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Classical covariance

Classical covariance

Covp(X, Y ) := Ep(XY )−Ep(X)Ep(Y ) = Ep(X0Y0).

where X0 := X − Ep(X).

To go "quantum" we consider:
- s.a. matrices A,B instead of r.v. X, Y and
states ρ instead of densities p;
- Tr(ρA) instead of the expectation Ep(X).
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Quantum covariance

Quantum covariance

Covρ(A,B) :=
1

2
Tr(ρ(AB+BA))−Tr(ρA)·Tr(ρB) =

= Tr

[(

Lρ +Rρ

2

)

(A0)B0

]

.

where A0 := A− Tr(ρA) · I and

Lρ(A) := ρA Rρ := Aρ
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Different quantum covariances ...

Is the above definition “natural"?
Certainly it coincides with the classical
covariance in a commutative setting.
It uses the "arithmetic mean" of the left and right
multiplication operator

marith(Lρ, Rρ) :=
Lρ +Rρ

2
This suggest that we may consider other
noncommutatitive "‘means".
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... using different means?

If we consider the “harmonic" covariance

Covharρ (A,B) := Tr
((

2(L−1
ρ +R−1

ρ )−1
)

(A0)B0

)

,

also this coincides with the classical definition
where there is no difference between Lρ and Rρ!

Is there a quantum criterion to prefere a certain
covariance (mean)?
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Operator means

Kubo-Ando 1980
Let Dn := {A ∈ Mn|A > 0}.
A mean is a function m : Dn ×Dn → Dn such that
(i) m(A,A) = A,
(ii) m(A,B) = m(B,A),
(iii) A < B =⇒ A < m(A,B) < B,
(vi) A < A′, B < B′ =⇒ m(A,B) < m(A′, B′),
(v) m is continuous,
(vi) Cm(A,B)C∗ ≤ m(CAC∗, CBC∗), for every
C ∈ Mn.
Property (vi) is the transformer inequality.
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Operator monotone functions

Mn = complex matrices
Definition
f : (0,+∞) → R is operator monotone iff
∀A,B ∈ Mn and ∀n = 1, 2, ...

0 ≤ A ≤ B =⇒ 0 ≤ f(A) ≤ f(B).

Definition
ϕ is a Pick function if it is analytic in the upper
half plane and map the latter into itself.
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Löwner Theorem

Löwner 1932

Theorem

f is operator monotone iff it is the restriction of a
Pick function.
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Fop

Usually one consider o.m. functions that are:
i) normalized i. e. f(1) = 1;
ii) symmetric i.e. tf(t−1) = f(t).

Fop:= family of normalized symmetric o. m.
functions.

Examples
1 + x

2
,

√
x,

2x

1 + x
.
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Kubo–Ando theorem

Mop:= family of matrix means.

Kubo and Ando (1980) proved the following,
fundamental result.

Theorem

There exists a bijection betweenMop and Fop

given by the formula

mf(A,B) := A
1

2f(A− 1

2BA− 1

2 )A
1

2 .
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Kubo–Ando inequality

Examples of operator means

A+ B

2

A
1

2 (A− 1

2BA− 1

2 )
1

2A
1

2

2(A−1 + B−1)−1

Fundamental inequality

2(A−1+B−1)−1 ≤ mf(A,B) ≤ A+B

2
∀f ∈ Fop
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g-Covariance

To each operator monotone g ∈ Fop one
associate the means mg(·, ·).

Define the g-covariance as

Covgρ(A,B) := Tr(mg(Lρ, Rρ)(A0)B0)
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Main question

The standard quantum covariance

Covρ(A,B) :=
1

2
Tr(ρ(AB+BA))−Tr(ρA)·Tr(ρB) =

= Tr

[(

Lρ +Rρ

2

)

(A0)B0

]

.

plays a fundamental role with respect to
uncertainty relations.
Can one find in this field some criteria to select
one (or more) specific covariance?
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Heisenberg uncertainty principles

Let A,B ∈ Mn,sa(C).

Covρ(A,B) :=

[

Trρ

(

AB + BA

2

)]

−Tr(ρA)·Tr(ρB),

Varρ(A) := Covρ(A,A).

Heisenberg uncertainty principle (1927) reads as

Varρ(A) · Varρ(B) ≥
1

4
|Tr(ρ[A,B])|2.
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Schrödinger – Robertson UP

Schrödinger and Robertson (1929-1930)
improved UP

Varρ(A) ·Varρ(B)−Covρ(A,B)2 ≥ 1

4
|Tr(ρ[A,B])|2.

The standard uncertainty principles are
non-trivial whenever A,B are not compatible,
that is, [A,B] -= 0.
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Robertson general UP (1934)

Let A1 . . . , AN ∈ Mn,sa(C).

det {Covρ(Ah, Aj)} ≥ det

{

− i

2
Tr(ρ[Ah, Aj])

}

,

for h, j = 1, . . . , N
The l.e.s. is the generalized variance of the
random vector (A1, ..., AN).
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g-version of Robertson UP

Let A1 . . . , AN ∈ Mn,sa(C).

det
{

Covgρ(Ah, Aj)
}

≥ det {−i · g(0) · Tr(ρ[Ah, Aj])} ,

for h, j = 1, . . . , N ,
for all g ∈ Fop.

Remark: g(0) is the best constant in the above
inequality.
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Conclusion

Quantum g-covariances coming from regular g
(constant g(0) -= 0) do have uncertainty relations.
Quantum g-covariances coming from nonregular
g (constant g(0) = 0) do NOT have uncertainty
relations.
The usual quantum covariance has the most
demanding one (since g(0) = 1

2 only for the
arithmetic mean).
After all Schrödinger and Robertson were right ...
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Robertson general UP (2nd version)

The matrix {− i
2Tr(ρ[Ah, Aj])} is anti-symmetric.

Therefore, the Robertson UP reads as

det {Covρ(Ah, Aj)} ≥
{

0, N odd
det{− i

2Tr(ρ[Ah, Aj])}, N even,

If N = 2m+ 1, UP says (classically!) that the
generalized variance is non-negative.
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Where to look for an UP for N odd?

Robertson UP is based on the commutator
[Ah, Aj]. If N = 1 this structure becomes
meaningless !
Intuitively, an UP for N odd should be based
on a structure which involves [ρ,A] .
This commutator appears in quantum
dynamics.
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Fisher information

X : Ω → R real r. v. with diff. density ρ
The score is

Jρ :=
ρ′

ρ
Eρ(Jρ) = 0

The Fisher information is

IX := Iρ = Varρ(Jρ) =

∫

R

(ρ′)2

ρ

– p. 21/??



FI as a Riemannian metric

The ρ-centered variables (Eρ(U) = 0) should
be considered as “tangent vectors" at the
“point" ρ.
On this “tangent space" Fisher information
(covariance) gives a Riemannian metric.
To understand this costruction in the quantum
setting one needs to understand the links
among means, monotone functions and
Fisher information(s).
We restrict to the simplex of probability
vectors.
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Classical Fisher information

(Ω,G, ρ) probability space
ρ-scores = random variable s.t. Eρ(U) = 0
on ρ-scores U, V the Fisher information is
defined as

gρ(U, V ) := Covρ(U, V ) = Eρ(UV )

The ρ–scores are "tangent vectors".
We restrict on the simplex

P1
n := {ρ ∈ Rn|

∑

i

ρi = 1, ρi > 0}.
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Properties of Fisher information

Look at Fisher information in different ways:
i) Hessian of Kullback-Leibler relative entropy

K(ρ, σ) :=
∑

i

ρi(log ρi − log σi);

ii) pull-back of the map ρ→ √
ρ;

iii) get the scores using the (Symmetric)
Logarithmic Derivative

∂ρ(θ)

∂θ
=

1

2

(

∂

∂θ
log(ρ(θ)) · ρ(θ) + ρ(θ) · ∂

∂θ
log(ρ(θ))

)
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Examples of QFI

Examples of quantum Fisher informations

Hessian of Umegaki relative entropy
Tr(ρ(log ρ− log σ))
−→ BKM metric

Pull-back of the map ρ→ √
ρ

−→WY metric

Symmetric logarithmic derivative
−→ Bures-Uhlmann metric (SLD)
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Chentsov Theorem

Can we have a unified quantum approach?
Yes using the classical Chentsov theorem.
On the simplex P1

n the Fisher information is the
only Riemannian metric contracting under an
arbitrary coarse graining T , namely for any
tangent vector X at the point ρ we have

gmT (ρ)(TX, TX) ≤ gnρ (X,X)

Remark
Coarse graining = stochastic map = linear,
positive, trace preserving.
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Monotone metrics (or QFI)

D1
n := {ρ ∈ Mn|Tr(ρ) = 1 ρ > 0} = faithful states

Definition
A quantum Fisher information is a Riemaniann
metric on D1

n contracting under an arbitrary
coarse graining T , namely

gmT (ρ)(TA, TA) ≤ gnρ (A,A).

(quantum) coarse graining = linear, (completely)
positive, trace preserving map.
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Petz theorem

Lρ(A) := ρA Rρ(A) := Aρ

Petz theorem

There is bijection among quantum Fisher
information and operator monotone functions
given by the formula

〈A,B〉ρ,f := Tr(A ·mf(Lρ, Rρ)
−1(B)).
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Summary

Löwner-Kubo-Ando-Petz

f

0

mf(A,B) := A
1

2f(A− 1

2BA− 1

2 )A
1

2 .

0

〈A,B〉ρ,f := Tr(A ·mf(Lρ, Rρ)
−1(B)).
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Regular and non-regular QFI

Fop := {f op. mon.|f(1) = 1, tf(t−1) = f(t)}

F r
op := {f ∈ Fop|f(0) := lim

t→0
f(t) > 0}

F n
op := {f ∈ Fop|f(0) = 0}

Fop = F r
op ∪ Fn

op
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The function f̃

f̃(x) :=
1

2

[

(x+ 1)− (x− 1)2
f(0)

f(x)

]

Theorem
f ∈ F r

op (f is a regular n. s. o. m. function)

⇓

f̃ ∈ F n
op (f̃ is a non-regular n. s. o. m. function)
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Regular and non-regular means

f → f̃

mf → mf̃

Examples

x+ y

2
→ 2

1
x
+ 1

y

(
√
x+

√
y

2

)2

→ √
xy
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Fundamental formula

Theorem

If f is regular then

f(0)

2
〈i[ρ,A], i[ρ,B]〉ρ,f = Covρ(A,B)−Covf̃ρ(A,B).
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The dynamical UP

Let A1 . . . , AN ∈ Mn,sa(C).

det {Covρ(Ah, Aj)} ≥ det {f(0)〈i[ρ,Ah], i[ρ,Aj]〉ρ,f}

for h, j = 1, . . . , N ,
for all f ∈ Fop.

Nontrivial bound also if N is odd!
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The dynamical UP (g-version)

Let A1 . . . , AN ∈ Mn,sa(C).

det
{

Covgρ(Ah, Aj)
}

≥ det {g(0)f(0)〈i[ρ,Ah], i[ρ,Aj]〉}

for h, j = 1, . . . , N ,
for all g, f ∈ Fop.
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WYD information

Iρ(β,A) = −1

2
Tr([ρβ, A] · [ρ1−β, A])

plays a role in ....

– p. 36/??



WYD II

strong subadditivity of entropy
(Lieb-Ruskai,1973)
homogeneity of the state space of factors of
type III1 (Connes-Stormer,1978;
measures for quantum entanglement
(Chen,2005;
Klyachko-Oztop-Shumovsky,2006;
uncertainty relations ;
quantum hypothesis testing (Calsamiglia et
al., 2008
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Explanation

Indeed WYD information is a quantum Fisher
information. To prove it one has to prove that the
function

fβ(x) = β(1− β)
(x− 1)2

(xβ − 1)(x1−β − 1)
0 < β < 1,

is operator monotone. The original proof is quite
complicated.

– p. 38/??



The inversion formula

For g ∈ F n
op set

ǧ(x) = g′′(1) · (x− 1)2

2g(x)− (x+ 1)

Then
ˇ̃f = f
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WYD as QFI: a simple proof

The function fβ ∈ F r
op for 0 < β < 1.

Proof
The function

gβ(x) =
xβ + x1−β

2
0 < β < 1

is operator monotone. It easily follows that
gβ ∈ Fop and that gβ is non-regular. Since f̃β = gβ
we get the desired conclusion.
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History of the results – I

Luo (2000), Lett. Math. Phys.:
N=1; proof for the SLD metric.
Luo (2003), Phys. Rev. Lett:
N=1; proof for the WY metric.
Luo-Zhang Z.( 2004.), J. Statist. Phys.:
N=2; conjecture for the WY metric.
Luo-Zhang Q. (2004), IEEE Trans. Inform.
Theory:
N=2; proof for the WY metric.
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History of the results – II

Kosaki (2005), Internat. J. Math.,
N=2; WYD(β) metric.(Monotonicity for WYD
and condition for equality)
Yanagi et alii (2005), IEEE Trans. Inform.
Theory:
N=2; WYD(β) metric.
Gibilisco-Isola (2007) Ann. Ins. Stat. Math.:
N=2; conjecture f arbitrary
Hansen (2008), Proc. Nat. Acad. Sci. USA,
N=1; proof f arbitrary.
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History of the results – III

Gibilisco-Imparato-Isola (2007), J. Math.
Phys.
N=2; proof f arbitrary
Gibilisco-Imparato-Isola (2008), J. Stat. Phys.
conjecture N and f arbitrary
Gibilisco-Imparato-Isola (2008), Lin. Alg.
Appl.
proof N and f arbitrary
Andai (2008), J. Math. Phys.,
proof N and f arbitrary
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History of the results – IV

Gibilisco-Isola (2008) Inf. Dim. Anal. Quant.
Prob.
N=2; WYD(β) metric.; s.f. Von Neumann
alg.
Gibilisco-Isola (2008) Int. J. Math.
N=2; f arbitrary; Von Neumann alg.
Gibilisco-Isola (2008) J. Stat. Phys.
N arbitrary; f arbitrary; Von Neumann alg.
Petz-Szabo (2009) to appear on Int. J. Math.
N arbitrary; f arbitrary; Von Neumann alg.
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History of the results – V

Gibilisco-Petz-Hiai (2009) IEEE Trans. Inf.
Theor.
Dynamical UP for arbitrary g-covariance
Audenaert-Cai-Hansen (2009) Lett. Math.
Phys.
New simple proof of Dynamical UP
Gibilisco-Hansen-Isola (2009), Lin. Alg. Appl.
Correspondence f ←→ f̃

Gibilisco-Isola (2009) Preprint
Standard and dynamical UP for arbitrary
g-covariance on Von Neumann alg.
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