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A Classical Source of Information

v

Discrete: produces sequences of letters.

v

Letters belong to a finite alphabet X.

v

Memoryless: each letter is produced independently.

v

Probability of letter a is Py.

v

Example: coin tossing with X ={H, T}.

v

Shannon Entropy: — ) . P log Py



A Quantum Source of Information

» Quantum letters are represented as unit-length vectors in Hq.
» A qubit is a vector in H>.

» Example: Alphabet X ={0, 1, 2, 3} mapped onto 4 qubits

o) = axoleg) + Boler) 1) = xaleg) + Piler)
o) = xoleg) + Boler) Mb3) = asleg) + Bsler).

where |eg) and |e;) are the basis vectors of 2D space H;:

weft] el

» We will deal with (sequences of) qubits, WOLG.



The Density Matrix and Entropy

» Source density matrix:

p= Z Px |1l)x><1l)x|
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The Density Matrix and Entropy

» Source density matrix:

p= Z Px |ll)x><1l)x|

aeX N

» Von Neumann entropy of the source:

S(p) =—Trplogp

==Y Ailoghs,

where A; are the eigenvalues of p.



THE MB EXAMPLE

X = {1,2,3} P;=P,=P3=1/3

p 31b1) (b1l 4 S1b2) (Wal + 5 1s) (s
= 1
~1/2
S(p) = 1 "M:[ —\/5/2]



Vector Sequences

» Source vector-sequence (state)

|\ljx>:|¢x1>®‘¢xz>®"'®|lpxn>x Xi E:X:,

appears with probability Py = Py, - Px, - ... Px,..
» Typical states [W,) € 32" correspond to typical sequences x.

» There are approximately 21 (") typical states.



Lossless Quantum Data Compression

» Source vector-sequence [Wy) is in H?", (x € X™)
> Vector [Wy) is compressed and then reproduced as |‘I’\X>

> Fidelity between [Wy) and [Wy):

F([Wx), (W) = [(Wee W) 2



Lossless Quantum Data Compression

v

Source vector-sequence [Wy) is in H?", (x € X™)

v

Vector [Wy) is compressed and then reproduced as |‘I’:>

Fidelity between [W) and [Wy):

v

F([Wx), (W) = [(Wee W) 2

v

For asymptotically lossless compression, the average fidelity

F= Y PROF(¥), [¥x)

XeXn

should approach 1 as n — .



Typical States and Visible Compression

v

Visible: the encoder Alice knows sequence Xx.

v

She can compress with perfect fidelity the typical states.

v

Instead of n qubits, she can transmit nH(P) bits.

v

The decoder Bob prepares [Wy) as I‘If;> for typical x.



Typical States and Visible Compression

v

Visible: the encoder Alice knows sequence Xx.

v

She can compress with perfect fidelity the typical states.

v

Instead of n qubits, she can transmit nH(P) bits.

v

The decoder Bob prepares [Wy) as I‘If;> for typical x.

v

Can [¥y) be compressed to fewer than nH(P) qubits so that
> the compression is asymptotically lossless
> Alice does not know x

> Alice and Bob perform legal quantum operations



What Can be Done — Evolution (Reversible)

State p can be transformed to another state £(p) only by a

physical process consistent with the lows of quantum theory:
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What Can be Done — Evolution (Reversible)

State p can be transformed to another state £(p) only by a

physical process consistent with the lows of quantum theory:

> unitary evolution:
&(p) = UpUt where UUf =1,
» completely positive, trace-preserving map:

&lp) = ZEkaTk where ZELEk =1
k k



What Can be Done — Measurement (Irreversible)

» Von Neumann:
> A set of pairwise orthogonal projection operators {TT;}.
> They form a complete resolution of the identity: ) ;TT; = L.
> [p;) is measured as TT;[(;) with probability ({;|TTi[\p;).



What Can be Done — Measurement (Irreversible)

» Von Neumann:
> A set of pairwise orthogonal projection operators {TT;}.
> They form a complete resolution of the identity: ) ;TT; = L.
> [p;) is measured as TT;[(;) with probability ({;|TTi[\p;).

» Positive Operator-Valued Measure (POVM):
» Any set of positive-semidefinite operators {E;}.
> They form a complete resolution of the identity: } , E; =1
> [p;) is measured as Ei[ip;) with probability ({;|Ei[;).
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What Cannot be Done?

» The No-Cloning Principle:

There is no physical process that leads to an evolution

[b) @1s) — |d) @ )

where |@) is an arbitrary state and |s) is a fixed state.
» The No-Broadcasting Principle — generalization of no-cloning.

» The No-Deleting Principle:

There is no physical process that leads to an evolution

[b) @) — ) ®1s)

where |¢p) is an arbitrary state and |s) is a fixed state.



Typical Subspace

» Typical states [Wy) € 32" “live" in the typical subspace A,,.
An

W) = [Wy/n) + [Wy )

Ay

» The dimension of A, is approximately 275(°)



The Typical Subspace A,

» We represent the source density matrix

p=) Pyl

aeX

in terms of its eigenvectors and eigenvalues:

P = Aol@o) (ol + A1le1) (@1l

» Note that A ={Ag, A1} is a PD on {0, 1} and {(@ol@1) =0

» T} denotes the set of A-typical sequences.

» A, is the subspace spanned by |®), z € T}.



Compression by Measurement

» Measurement is defined by T+ TT+ = I,n where

> 1= ZZET;\\ |®@,)(®D,| is the projector to A,,.

> T+ = ZZE{O,l}“\T;\‘ |@.)(D,| is the projector to A;.
> State after measurement:

> TT-[W,) with probability [(Wy|[TT[W,)[?

> TT+ - [W,) with probability [(Wy|TT+[W,)[?



Compression by Measurement

» Measurement is defined by T+ TT+ = I,n where

> 1= ZZGT;} |®@,)(®D,| is the projector to A,,.

> T+ = ZZe{o,l}“\T;‘ |@.)(D,| is the projector to A;.
> State after measurement:

> TT-[W,) with probability [(Wy|[TT[W,)[?

> TT+ - [W,) with probability [(Wy|TT+[W,)[?
» Expected probability of outcome TT - [Wy):

> PEWAITTWA )2 > — 1+ 2 Tr(TTp™™)

=—1+2T{| 3 @)@l X Ao @]}

ZeTy Zefo 1y

=1—2e,



Sources of Mixed Quantum States

» To a source letter x € X corresponds

quantum state [y), y € Y, with probability W(ylx).
» Note that outputs are distributed as

ZP W(ylx).
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Sources of Mixed Quantum States

» To a source letter x € X corresponds

quantum state [y), y € Y, with probability W(ylx).

» Note that outputs are distributed as

= 2_PrWlyh).

x€X
» The density matrix corresponding to x is

px = ) Wlyh)hby)(hyl, x € X.
beYy

» Compression is asymptotically lossless when

Z P(x)F(px, Px) — 1 as n — oo.
xexn
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Sources of Mixed Quantum States

» Produce sequences of sources, e.g., coins:

1—w
Cy T

FACES
COINS

Ca H
1—w

» A quantum example:

1= 31W1) (Wal + hb2) (o [b1)
P2 = 5 W2) (Wal + 5hbs) (s

Il
—
(=
=

p=1p1+ ip2
=3 1W1) (W1] + F1b2) (Wal + 513) (W3]

=11 71/2}

—V3/2

[bs) = { V32

[P2) = {71/2}
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Distances Between Density Matrices p and o

» Uhlman fidelity:

Flo,w) = {Tr[(Vowye)?] }2.

» Trace distance:

1
D(o, w) = ETrIwaI,

|A| denotes the positive square root of ATA.
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Distances Between Density Matrices p and o

v

Uhlman fidelity:

Flo,w) = {Tr[(Vowye)?] }2.

Trace distance:

v

1
D(o, w) = 5 Trio— w|,
|A| denotes the positive square root of ATA.
» 1—F(o,w) <D(o,w) <+/1—F(o,w)?

> Frobenius (Hilbert-Schmidt)?



Distances Between PD’s — An Example

v
b
z
Il
.
fa)
-
fo)
Z
Z

v

N = 2K and n = 2%, with k/K =c < 1.

» Distributions P and Q:
1/n, 1<ign 1
P(ai) = and Q(ai) = N
0 n+1<ig<N
» Q{ans1,....,an}) @ 1ask, K — oo.
» 32 :IP(ai) = Q(ai)l — L and Y ;P(ai) — Q(ai)* — 0.



Sources of Sources
» Produce sequences of sources, e.g., coins:

1—w
C T

FACES
COINS

» Example: P(C;) =P(Cy)=1/2 and w =2/3.
» Sequences:

I T
= T
I T
T -
- -
- -



Sequences of Sources

» For each source (coin) x in X,
we have a probability distribution W(-|x) over Y of letters (faces).

» For each sequence of coins x in X™,

we have a probability distribution W™ (-|x) over Y™.
> Alice has coins x and sends N bits to Bob.
» Bob prepares faces y with probability \//V\”(y\x).
» W™ (.|x) is reproduced as Wn(.|x)_



Compression by Sending Classical Information

> Fidelity between W™(-x) and W™ (-|x)

FW™ (), W) = 3y Whlyb) - Wr(yh)
Yeyr

is known as the Bhattacharyya-Wooters overlap.

» Compression fidelity

> PEF(W™(x), W™(-[x))

xXeXxn

should approach 1 as n — .



Compression Algorithm for a Typical x

Alice and Bob

> have identical random number generators

v

> which they use to form a list of Ny typical ys.

If Ny > 2nHPW) “then with high probability there will be at least

v

one Y on the list which is conditionally typical with respect to x.

v

Alice sends log Ny bits to Bob identifying y.

v

Compression rate log N /n approaches I(P, W).



Proof Idea

» W™ (-|x) is roughly a uniform distribution over ys that are
conditionally typical given x.

» For a typical x, there are about 2nH(W/P)

such ys.
» These ys are typical.
» There are about 2""(Q) typical ys.

» A randomly chosen y will be conditionally typical with respect to

any typical x with probability of about

2nH(W/P) 1

onH(Q)  onI(PW)"



A Related Problem

For each Alice's sequence Cyx of coins,

Bob prepares a predetermined sequence y(x) of faces such that

F= Y PO)Fauy(PxW(I) Pxyx))
XeXn

Fray (POWCH) Peyi) =[5 /PebIWh) - Peyinr(xw)]

(x,y)eXxy

Z \/N (xx)W(ylx) - (x,ylx,y(x))r_

(Xy)EDCx%J

How large is Bob's codebook?
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The Original Quantum Problem

» The compression rate can not go below the Holevo quantity x:

x=—Trplogp— Y P(a)S(pa)
S(p) acX

» [(P, W) is achievable by sending classical information.
The proof uses

1. the equivalence of the Uhlman fidelity and the trace distance

2. the strong convexity of the trace distance:

(Zplwl Zq161> < D({pit {ai}) +Zp1 (wy, 07).

3. the method of types

» Can the gap be closed by qubits or bits?



