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Information Measures: one terminal

P ∈M1(X )

← distribution of X

→ H(P ) = EP log
1
P

= H(X)

→ min. avg. nb. of bits to describe X
→ lower bound on the compression of X
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Information Measures: one terminal

X ∼ P

input X
W−→ Y output

W ∈M1(Y|X )

← channel (distribution)

→ I(P,W ) = Eµ log
µ

µX × µY
, µ = P ◦W

= I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

→ mutual information
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Information Measures: one terminal

Define the uniform mutual information of a channel
W ∈M(Y|X ) by IU (W ) := I(UX ◦W ), where UX is the uniform
distribution on X .

IU (W ) = 1 ⇔ W = perfect channel
IU (W ) = 0 ⇔ W = pure noise channel

→We know how to transfer information with low complexity on
these extremal channels, and polarization bring them

Emmanuel Abbe Information / Matroids / Links / Polar Codes



Information Measures: one terminal

Define the uniform mutual information of a channel
W ∈M(Y|X ) by IU (W ) := I(UX ◦W ), where UX is the uniform
distribution on X .

IU (W ) = 1 ⇔ W = perfect channel
IU (W ) = 0 ⇔ W = pure noise channel

→We know how to transfer information with low complexity on
these extremal channels, and polarization bring them

Emmanuel Abbe Information / Matroids / Links / Polar Codes



Information Measures: multiple terminals

A multiple access channel (MAC) with m users is an element of
M1(Y|Xm),

(X1, . . . , Xm) W→ Y

Definition
The mutual information collection of a MAC W ∈M(Y|Xm) is

{I(X[S];Y X[Sc]), S ⊆ {1, . . . ,m}}

where (X[1 . . .m], Y ) has joint distribution (P1 × . . .× Pm) ◦W .

X[S] = {Xi}i∈S

Define ρ : 2m → R
S 7→ I(X[S];Y X[Sc])
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Information Measures: multiple terminals

Operational meaning:

0 ≤
∑
s∈S

Rs ≤ ρ(S), ∀S ∈ 2m

leads to the capacity region of non cooperating users over a
memoryless MAC.

Example: m = 2:

R1 ≤ I(X[1];Y X[2])
R2 ≤ I(X[2];Y X[1])
R1 +R2 ≤ I(X[1]X[2];Y )

Question: take uniform input distributions, what would be an
extremal MAC?
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matroids...
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Matroids: Independence

Definition
A matroid M is an ordered pair (E, I), where E is a finite set
called ground set and I is a collection of a subsets of E called
the independent sets, which satisfies:

(I1) ∅ ∈ I.
(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.
(I3) If I1, I2 ∈ I and |I1| < |I2|, then there exists an element

e ∈ I2 − I1 such that I1 ∪ e ∈ I.

Examples:
1. Vector matroids: E is the column set of a matrix (over a field),
and independent sets defined by linearly independent columns.
2. Graphic matroids: E is the set of edges of an undirected
graph, and independent sets are collections of edges
containing no cycle.
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Matroids: other definitions

Definition
Let M = (E, I). Define

D = Ic, the collection of dependent sets
B, the collection of bases, i.e., maximal subsets of E which
are independent
C, the collection of circuits, i.e., minimal subsets of E which
are dependent.

Definition
We define a rank function r : 2m → Z+ such that for any S ⊆ E,
r(S) is given by the cardinality of a maximal independent set
contained in S.
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Matroids: other definitions

The rank function satisfies the following properties.

(R1) If X ⊆ E, then r(X) ≤ |X|.
(R2) If X1 ⊆ X2 ⊆ E, then r(X1) ≤ r(X2).
(R3) If X1, X2 ⊆ E, then

r(X1 ∪X2) + r(X1 ∩X2) ≤ r(X1) + r(X2).

Claim: this can also be used to define a matroid:
an independent set is then a set with r(X) = |X|.
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Matroid duality

Theorem
Let M be a matroid on E with a set of bases B. Let
B∗ = {E −B : B ∈ B}. Then B∗ is the set of bases of a matroid
on E. We denote this matroid by M∗ and call it the dual of M .

Lemma
If r is the rank function of M , then the rank function of M∗ is
given by

r∗(S) = r(Sc) + |S| − |E|.
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Matroid representation

Definition
A matroid M is representable over a field F if it is isomorphic to
a vector matroid over the field F .
If A is a matrix representing M , we denote M ∼= M [A].
A F2 representable matroid is called a binary matroid.

The restriction of M to S, is denoted by M |S and means...
The contraction of M by S, is given by M∗|Sc

A matroid N that is obtained from M by a sequence of
restrictions and contractions is called a minor of M.

Theorem (Tutte)
A matroid is binary if and only if it has no minor that is U4,2.

U4,2 = 4 el. ground set and bases are the 2 el. sets
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Polymatroid

A polymatroid is a finite set E equipped with a function
f : 2m → R, such that

(F1) f(∅) = 0.
(F2) If X1 ⊆ X2 ⊆ E, then f(X1) ≤ f(X2).
(F3) If X1, X2 ⊆ E, then

f(X1 ∪X2) + f(X1 ∩X2) ≤ f(X1) + f(X2).

Such a f is called a β-rank function.

A matroid is a polymatroid for which f is integer valued and
bounded
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links...
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Entropic matroids

Let E a finite set and X[E] = {Xi}i∈E be a random vector with
distribution PE .
Let h(I) := h(X[I]).

Theorem (Lovász ’82, ...)

h(·) is a β-rank function.
Hence, (E, h) is a polymatroid.

Definition
A (poly)matroid M is entropic if M ∼= M [h].

Some ref.: Han, Fujishige, Zhang, Matús and Yeung
If |E| ≤ 3, all matroids are entropic, but ottherwise...
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Mutual Information matroids

Let E be a finite set, and X[E] W→ Y .

Theorem (Hanly et al. ’94, ...)

ρ(S) = I(X[S];Y X[Sc]) is a β-rank function on E.
Hence, (E, ρ) is a polymatroid.

Definition
A (poly)matroid M is MAC if M ∼= M [ρ]
A (poly)matroid M is BUMAC if it is MAC and if P1, . . . , Pm are
the uniform distributions on X = F2.

If |E| ≤ 3, all matroids are BUMAC, but otherwise...
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Polar codes application

Single-user setting:
turn n independent channel uses
into n successive extremal channels,
→ either perfect IU (W ) = 1 or pure noise IU (W ) = 0.

Multi-user MAC setting:
turn n independent channel uses
into n successive extremal MACs ???
→ ρ(S) ∈ Z+ ⇔ BUMAC matroids [EA and Telatar ’09]
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Results

Theorem
A matroid is BUMAC if and only if it is binary.

Theorem
A BUMAC matroid is “equivalent” to a linear deterministic
channel:
if M = M [W ], and A represents M , we have

I(AX[E];Y ) = rankA,

where Y is the output through W .
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Example

Let a BUMAC with 2 users: (X[1], X[2]) W→ Y s.t.
I(X[1];Y X[2]) = I(X[2];Y X[1]) = I(X[1]X[2];Y ) = 1.

This defines a BUMAC matroid M on E = {1, 2} given by the
ranks

(∅, 1, 2, 12) r→ (0, 1, 1, 1).

Then M is binary (thm 1), and in this case represented by

A =
[
1 1
0 0

]
Moreover, we have (thm 2)

I(A
[
X[1]
X[2]

]
;Y ) = 1, i.e., I(X[1] +X[2];Y ) = 1.
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proofs
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