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A Classical Source of Information

I Discrete: produces sequences of letters.

I Letters belong to a finite alphabet X.

I Memoryless: each letter is produced independently.

I Probability of letter a is Px.

I Example: coin tossing with X = {H, T }.

I Shannon Entropy: −
∑
x Px log Px



A Quantum Source of Information

I Quantum letters are represented as unit-length vectors in Hd.

I A qubit is a vector in H2.

I Example: Alphabet X = {0, 1, 2, 3} mapped onto 4 qubits

|ψ0〉 = α0|e0〉+ β0|e1〉 |ψ1〉 = α1|e0〉+ β1|e1〉

|ψ2〉 = α2|e0〉+ β2|e1〉 |ψ3〉 = α3|e0〉+ β3|e1〉.

where |e0〉 and |e1〉 are the basis vectors of 2D space H2:

|e0〉 =

[
0

1

]
|e1〉 =

[
1

0

]

I We will deal with (sequences of) qubits, WOLG.



The Density Matrix and Entropy

I Source density matrix:

ρ =
∑
a∈X

Px |ψx〉〈ψx|︸ ︷︷ ︸
ρx

.

I Von Neumann entropy of the source:

S(ρ) =− Tr ρ log ρ

= −
∑
i

λi log λi,

where λi are the eigenvalues of ρ.
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THE MB EXAMPLE

|ψ1〉 =

[
1

0

]

|ψ2〉 =

[
−1/2√

3/2

]
d = 2

|ψ3〉 =

[
−1/2

−
√

3/2

]

X = {1, 2, 3} P1 = P2 = P3 = 1/3

ρ = 1
3
|ψ1〉〈ψ1| +

1
3
|ψ2〉〈ψ2| +

1
3
|ψ3〉〈ψ3|

= 1
2
I

S(ρ) = 1



Vector Sequences

I Source vector-sequence (state)

|Ψx〉 = |ψx1
〉 ⊗ |ψx2

〉 ⊗ · · · ⊗ |ψxn
〉, xi ∈ X,

appears with probability Px = Px1
· Px2

· . . . · Pxn
.

I Typical states |Ψx〉 ∈ H2n
correspond to typical sequences x.

I There are approximately 2nH(P) typical states.



Lossless Quantum Data Compression

I Source vector-sequence |Ψx〉 is in H2n
, (x ∈ Xn)

I Vector |Ψx〉 is compressed and then reproduced as |Ψ̂x〉.

I Fidelity between |Ψx〉 and |Ψ̂x〉:

F(|Ψx〉, |Ψ̂x〉) = |〈Ψx|Ψ̂x〉|2

I For asymptotically lossless compression, the average fidelity

F̄ =
∑

x∈Xn

P(x)F(|Ψx〉, |Ψ̂x〉)

should approach 1 as n→ ∞.
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Typical States and Visible Compression

I Visible: the encoder Alice knows sequence x.

I She can compress with perfect fidelity the typical states.

I Instead of n qubits, she can transmit nH(P) bits.

I The decoder Bob prepares |Ψx〉 as |Ψ̂x〉 for typical x.

I Can |Ψx〉 be compressed to fewer than nH(P) qubits so that

I the compression is asymptotically lossless

I Alice does not know x

I Alice and Bob perform legal quantum operations
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What Can be Done – Evolution (Reversible)

State ρ can be transformed to another state E(ρ) only by a

physical process consistent with the lows of quantum theory:

I unitary evolution:

E(ρ) = UρU† where UU† = I,

I completely positive, trace-preserving map:

E(ρ) =
∑
k

EkρE
†
k where

∑
k

E
†
kEk = I.
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What Can be Done – Measurement (Irreversible)

I Von Neumann:

I A set of pairwise orthogonal projection operators {Πi}.

I They form a complete resolution of the identity:
∑
i Πi = I.

I |ψj〉 is measured as Πi|ψj〉 with probability 〈ψj|Πi|ψj〉.

I Positive Operator-Valued Measure (POVM):

I Any set of positive-semidefinite operators {Ei}.

I They form a complete resolution of the identity:
∑
i Ei = I.

I |ψj〉 is measured as Ei|ψj〉 with probability 〈ψj|Ei|ψj〉.
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What Cannot be Done?

I The No-Cloning Principle:

There is no physical process that leads to an evolution

|φ〉 ⊗ |s〉 → |φ〉 ⊗ |φ〉

where |φ〉 is an arbitrary state and |s〉 is a fixed state.

I The No-Broadcasting Principle – generalization of no-cloning.

I The No-Deleting Principle:

There is no physical process that leads to an evolution

|φ〉 ⊗ |φ〉 → |φ〉 ⊗ |s〉

where |φ〉 is an arbitrary state and |s〉 is a fixed state.
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Typical Subspace

I Typical states |Ψx〉 ∈ H2n
“live” in the typical subspace Λn.

Λn

Λ⊥n

|Ψx〉 = |Ψx
Λn〉+ |Ψx

Λ⊥n 〉

I The dimension of Λn is approximately 2nS(ρ).



The Typical Subspace Λn

I We represent the source density matrix

ρ =
∑
a∈X

P(x)|ψx〉〈ψx|

in terms of its eigenvectors and eigenvalues:

ρ = λ0|ϕ0〉〈ϕ0| + λ1|ϕ1〉〈ϕ1|.

I Note that λ = {λ0, λ1} is a PD on {0, 1} and 〈ϕ0|ϕ1〉 = 0.

I Tnλ denotes the set of λ-typical sequences.

I Λn is the subspace spanned by |Φz〉, z ∈ Tnλ .



Compression by Measurement

I Measurement is defined by Π+ Π⊥ = I2n where

I Π =
∑

z∈Tn
λ

|Φz〉〈Φz| is the projector to Λn.

I Π⊥ =
∑

z∈{0,1}n\Tn
λ

|Φz〉〈Φz| is the projector to Λ⊥n .

I State after measurement:

I Π · |Ψx〉 with probability |〈Ψx|Π|Ψx〉|2

I Π⊥ · |Ψx〉 with probability |〈Ψx|Π⊥|Ψx〉|2

I Expected probability of outcome Π · |Ψx〉:∑
x∈Xn

P(x)|〈Ψx|Π|Ψx〉|2 > − 1 + 2Tr(Πρ⊗n)

= − 1 + 2Tr
{[ ∑

z∈Tn
λ

|Φz〉〈Φz|
]
·
[ ∑
z∈{0,1}n

λ(z)|Φz〉〈Φz|
]}

=1 − 2εn
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Sources of Mixed Quantum States

I To a source letter x ∈ X corresponds

quantum state |ψy〉, y ∈ Y, with probability W(y|x).

I Note that outputs are distributed as

Q(y) =
∑
x∈X

P(x)W(y|x).

I The density matrix corresponding to x is

ρx =
∑
b∈Y

W(y|x)|ψy〉〈ψy|, x ∈ X.

I Compression is asymptotically lossless when∑
x∈Xn

P(x)F(ρx, ρ̂x) → 1 as n→ ∞.
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Distances Between Density Matrices ρ and σ

I Uhlman fidelity:

F(σ,ω) =
{

Tr
[
(
√
σω

√
σ)1/2

]}2

.

I Trace distance:

D(σ,ω) =
1

2
Tr |σ−ω|,

|A| denotes the positive square root of A†A.

I 1 − F(σ,ω) 6 D(σ,ω) 6
√

1 − F(σ,ω)2

I Frobenius (Hilbert-Schmidt)?
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Distances Between PD’s – An Example

I AN = {a1, . . . ,aN}

I N = 2K and n = 2k, with k/K = c < 1.

I Distributions P and Q:

P(ai) =

 1/n, 1 6 i 6 n

0 n+ 1 6 i 6 N
and Q(ai) =

1

N

I Q({an+1, . . . ,aN}) → 1 as k,K→ ∞.

I 1
2

∑
i |P(ai) −Q(ai)| → 1 and

∑
i |P(ai) −Q(ai)|

2 → 0.



Sources of Sources

I Produce sequences of sources, e.g., coins:

1 −w

1 −w

w

w
coins

faces

C2

C1

H

T

I Example: P(C1) = P(C2) = 1/2 and w = 2/3.

I Sequences:

C1 C1 C2 C1 C2 C2

H H H T T T

H T H H T T

H T T H T H

...



Sequences of Sources

I For each source (coin) x in X,

we have a probability distribution W(·|x) over Y of letters (faces).

I For each sequence of coins x in Xn,

we have a probability distribution Wn(·|x) over Yn.

I Alice has coins x and sends N bits to Bob.

I Bob prepares faces y with probability Ŵn(y|x).

I Wn(·|x) is reproduced as Ŵn(·|x).



Compression by Sending Classical Information

I Fidelity between Wn(·|x) and Ŵn(·|x)

F
(
Wn(·|x), Ŵn(·|x)

)
=

∑
y∈Yn

√
Wn(y|x) · Ŵn(y|x)

is known as the Bhattacharyya-Wooters overlap.

I Compression fidelity∑
x∈Xn

P(x)F
(
Wn(·|x), Ŵn(·|x)

)
should approach 1 as n→ ∞.



Compression Algorithm for a Typical x

I Alice and Bob

I have identical random number generators

I which they use to form a list of Nl typical ys.

I If Nl > 2nI(P,W), then with high probability there will be at least

one y on the list which is conditionally typical with respect to x.

I Alice sends logNl bits to Bob identifying y.

I Compression rate logNl/n approaches I(P,W).



Proof Idea

I Wn(·|x) is roughly a uniform distribution over ys that are

conditionally typical given x.

I For a typical x, there are about 2nH(W/P) such ys.

I These ys are typical.

I There are about 2nH(Q) typical ys.

I A randomly chosen y will be conditionally typical with respect to

any typical x with probability of about

2nH(W/P)

2nH(Q)
=

1

2nI(P,W)
.



A Related Problem

For each Alice’s sequence Cx of coins,

Bob prepares a predetermined sequence y(x) of faces such that

F̄ =
∑

x∈Xn

P(x)FX×Y

(
PxW(·|·),Px,y(x)

)

FX×Y

(
PxW(·|·),Px,y(x)

)
=

[ ∑
(x,y)∈X×Y

√
Px(x)W(y|x) · Px,y(x)(x,y)

]2

=
[ ∑

(x,y)∈X×Y

1

n

√
N(x|x)W(y|x) ·N(x,y|x,y(x))

]2

.

How large is Bob’s codebook?



The Original Quantum Problem

I The compression rate can not go below the Holevo quantity χ:

χ = −Tr ρ log ρ︸ ︷︷ ︸
S(ρ)

−
∑
a∈X

P(a)S(ρa)

I I(P,W) is achievable by sending classical information.

The proof uses

1. the equivalence of the Uhlman fidelity and the trace distance

2. the strong convexity of the trace distance:

D
(∑
i

piωi,
∑
i

qiσi

)
6 D({pi}, {qi}) +

∑
i

piD(ωi,σi).

3. the method of types

I Can the gap be closed by qubits or bits?
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