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Portfolio theory: Basics

e Portfolio weights w;, Asset returns X!

e If predicted gains are g; then the expected gain of the port-
folio is G = > w;g;.

e Risk: variance of the portfolio returns
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]
where af is the variance of asset ¢ and Cj; is the correlation
matrix.
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Empirical Correlation Matrix

e Large set of Assets N and comparable set of data points T

e Empirical VVariance
5 1
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can be assumed to be know (or predicted) with enough pre-
cision — note: returns have fat tails.

e Empirical Equal-Time Correlation Matrix
1

XiX:
Eij =52

t 019y

order N2 quantities estimated with NT datapoints. If T < N
E is not even invertible.
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Markowitz Optimization

e Find the portfolio with maximum expected return for a given
risk or equivalently, minimum risk for a given return (G)

e In matrix notation:

C_lg
WC’ — G
gl'C-1g

e Where all returns are measured with respect to the risk-free
rate and o; = 1 (absorbed in g;).

e Non-linear problem: >, |lw;| < A — a *“spin-glass” problem!

e Related problem: find the “irreducible” idiosyncratic part of
a stock
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Risk of Optimized Portfolios
e Let E be an noisy estimator of C such that (E) =C

e “‘In-sample’” risk

> T G2
R = wrEwp =
in E E gTE_lg
e [rue minimal risk
G2
2  _ T _
Rtrue — WCCWC — gTC_lg

e "Out-of-sample” risk
G2gTE-1CE1g
(gTE-1g)?

2 A— —
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Risk of Optimized Portfolios

e Using convexity arguments, and for large matrices:

2 2 2
Rin < Rtrue < Rout

e Importance of eigenvalue cleaning:

w; o< >N TVIVE gy =g+ > (O — DVFV;
kj kj

— Eigenvectors with A > 1 are suppressed,

— Eigenvectors with A < 1 are enhanced. Potentially very
large weight on small eigenvalues.

— Must determine which eigenvalues to keep and which one
to correct to avoid over-allocation on pseudo-low risk
modes
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Possible Ensembles

e Null hypothesis Wishart ensemble:
(XPX3) = 0066t

with constant volatilities, and X Gaussian — or at least with
a finite second moment

e General Wishart ensemble:
(X7X3) = 0;0;C561s
with constant volatilities and X with a finite second moment

e Elliptic Ensemble
(XIX3) = X"%0,0;C;61s

with a random common vol. with a certain P(3X) — example:
Student
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Green function (Stieljes transform)

e \We need to find the trace of the resolvent or Stieljes trans-
form:
- 1
G(2) = T [(ZI —E) }

p(N) = lim (GO~ i6))
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Null hypothesis C =1

e [E;;isasum of (rotationally invariant) matrices Efj = (XZ’?X;)/T

e Free random matrix theory: Find the additive R-transform
R(x) = B(z) — 1/z; B(G(2)) = 2)

1 1 N -1
Gt(z)_N<z—q+ z )

e defining ¢ = N/T, inverting G¢(z) to first order in 1/N,

1 1
Ry(x) = by additivity R =
t(x) Ty > y  Rp(z) 1~ o)

(z4q—1)—/(z+q—1)2— 4z
22q

Gp(z) =



Null hypothesis C =1

_ _1)2
) = VM 2(2;;‘1 D el - V@R (4 va)?

Marcenko-Pastur (1967) (and many rediscoveries)

e Any eigenvalue beyond the Marcenko-Pastur band can be
deemed to contain some information (but see below)
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Null hypothesis C =1

e Remark 1: Non-Gaussian corrections vanish as (2 + k)/N
e Remark 2: —Gp(0) = A= (1-¢) !, allowing to com-

pute the different risks:

Rin = Rtryev1l —q = Rout(l — CI)
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General C Case

e The general case for C cannot be directly written as a sum
of “Blue” functions.

e Solution using different techniques (replicas, diagrams, S-
transform:

Cp(z) = [drpeO) .

2= A1 —q+q2Gg(2))

e Remark 1: —G(0) = (1 — ¢)~ ! independently of C

e Remark 2: One should postulate a parametric form for p~(\),
for example:

A

o) 1tH

PC’()\) — () — @O\—)\min)
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Empirical Correlation Matrix
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Matrix Cleaning
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T he Student ensemble

e Exact calculation can be done again for a general C

e For C =1,
A = Gr /dsP(s) “(S_ngR)Q S
2+ 72 pE (s — quGR)* + m<py;
qp?
0 — —I—/dsP s )
p( G2, ( ) (s — quGR)?2 + m2p2,

where Gpr is the real part of the resolvent, and P(s) =
sh/27e™s /T (1)2)

e Appears to give a very good fit of p(\) too !
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T he Student ensemble

e However, the maximum likelihood estimator of C is in that
case given by:

txt
XZ-Xj

E;; R

e But the spectrum of E is Marcenko-Pastur again !l

e ...whereas the actual empirical E is nearly identical to that
of E
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More General Correlation matrices

e Non equal time correlation matrices

t+7
1 XX
Elj =252

t 010y

N x N but not symmetrical: ‘leader-lagger’ relations

e General rectangular correlation matrices

N ‘input’ factors X:; M ‘output’ factors Y

— Example: Y! = X§+T, N=M
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Singular values and relevant correlations

e Singular values: Square root of the non zero eigenvalues
of GGT or GT'G, with associated eigenvectors u% and vf —
1 2 S1 > S92 > "'S(M,N)_ Z O

e Interpretation: kK = 1: best linear combination of input vari-
ables with weights fuil, to optimally predict the linear com-
bination of output variables with weights ul with a cross-

o
correlation = s1.

e s1. measure of the predictive power of the set of Xs with
respect to Y's

e Other singular values: orthogonal, less predictive, linear com-
binations
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Benchmark: no cross-correlations

e Null hypothesis: No correlations between Xs and Ys — (G) =
0

e But arbitrary correlations among Xs, Cx, and Ys, Cy, are
possible

e Consider exact normalized principal components for the sam-
ple variables Xs and Ys:

1

%t =

ZUZ'J'X;; YOIEZ
J

and define G =Y X7.
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Benchmark: no cross-correlations

e [ricks:

— Non zero eigenvalues of GG! are the same as those of
XTxXyvly

— A= XTX and B = Y1Y are mutually free, with n (m)
eigenvalues equal to 1l and 1 —n (1 —m) equal to O

— Y“S-transforms’” are multiplicative
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Technicalities

1 1
na(y) = ?Trl A
Ea(@) = ——Zn3(1 +2).
na(y) =1—n+ 1iy, np(y) =1 —m + 11”y.
_ (1 +442)?
o) =X ()X p(x) = (e ) (@t )’
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Benchmark: Random SVD

e Final result:([LL,MAM MP, JPBE])

V(=) (g — 5

_ )y Fsis -
p() = (m+n = P3G — 1) + S

with

’Yi=n—|—m—2mn:|:2\/mn(1—n)(1—m), 0<~+ <1

e Analogue of the Marcenko-Pastur result for rectangular cor-
relation matrices — first derived by Wachter

e Many applications; finance, econometrics (‘large’ models),
genomics, etc.
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Benchmark: Random SVD

e Simple cases:

—n=m, s€ [0,2\/n(1 —n)]

—n,m— 0, s € [|[v/m —+/n|,v/m+ /n]
—m=1, s—>+v1—n
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RSVD: Numerical illustration
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RSVD: Numerical illustration

~—— Theory (MP?)
—— Theory (Standardized)
03 - simulation (Random SVD)
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Inflation vs. Economic indicators
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Statistics of the Top Eigenvalue

e All previous results are true when N, M, T — oo with fixed

n,m

e How far is the top eigenvalue expected to leak out at finite
N7

e Precise answer when matrix elements are iid Gaussian: Tracy-
Widom statistics

e Width of the smoothed edge: N—2/3
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Statistics of the Top Eigenvalue

e EXxceptions

— ‘Strong’ Rank One Perturbation — emergence of an iso-
lated eigenvalue with Gaussian, N—1/2 fluctuations (Baik,
Ben-Arous, Péché)

— E.9.: E;j — E;;+p(1-9;;) leads to a market mode Amax =
Np

— Fat tailed distribution of matrix elements
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Fat tails and Top Eigenvalue: Wigner Case

e Eigenvalue statistics of large real symmetric matrices with

iid elements X;;, P(z) ~ |z| 717

e Eigenvalue density:
— u > 2 — Wigner semi-circle in [-2, 2]
— 1 < 2 — unbounded density with tails p(\) ~ X~ 17~

(Cizeau,JPB)

e Note: pu < 2 non trivial statistics of eigenvectors (local-
ized /delocalized) (Cizeau,JPB)
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Fat tails and Top Eigenvalue: Wigner Case

e A little lemma: Take a Wigner Matrix and add a finite rank
perturbation matrix with largest eigenvalue S (Péché):

e [ hen:

1
|S|<1—>)\max:2 |S|21—>>\max:S—|—§
e Condensation/evaporation phenomenon

e Example: Xz] —>ng+57 X]z —>X]Z+S
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Fat tails and Top Eigenvalue: Wigner Case
e Largest Eigenvalue statistics ([GB,MP,JPB])

— >4 Amax—2 ~ N~2/3 with a Tracy-Widom distribution
(max of strongly correlated variables)

2_1
— 2 < u < 4 Admax ~ N# 2 with a Fréchet distribution

(although the density goes to zero when A > 211)

— u =4 Amax > 2 but remains O(1), with a new distribu-
tion:

1
Ps(Amax) = wl(Amax —2) + (1 —w)F(s) Amax =s+ -

e Note: The case u > 4 still has a power-law tail for finite N,
of amplitude N2—#/2

J.Ph. Bouchaud



Fat tails and Correlation Matrices

e 11> 4 Amax — (1 ++/n)2 ~ N—2/3 (but with a power-law tail
as above)

a_
o 1 <4 Amax ~ N tpl=2/u

e Fat tails induce fictitious ‘strong’ correlations — important
for applications in finance where u~ 3 — 5.

J.Ph. Bouchaud



Dynamics of the top eigenvector — Non stationarity

e Specific dynamics of large top eigenvalue and eigenvector:
Ornstein-Uhlenbeck processes (on the unit sphere for V1)

e [ he angle obeys the following SDE:
o ~ —g sin 20dt + ¢; dW;
with
(P~ € B sin? 20, + % cos? 20,

0

e Eigenvector dynamics:

<<¢0t+7|¢0t>> ~ E(cos(b; —044.)) = 1 — e%(l — exp(—er))
0
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The variogram of the top eigenvector
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Clear signal for a true time evolution of the correlation matrix
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