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Motivating questions

Basis for mathematical statements of physical laws

Classical action principle

S [q(t)] =

∫ t2

t1

L[q(t), q̇(t), t]dt (1)

Several interpretational problems
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Epistemologically speaking ...

Mathematical physics uses theories to make predictions

Learning makes predictions without domain-specific theory

Is there a relation? Can it be made precise?
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An intriguing development

Schrodinger’s equation [Frieden 1991]

Information measures and symmetry [Vtovsky 1996]

Quantum mechanics [Skala 2005]

Science from Fisher information [Frieden 2005]
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General statement

Observer plays zero-sum information game with Nature

Assumes ‘bound’ information J

Observer gains information I through measurements

EPI maximizes K = I - J
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Recovering laws of physics

Efficient measurement defined as κ
.

= I/J = 1

Requires statement of invariance expressed as unitary
transformation

In practice, requires Fourier dual of observation space to be
observable

K = I [ψ(x)]− J[φ(µ)] = extrem,

Usable iff
I [ψ(x)]− J[φ(x)] = extrem. (2)
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Example:Schrodinger’s equation

Conventional derivations make three physical assumptions

Energy momentum relationship E = p2

2m + V (x)
Einstein’s light quanta hypothesis E = hν
de Broglie’s hypothesis p = h

λ

EPI derivation dispenses with the latter two

Conjecture: First assumption is entirely representational
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Fisher Information

Measures informativeness of a probability distribution p
parameterized by θ,

I (θ) =

∫ (
∂ log p(x; θ)

∂θ

)2

p(x; θ) dx (3)

Trace of FI matrix upper bounds Stam information -
understand as capacity of estimation procedure
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Measuring physical systems

Consider ideal V -dimensional measurement scenario

yn = θn + xn, n = 1 · · ·N (4)

Assume independent observations

Assume shift invariance

I =

∫
1

pn(xn)

∑
n

∇pn(xn) · ∇pn(xn) (5)
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Complex probability amplitudes

Work with real probability amplitudes p(x) = q2(x),

I = 4

∫ ∑
n

∇qn(xn) · ∇qn(xn)

Define complex probability amplitudes,

ψn(xn) =
1√
N

(q2n−1 + iq2n), n = 1 · · ·N/2.

Then,

I = 4N

∫
dx

∑
n

∇ψ∗n · ∇ψn. (6)
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Fourier duality in observation space

Fourier duals: ψ(x)↔ φ(µ)

Fourier duals: ∇ψ(x)↔ ıµx/~
Have introduced scaling parameter ~
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Statement of symmetry

Unitary transformation allows application of Parseval’s
theorem

Restate (6) as,

J ≡ 4N

~2

∫
dµ µ2

∑
n

|φn(µ)|2. (7)

Physically, is simply expectation over momentum, so

J =
8Nm

~2
〈Ekin〉 =

8Nm

~2
〈[W − V (x)]〉

Can measure energy in both observational domains, hence

J =
8Nm

~2

∫
dx [W − V (x)]

∑
n

|ψn(x)|2. (8)
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Applying EPI

EPI Lagrangian

L = N
∑
n

∫
dx

[
4

∣∣∣∣dψn(x)

dx

∣∣∣∣2 − 8m

~2
[W − V (x)]|ψn(x)|2

]
.

(9)

Solving with Euler-Lagrange equation gives,

ψ
′′
n (x) +

2m

~2
[W − V (x)]ψn(x) = 0, n = 1 · · ·N/2, (10)

Nisheeth Srivastava, Peter Harremoës Information-theoretic observations on the calculus of variations



Outline
Introduction

Extreme Physical Information
Problems with EPI

Learning as information optimization
EPI as learning

Outline

1 Introduction

2 Extreme Physical Information

3 Problems with EPI

4 Learning as information optimization

5 EPI as learning
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Problems in formulation

Extremizing = finding points of least variation

How does one derive J in a principled manner?

What does EPI mean? Hamiltonian, path integral derivations
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Problems in implementation

Why is the Fourier transform so fundamental?

Why is Fisher information so fundamental?

Where do values of physical constants come from?
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What is learning?

Springs from AI algorithms of the 80s

Mathematical formulations of cognitive processes

Various philosophies extant

PAC Learning [Valiant 1984]
VC theory [Vapnik 1971]
Bayesian inference
Maxent learning [Berger 1996]
Information theoretic learning e.g. MDL [Grunwald 2007]
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A disclaimer

Link between learning theory and information optimization not
formal

Some frameworks for learning quite mathematically disjoint

Efforts for unification continue
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Model-free learning

Define abstract information space

Define preference relations

Find optimality conditions
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Information spaces

Set A ← possible observational outcomes (rewards, states,
error etc.)

Some elements of A unobservable ⇒ learning with uncertainty

Convex subsets mathematically tractable; we restrict ourselves
to these
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Some notation

X and Y are dual (conjugate) spaces of functions x : A→ R
and y : A→ R
The inner product is represented as (., .) : X × Y → R, i.e.

(x , y) =

∫
A

x(a) y(a) da

Hulls of convex subsets of X represented as KX
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Convex sets

Convex sets: sets closed under convex combinations

Hulls described by support and distance functions

Support of convex hull KX at y ∈ Y is

F (y) = sup{(y , x) : x ∈ KX}. (11)

Distance from the center x0 of convex hull KX is

F̂ (x) = inf{D ≥ 0 : x ∈ DKX}. (12)

Polar convex sets: support function of one is distance function
for the other
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Representing optimality conditions

x ∈ Kx
.

= F̃ (x) ≤ D <∞
Dual convex functionals related as

F (y) = sup
x
{(y , x)− F̃ (x)},

F̃ (x) = sup
y
{(x , y)− F (y)}.

Also satisfy the dual minimization problems,

D(C ) = inf{F̃ (x) : (y , x) ≥ C},
C (D) = inf{F (y) : (x , y) ≥ D}.
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Optimization

Legendre duality is statement of polar relationship between
two convex hulls

Extremizing a convex functional F(y) defined on set A gives
optimal information trajectory

Optimality conditions generalizations of Kuhn-Tucker
conditions [Kuhn 1951]
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Necessary conditions for extrema

Theorem

Extrema y∗ ∈ KY for F̃ (x) = sup{(x , y) : F (y) ≤ C} = D satisfy,

βx ∈ ∂F (y∗)

F (y∗) = C

β−1(C ) = D ′(C )
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An example

Set y ∈ Y as probabilities and F (y) as KL divergence

Optimal function y∗ ∈ KY for F̃ (x) = sup{(x , y) : F (y) ≤ C}
Has the form y0e

βx−γ(β).
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Relation to statistical mechanics

Minimizing KL divergence is precisely the principle of MDI
[Kullback 1989]

MDI is equivalent to MaxEnt in most cases e.g., distributions
with finite support

Form of solutions recovers statistical mechanics
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Relation to EPI derivation of Schrodinger’s equation

Set y ∈ Y as errors in position measurement and F(y) as
Fisher Information (6)

Informational constraint here is a symmetry property

Symmetry expressed as statement of invariance of FI across
unitary transformation (7)

Recover EPI Lagrangian (9)

There is an error in this argument, can you spot it?
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Review of limitations

Explained significance of Fisher Information

Significance of Fourier Transform

EPI falls out of more general theory

No explanation for values of physical constants

Introduction of complex numbers is still mysterious
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