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Portfolio theory: Basics

• Portfolio weights wi, Asset returns Xt
i

• If predicted gains are gi then the expected gain of the port-

folio is G =
∑
wigi.

• Risk: variance of the portfolio returns

R2 =
∑

ij

wiσiCijσjwj

where σ2
i is the variance of asset i and Cij is the correlation

matrix.
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Empirical Correlation Matrix

• Large set of Assets N and comparable set of data points T

• Empirical Variance

σ2
i =

1

T

∑

t

(
Xt
i

)2

can be assumed to be know (or predicted) with enough pre-

cision – note: returns have fat tails.

• Empirical Equal-Time Correlation Matrix

Eij =
1

T

∑

t

Xt
iX

t
j

σiσj

order N2 quantities estimated with NT datapoints. If T < N

E is not even invertible.
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Markowitz Optimization

• Find the portfolio with maximum expected return for a given

risk or equivalently, minimum risk for a given return (G)

• In matrix notation:

wC = G
C−1g

gTC−1g

• Where all returns are measured with respect to the risk-free

rate and σi = 1 (absorbed in gi).

• Non-linear problem:
∑
i |wi| ≤ A – a “spin-glass” problem!

• Related problem: find the “irreducible” idiosyncratic part of

a stock
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Risk of Optimized Portfolios

• Let E be an noisy estimator of C such that 〈E〉 = C

• “In-sample” risk

R2
in = wT

EEwE =
G2

gTE−1g

• True minimal risk

R2
true = wT

CCwC =
G2

gTC−1g

• “Out-of-sample” risk

R2
out = wT

ECwE =
G2gTE−1CE−1g

(gTE−1g)2
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Risk of Optimized Portfolios

• Using convexity arguments, and for large matrices:

R2
in ≤ R2

true ≤ R2
out

• Importance of eigenvalue cleaning:

wi ∝
∑

kj

λ−1
k V ki V

k
j gj = gi +

∑

kj

(λ−1
k − 1)V ki V

k
j gj

– Eigenvectors with λ > 1 are suppressed,

– Eigenvectors with λ < 1 are enhanced. Potentially very

large weight on small eigenvalues.

– Must determine which eigenvalues to keep and which one

to correct to avoid over-allocation on pseudo-low risk

modes
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Possible Ensembles

• Null hypothesis Wishart ensemble:

〈Xt
iX

s
j 〉 = σiσjδijδts

with constant volatilities, and X Gaussian – or at least with

a finite second moment

• General Wishart ensemble:

〈Xt
iX

s
j 〉 = σiσjCijδts

with constant volatilities and X with a finite second moment

• Elliptic Ensemble

〈Xt
iX

s
j 〉 = Σt2σiσjCijδts

with a random common vol. with a certain P(Σ) – example:

Student
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Green function (Stieljes transform)

• We need to find the trace of the resolvent or Stieljes trans-

form:

G(z) =
1

N
Tr

[
(zI − E)−1

]

ρ(λ) = lim
ǫ→0

1

π
ℑ (G(λ− iǫ)) .
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Null hypothesis C = I

• Eij is a sum of (rotationally invariant) matrices Etij = (Xt
iX

t
j)/T

• Free random matrix theory: Find the additive R-transform

R(x) = B(x) − 1/x; B(G(z)) = z)

Gt(z) =
1

N

(
1

z − q
+
N − 1

z

)

• defining q = N/T , inverting Gt(z) to first order in 1/N ,

Rt(x) =
1

T(1 − qx)
by additivity RE(x) =

1

(1 − qx)

GE(z) =
(z + q − 1) −

√
(z + q − 1)2 − 4zq

2zq



Null hypothesis C = I

ρE(λ) =

√
4λq − (λ+ q − 1)2

2πλq
λ ∈ [(1 −√

q)2, (1 +
√
q)2]

Marcenko-Pastur (1967) (and many rediscoveries)

• Any eigenvalue beyond the Marcenko-Pastur band can be

deemed to contain some information (but see below)
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Null hypothesis C = I

• Remark 1: Non-Gaussian corrections vanish as (2 + κ)/N

• Remark 2: −GE(0) = 〈λ−1〉E = (1 − q)−1, allowing to com-

pute the different risks:

Rin = Rtrue

√
1 − q = Rout(1 − q)
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General C Case

• The general case for C cannot be directly written as a sum

of “Blue” functions.

• Solution using different techniques (replicas, diagrams, S-

transform:

GE(z) =
∫
dλ ρC(λ)

1

z − λ(1 − q+ qzGE(z))
,

• Remark 1: −GE(0) = (1 − q)−1 independently of C

• Remark 2: One should postulate a parametric form for ρC(λ),
for example:

ρC(λ) =
µA

(λ− λ0)
1+µ

Θ(λ− λmin)
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Empirical Correlation Matrix
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Matrix Cleaning
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The Student ensemble

• Exact calculation can be done again for a general C

• For C = 1,

λ =
GR

G2
R + π2ρ2E

+
∫
dsP(s)

µ(s− qµGR)

(s − qµGR)2 + π2ρ2E

0 = ρ

(

− 1

G2
Rπ

2ρ2E
+

∫
dsP(s)

qµ2

(s − qµGR)2 + π2ρ2E

)

,

where GR is the real part of the resolvent, and P(s) =

sµ/2−1e−s/Γ(µ/2)

• Appears to give a very good fit of ρ(λ) too !
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The Student ensemble

• However, the maximum likelihood estimator of C is in that

case given by:

Êij =
N + µ

T

T∑

t=1

Xt
iX

t
j

µ+
∑
mnX

t
m(Ĉ−1)mnXt

n

.

• But the spectrum of Ê is Marcenko-Pastur again !!

• ...whereas the actual empirical Ê is nearly identical to that

of E
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More General Correlation matrices

• Non equal time correlation matrices

Eτij =
1

T

∑

t

Xt
iX

t+τ
j

σiσj

N ×N but not symmetrical: ‘leader-lagger’ relations

• General rectangular correlation matrices

Gαi =
1

T

T∑

t=1

Y tαX
t
i

N ‘input’ factors X; M ‘output’ factors Y

– Example: Y tα = Xt+τ
j , N = M
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Singular values and relevant correlations

• Singular values: Square root of the non zero eigenvalues

of GGT or GTG, with associated eigenvectors ukα and vki →
1 ≥ s1 > s2 > ...s(M,N)− ≥ 0

• Interpretation: k = 1: best linear combination of input vari-

ables with weights v1i , to optimally predict the linear com-

bination of output variables with weights u1
α, with a cross-

correlation = s1.

• s1: measure of the predictive power of the set of Xs with

respect to Y s

• Other singular values: orthogonal, less predictive, linear com-

binations
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Benchmark: no cross-correlations

• Null hypothesis: No correlations between Xs and Y s – 〈G〉 =

0

• But arbitrary correlations among Xs, CX, and Y s, CY , are

possible

• Consider exact normalized principal components for the sam-

ple variables Xs and Y s:

X̂t
i =

1√
λi

∑

j

UijX
t
j; Ŷ tα = ...

and define Ĝ = Ŷ X̂T .

J.Ph. Bouchaud



Benchmark: no cross-correlations

• Tricks:

– Non zero eigenvalues of ĜĜT are the same as those of

X̂T X̂Ŷ T Ŷ

– A = X̂T X̂ and B = Ŷ T Ŷ are mutually free, with n (m)

eigenvalues equal to 1 and 1 − n (1 −m) equal to 0

– “S-transforms” are multiplicative
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Technicalities

•

ηA(y) ≡ 1

T
Tr

1

1 + yA
.

•

ΣA(x) ≡ −1 + x

x
η−1
A (1 + x).

•

ηA(y) = 1 − n+
n

1 + y
, ηB(y) = 1 −m+

m

1 + y
.

•

ΣGG(x) = ΣA(x)ΣB(x) =
(1 + x)2

(x+ n)(x+m)
.
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Benchmark: Random SVD

• Final result:([LL,MAM,MP,JPB])

ρ(s) = (m+ n− 1)+δ(s− 1) +

√
(s2 − γ−)(γ+ − s2)

πs(1 − s2)

with

γ± = n+m− 2mn± 2
√
mn(1 − n)(1 −m), 0 ≤ γ± ≤ 1

• Analogue of the Marcenko-Pastur result for rectangular cor-

relation matrices – first derived by Wachter

• Many applications; finance, econometrics (‘large’ models),

genomics, etc.
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Benchmark: Random SVD

• Simple cases:

– n = m, s ∈ [0,2
√
n(1 − n)]

– n,m→ 0, s ∈ [|√m−√
n|,√m+

√
n]

– m = 1, s→
√

1 − n

– m→ 0, s→ √
n
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RSVD: Numerical illustration
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RSVD: Numerical illustration
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Inflation vs. Economic indicators
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Statistics of the Top Eigenvalue

• All previous results are true when N,M,T → ∞ with fixed

n,m

• How far is the top eigenvalue expected to leak out at finite

N?

• Precise answer when matrix elements are iid Gaussian: Tracy-

Widom statistics

• Width of the smoothed edge: N−2/3
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Statistics of the Top Eigenvalue

• Exceptions

– ‘Strong’ Rank One Perturbation → emergence of an iso-

lated eigenvalue with Gaussian, N−1/2 fluctuations (Baik,

Ben-Arous, Péché)

– E.g.: Eij → Eij+ρ(1−δij) leads to a market mode λmax ≈
Nρ

– Fat tailed distribution of matrix elements
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Fat tails and Top Eigenvalue: Wigner Case

• Eigenvalue statistics of large real symmetric matrices with

iid elements Xij, P(x) ∼ |x|−1−µ

• Eigenvalue density:

– µ > 2 → Wigner semi-circle in [−2,2]

– µ < 2 → unbounded density with tails ρ(λ) ∼ λ−1−µ

(Cizeau,JPB)

• Note: µ < 2 non trivial statistics of eigenvectors (local-

ized/delocalized) (Cizeau,JPB)
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Fat tails and Top Eigenvalue: Wigner Case

• A little lemma: Take a Wigner Matrix and add a finite rank

perturbation matrix with largest eigenvalue S (Péché):

• Then:

|S| < 1 → λmax = 2 |S| ≥ 1 → λmax = S +
1

S

• Condensation/evaporation phenomenon

• Example: Xij → Xij + S, Xji → Xji + S
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Fat tails and Top Eigenvalue: Wigner Case

• Largest Eigenvalue statistics ([GB,MP,JPB])

– µ > 4: λmax−2 ∼ N−2/3 with a Tracy-Widom distribution

(max of strongly correlated variables)

– 2 < µ < 4: λmax ∼ N
2
µ−

1
2 with a Fréchet distribution

(although the density goes to zero when λ > 2!!)

– µ = 4: λmax ≥ 2 but remains O(1), with a new distribu-

tion:

P>(λmax) = wθ(λmax − 2) + (1 − w)F(s) λmax = s+
1

s

• Note: The case µ > 4 still has a power-law tail for finite N ,

of amplitude N2−µ/2
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Fat tails and Correlation Matrices

•

Eij =
1

T

∑

t

Xt
iX

t
j

• µ > 4: λmax − (1 +
√
n)2 ∼ N−2/3 (but with a power-law tail

as above)

• µ < 4: λmax ∼ N
4
µ−1

n1−2/µ

• Fat tails induce fictitious ‘strong’ correlations – important

for applications in finance where µ ≈ 3 − 5.
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Dynamics of the top eigenvector – Non stationarity

• Specific dynamics of large top eigenvalue and eigenvector:

Ornstein-Uhlenbeck processes (on the unit sphere for V1)

• The angle obeys the following SDE:

dθ ≈ − ǫ
2

sin 2θdt+ ζt dWt

with

ζ2t ≈ ǫ2
[
1

2
sin2 2θt +

Λ1

Λ0
cos2 2θt

]

• Eigenvector dynamics:

〈
〈ψ0t+τ |ψ0t〉

〉
≈ E(cos(θt − θt+τ)) ≈ 1 − ǫ

Λ1

Λ0
(1 − exp(−ǫτ))
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The variogram of the top eigenvector
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Clear signal for a true time evolution of the correlation matrix
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