{Q}\left(\left\{\mathrm{a}_{\mathrm{n}+1}, \ldots, \mathrm{a}_{\mathrm{N}}\right\}\right) \rightarrow 1$ as $k, \mathrm{~K} \rightarrow \infty$.
$-\frac{1}{2} \sum_{i}\left|\mathrm{P}\left(\mathrm{a}_{\mathrm{i}}\right)-\mathrm{Q}\left(\mathrm{a}_{\mathrm{i}}\right)\right| \rightarrow 1$ and $\sum_{i}\left|\mathrm{P}\left(\mathrm{a}_{\mathrm{i}}\right)-\mathrm{Q}\left(\mathrm{a}_{\mathrm{i}}\right)\right|^{2} \rightarrow 0$.

Sources of Sources

- Produce sequences of sources, e.g., coins:

- Example: $\mathrm{P}\left(\mathrm{C}_{1}\right)=\mathrm{P}\left(\mathrm{C}_{2}\right)=1 / 2$ and $w=2 / 3$.
- Sequences:

C_{1}	C_{1}	C_{2}	C_{1}	C_{2}	C_{2}
H	H	H	T	T	T
H	T	H	H	T	T
H	T	T	H	T	H

Sequences of Sources

- For each source (coin) x in X, we have a probability distribution $W(\cdot \mid x)$ over y of letters (faces).
- For each sequence of coins x in X^{n}, we have a probability distribution $W^{n}(\cdot \mid x)$ over y^{n}.
- Alice has coins x and sends N bits to Bob.
- Bob prepares faces y with probability $\widehat{W}^{n}(y \mid x)$.
- $\mathbf{W}^{\mathrm{n}}(\cdot \mid \boldsymbol{x})$ is reproduced as $\widehat{W}^{\mathrm{n}}(\cdot \mid \boldsymbol{x})$.

Compression by Sending Classical Information

- Fidelity between $W^{n}(\cdot \mid x)$ and $\widehat{W}^{n}(\cdot \mid x)$

$$
F\left(W^{n}(\cdot \mid x), \widehat{W}^{n}(\cdot \mid x)\right)=\sum_{y \in y^{n}} \sqrt{W^{n}(y \mid x) \cdot \widehat{W}^{n}(y \mid x)}
$$

is known as the Bhattacharyya-Wooters overlap.

- Compression fidelity

$$
\sum_{x \in X^{n}} P(x) F\left(W^{n}(\cdot \mid x), \widehat{W}^{n}(\cdot \mid x)\right)
$$

should approach 1 as $n \rightarrow \infty$.

Compression Algorithm for a Typical χ

- Alice and Bob
- have identical random number generators
- which they use to form a list of N_{l} typical $y s$.
- If $N_{l}>2^{n I(P, W)}$, then with high probability there will be at least one \boldsymbol{y} on the list which is conditionally typical with respect to \boldsymbol{x}.
- Alice sends $\log N_{l}$ bits to Bob identifying \mathbf{y}.
- Compression rate $\log \mathrm{N}_{\mathrm{l}} / \mathrm{n}$ approaches $\mathrm{I}(\mathrm{P}, \mathrm{W})$.

Proof Idea

- $\mathbf{W}^{\mathbf{n}}(\cdot \mid \boldsymbol{x})$ is roughly a uniform distribution over $\mathbf{y s}$ that are conditionally typical given \boldsymbol{x}.
- For a typical x, there are about $2^{n H(W / P)}$ such $y s$.
- These ys are typical.
- There are about $2^{\mathrm{nH}(\mathrm{Q})}$ typical ys .
- A randomly chosen \mathbf{y} will be conditionally typical with respect to any typical x with probability of about

$$
\frac{2^{n H(W / P)}}{2^{\mathrm{nH}(Q)}}=\frac{1}{2^{\mathrm{nI}(P, W)}}
$$

A Related Problem

For each Alice's sequence C_{x} of coins,
Bob prepares a predetermined sequence $\mathbf{y}(\boldsymbol{x})$ of faces such that

$$
\begin{aligned}
& \overline{\mathrm{F}}=\sum_{x \in x^{n}} P(x) F_{x \times y}\left(P_{x} W(\cdot \mid \cdot), P_{x, y(x)}\right) \\
& F_{x \times y}\left(P_{x} W(\cdot \cdot), P_{x, y(x)}\right)=\left[\sum_{(x, y) \in x \times y} \sqrt{P_{x}(x) W(y \mid x) \cdot P_{x, y(x)}(x, y)}\right]^{2} \\
&=\left[\sum_{(x, y) \in x \times y} \frac{1}{n} \sqrt{N(x \mid x) W(y \mid x) \cdot N(x, y \mid x, y(x))}\right]^{2} .
\end{aligned}
$$

How large is Bob's codebook?

The Original Quantum Problem

- The compression rate can not go below the Holevo quantity χ :

$$
\chi=\underbrace{-\operatorname{Tr} \rho \log \rho}_{S(\rho)}-\sum_{a \in X} P(a) S\left(\rho_{a}\right)
$$

The Original Quantum Problem

- The compression rate can not go below the Holevo quantity χ :

$$
\chi=\underbrace{-\operatorname{Tr} \rho \log \rho}_{S(\rho)}-\sum_{a \in X} P(a) S\left(\rho_{a}\right)
$$

- I(P,W) is achievable by sending classical information.

The proof uses

1. the equivalence of the UhIman fidelity and the trace distance
2. the strong convexity of the trace distance:

$$
D\left(\sum_{i} p_{i} \omega_{i}, \sum_{i} q_{i} \sigma_{i}\right) \leqslant D\left(\left\{p_{i}\right\},\left\{q_{i}\right\}\right)+\sum_{i} p_{i} D\left(\omega_{i}, \sigma_{i}\right) .
$$

3. the method of types

The Original Quantum Problem

- The compression rate can not go below the Holevo quantity χ :

$$
\chi=\underbrace{-\operatorname{Tr} \rho \log \rho}_{S(\rho)}-\sum_{a \in X} P(a) S\left(\rho_{a}\right)
$$

- I(P,W) is achievable by sending classical information.

The proof uses

1. the equivalence of the UhIman fidelity and the trace distance
2. the strong convexity of the trace distance:

$$
D\left(\sum_{i} p_{i} \omega_{i}, \sum_{i} q_{i} \sigma_{i}\right) \leqslant D\left(\left\{p_{i}\right\},\left\{q_{i}\right\}\right)+\sum_{i} p_{i} D\left(\omega_{i}, \sigma_{i}\right) .
$$

3. the method of types

- Can the gap be closed by qubits or bits?

