Paris – December 3, 2009

Institut Henri Poincaré, Paris " 3^{rd} EPFL-UMLV Workshop on Random Matrices, Information Theory and Applications"

Covariance, means and Fisher information: a quantum journey at the light of uncertainty relations

Paolo Gibilisco

Università di Roma "Tor Vergata" gibilisco@volterra.uniroma2.it

Classical covariance

Classical covariance

$$
Cov_p(X, Y) := \mathbb{E}_p(XY) - \mathbb{E}_p(X)\mathbb{E}_p(Y) = \mathbb{E}_p(X_0Y_0).
$$

where
$$
X_0 := X - \mathbb{E}_p(X)
$$
.

To go "quantum" we consider:

- s.a. matrices A, B instead of r.v. X, Y and states ρ instead of densities p ;
- Tr(ρA) instead of the expectation $\mathbb{E}_p(X)$.

Quantum covariance

Quantum covariance

$$
Cov_{\rho}(A, B) := \frac{1}{2} Tr(\rho(AB + BA)) - Tr(\rho A) \cdot Tr(\rho B) =
$$

$$
= \mathrm{Tr}\left[\left(\frac{L_{\rho} + R_{\rho}}{2}\right)(A_0)B_0\right].
$$

where $A_0 := A - \text{Tr}(\rho A) \cdot I$ and

$$
L_{\rho}(A) := \rho A \quad R_{\rho} := A \rho
$$

Different quantum covariances ...

Is the above definition "natural"? Certainly it coincides with the classical covariance in a commutative setting. It uses the "arithmetic mean" of the left and right multiplication operator

$$
m_{arith}(L_{\rho},R_{\rho}):=\frac{L_{\rho}+R_{\rho}}{2}
$$

This suggest that we may consider other noncommutatitive "'means".

... using different means?

If we consider the "harmonic" covariance

$$
Cov_{\rho}^{har}(A, B) := \text{Tr}\left(\left(2(L_{\rho}^{-1} + R_{\rho}^{-1})^{-1}\right)(A_0)B_0\right),
$$

also this coincides with the classical definition where there is no difference between L_{ρ} and $R_{\rho}!$

Is there a quantum criterion to prefere a certain covariance (mean)?

Kubo-Ando 1980 Let $D_n := \{A \in M_n | A > 0\}.$ A *mean* is a function $m: \mathcal{D}_n \times \mathcal{D}_n \to \mathcal{D}_n$ such that (i) $m(A, A) = A$, (ii) $m(A, B) = m(B, A),$ (iii) $A < B \implies A < m(A, B) < B$, (vi) $A < A', B < B' \implies m(A, B) < m(A', B'),$ (v) m is continuous, (vi) $Cm(A, B)C^* \leq m(CAC^*, CBC^*)$, for every $C \in M_n$. Property (vi) is the *transformer inequality*.

Operator monotone functions

M_n = complex matrices **Definition** $f:(0,+\infty) \to R$ is operator monotone iff $\forall A, B \in M_n$ and $\forall n = 1, 2, ...$

$$
0 \le A \le B \quad \Longrightarrow \quad 0 \le f(A) \le f(B).
$$

Definition

 φ is a Pick function if it is analytic in the upper half plane and map the latter into itself.

Löwner Theorem

Löwner 1932

Theorem

 f is operator monotone iff it is the restriction of a Pick function.

 ${\cal F}_{op}$

Usually one consider o.m. functions that are: i) normalized i. e. $f(1) = 1$; ii) symmetric i.e. $tf(t^{-1}) = f(t)$.

 \mathcal{F}_{op} : family of normalized symmetric o. m. functions.

Examples

$$
\frac{1+x}{2}, \quad \sqrt{x}, \quad \frac{2x}{1+x}.
$$

$$
\mathcal{M}_{op} := \text{family of matrix means.}
$$

Kubo and Ando (1980) proved the following, fundamental result.

Theorem

There exists a bijection between \mathcal{M}_{op} and \mathcal{F}_{op} given by the formula

$$
m_f(A, B) := A^{\frac{1}{2}} f(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}) A^{\frac{1}{2}}.
$$

Kubo–Ando inequality

Examples of operator means

$$
\frac{A+B}{2}
$$

$$
A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^{\frac{1}{2}}A^{\frac{1}{2}}
$$

$$
2(A^{-1} + B^{-1})^{-1}
$$

Fundamental inequality

$$
2(A^{-1} + B^{-1})^{-1} \le m_f(A, B) \le \frac{A + B}{2}
$$

 $∀f ∈ F_{op}$

g**-Covariance**

To each operator monotone $g \in \mathcal{F}_{op}$ one associate the means $m_q(\cdot, \cdot)$.

Define the q -covariance as

 $Cov^g_{\rho}(A, B) := \text{Tr}(m_g(L_{\rho}, R_{\rho})(A_0)B_0)$

Main question

The standard quantum covariance

$$
Cov_{\rho}(A, B) := \frac{1}{2} Tr(\rho(AB + BA)) - Tr(\rho A) \cdot Tr(\rho B) =
$$

$$
= \mathrm{Tr}\left[\left(\frac{L_{\rho} + R_{\rho}}{2}\right)(A_0)B_0\right].
$$

plays a fundamental role with respect to uncertainty relations.

Can one find in this field some criteria to select one (or more) specific covariance?

Heisenberg uncertainty principles

Let
$$
A, B \in \mathcal{M}_{n,sa}(\mathbb{C})
$$
.

$$
Cov_{\rho}(A, B) := \left[Tr \rho \left(\frac{AB + BA}{2} \right) \right] - Tr(\rho A) \cdot Tr(\rho B),
$$

$$
\text{Var}_{\rho}(A) := \text{Cov}_{\rho}(A, A).
$$

Heisenberg uncertainty principle (1927) reads as

$$
\operatorname{Var}_{\rho}(A) \cdot \operatorname{Var}_{\rho}(B) \ge \frac{1}{4} |\operatorname{Tr}(\rho[A, B])|^2.
$$

Schrödinger – Robertson UP

Schrödinger and Robertson (1929-1930) improved UP

$$
\operatorname{Var}_{\rho}(A) \cdot \operatorname{Var}_{\rho}(B) - \operatorname{Cov}_{\rho}(A, B)^{2} \ge \frac{1}{4} |\operatorname{Tr}(\rho[A, B])|^{2}.
$$

The standard uncertainty principles are non-trivial whenever A, B are not compatible, that is, $[A, B] \neq 0$.

Robertson general UP (1934)

Let
$$
A_1 \ldots, A_N \in \mathcal{M}_{n,sa}(\mathbb{C})
$$
.

$$
\det\{\mathrm{Cov}_{\rho}(A_h, A_j)\} \geq \det\left\{-\frac{i}{2}\mathrm{Tr}(\rho[A_h, A_j])\right\},\,
$$

for $h, j = 1, \ldots, N$ The l.e.s. is the *generalized variance* of the random vector $(A_1, ..., A_N)$.

g**-version of Robertson UP**

Let
$$
A_1 \ldots, A_N \in \mathcal{M}_{n,sa}(\mathbb{C})
$$
.

$$
\det\left\{\text{Cov}_{\rho}^{g}(A_{h}, A_{j})\right\} \geq \det\left\{-i \cdot g(0) \cdot \text{Tr}(\rho[A_{h}, A_{j}])\right\},\,
$$

$$
\text{for } h, j = 1, \dots, N,
$$
\n
$$
\text{for all } g \in \mathcal{F}_{op}.
$$

Remark: $g(0)$ is the best constant in the above inequality.

Quantum q -covariances coming from regular q (constant $g(0) \neq 0$) do have uncertainty relations. Quantum *q*-covariances coming from nonregular g (constant $q(0) = 0$) do NOT have uncertainty relations.

The usual quantum covariance has the most demanding one (since $g(0) = \frac{1}{2}$ only for the arithmetic mean).

After all Schrödinger and Robertson were right ...

Robertson general UP (2**nd version)**

The matrix $\{-\frac{i}{2}\text{Tr}(\rho[A_h,A_j])\}$ is anti-symmetric. Therefore, the Robertson UP reads as

$$
\det\{\text{Cov}_{\rho}(A_h, A_j)\} \ge \begin{cases} 0, & N \text{ odd} \\ \det\{-\frac{i}{2}\text{Tr}(\rho[A_h, A_j])\}, & N \text{ ever} \end{cases}
$$

If $N = 2m + 1$, UP says (classically!) that the *generalized variance* is non-negative.

Where to look for an UP for N **odd?**

- **Robertson UP is based on the commutator** $[A_h, A_i]$. If $N = 1$ this structure becomes meaningless !
- **•** Intuitively, an UP for N odd should be based on a structure which involves $[\rho, A]$.
- **This commutator appears in quantum** dynamics.

 $X:\Omega\to\mathbb{R}$ real r. v. with diff. density ρ The *score* is

$$
J_{\rho} := \frac{\rho'}{\rho} \qquad \mathbb{E}_{\rho}(J_{\rho}) = 0
$$

The *Fisher information* is

$$
I_X := I_\rho = \text{Var}_\rho(J_\rho) = \int_{\mathbb{R}} \frac{(\rho')^2}{\rho}
$$

FI as a Riemannian metric

- The ρ -centered variables ($\mathbb{E}_{\rho}(U)=0$) should be considered as "tangent vectors" at the "point" ρ .
- **On this "tangent space" Fisher information** (covariance) gives a Riemannian metric.
- **•** To understand this costruction in the quantum setting one needs to understand the links among means, monotone functions and Fisher information(s).
- We restrict to the simplex of probability vectors.

Classical Fisher information

 $(\Omega, \mathcal{G}, \rho)$ probability space ρ -scores = random variable s.t. $E_{\rho}(U)=0$ on ρ -scores U, V the Fisher information is defined as

$$
g_{\rho}(U, V) := \text{Cov}_{\rho}(U, V) = E_{\rho}(UV)
$$

The ρ -scores are "tangent vectors". We restrict on the simplex

$$
\mathcal{P}_n^1 := \{ \rho \in R^n | \sum_i \rho_i = 1, \quad \rho_i > 0 \}.
$$

Properties of Fisher information

Look at Fisher information in different ways: i) Hessian of Kullback-Leibler relative entropy

$$
K(\rho,\sigma):=\sum_i\rho_i(\log\rho_i-\log\sigma_i);
$$

ii) pull-back of the map $\rho \to \sqrt{\rho}$; iii) get the scores using the (Symmetric) Logarithmic Derivative

$$
\frac{\partial \rho(\theta)}{\partial \theta} = \frac{1}{2} \left(\frac{\partial}{\partial \theta} \log(\rho(\theta)) \cdot \rho(\theta) + \rho(\theta) \cdot \frac{\partial}{\partial \theta} \log(\rho(\theta)) \right)
$$

Examples of QFI

Examples of quantum Fisher informations

Hessian of Umegaki relative entropy $Tr(\rho(\log \rho - \log \sigma))$ → BKM metric

Pull-back of the map $\rho \rightarrow \sqrt{\rho}$ → WY metric

Symmetric logarithmic derivative −→ Bures-Uhlmann metric (SLD)

Can we have a unified quantum approach? Yes using the classical **Chentsov theorem**. On the simplex P_n^1 the Fisher information is the only Riemannian metric contracting under an arbitrary coarse graining T , namely for any tangent vector X at the point ρ we have

$$
g^m_{T(\rho)}(TX,TX) \le g^n_{\rho}(X,X)
$$

Remark

Coarse graining = stochastic map = linear, positive, trace preserving.

Monotone metrics (or QFI)

$D_n^1 := \{\rho \in M_n | \text{Tr}(\rho) = 1 \quad \rho > 0\} =$ faithful states

Definition

A quantum Fisher information is a Riemaniann metric on D_n^1 contracting under an arbitrary coarse graining T , namely

$g_{T(\rho)}^m(TA, TA) \leq g_{\rho}^n(A, A).$

(quantum) coarse graining = linear, (completely) positive, trace preserving map.

$$
L_{\rho}(A) := \rho A \qquad R_{\rho}(A) := A\rho
$$

Petz theorem

There is bijection among quantum Fisher information and operator monotone functions given by the formula

$$
\langle A, B \rangle_{\rho, f} := \text{Tr}(A \cdot m_f(L_\rho, R_\rho)^{-1}(B)).
$$

Summary

Löwner-Kubo-Ando-Petz

Regular and non-regular QFI

$\mathcal{F}_{op} := \{ f \text{ op. mon.} | f(1) = 1, \quad tf(t^{-1}) = f(t) \}$

$$
\mathcal{F}_{op}^r := \{ f \in \mathcal{F}_{op} | f(0) := \lim_{t \to 0} f(t) > 0 \}
$$

$$
\mathcal{F}_{op}^n := \{ f \in \mathcal{F}_{op} | f(0) = 0 \}
$$

$$
\mathcal{F}_{op} = \mathcal{F}_{op}^r \cup \mathcal{F}_{op}^n
$$

$$
\tilde{f}(x) := \frac{1}{2} \left[(x+1) - (x-1)^2 \frac{f(0)}{f(x)} \right]
$$

Theorem $f \in \mathcal{F}_{op}^r$ (f is a regular n. s. o. m. function)

 $\tilde{f}\in \mathcal{F}^{n}_{op}$ (\tilde{f} is a non-regular n. s. o. m. function)

⇓

Regular and non-regular means

$$
f \rightarrow \tilde{f}
$$

$$
m_f \rightarrow m_{\tilde{f}}
$$

Examples

$$
\frac{x+y}{2} \to \frac{2}{\frac{1}{x} + \frac{1}{y}}
$$

$$
\left(\frac{\sqrt{x} + \sqrt{y}}{2}\right)^2 \to \sqrt{xy}
$$

Fundamental formula

Theorem

If f is regular then

$$
\frac{f(0)}{2}\langle i[\rho,A],i[\rho,B]\rangle_{\rho,f}=\text{Cov}_{\rho}(A,B)-\text{Cov}_{\rho}^{\tilde{f}}(A,B).
$$

The dynamical UP

Let
$$
A_1 \ldots, A_N \in \mathcal{M}_{n,sa}(\mathbb{C})
$$
.

 $\det \{Cov_{\rho}(A_h, A_j)\} \geq \det \{f(0)\langle i[\rho, A_h], i[\rho, A_j]\rangle_{\rho, f}\}$

$$
\text{for } h, j = 1, \dots, N,
$$
\n
$$
\text{for all } f \in \mathcal{F}_{op}.
$$

Nontrivial bound also if N is odd!

The dynamical UP (g**-version)**

Let $A_1 \ldots, A_N \in \mathcal{M}_{n,sa}(\mathbb{C})$.

det $\{Cov^g_\rho(A_h, A_j)\} \ge \det \{g(0) f(0)\langle i[\rho, A_h], i[\rho, A_j]\rangle\}$

for $h, j = 1, \ldots, N$, for all $g, f \in \mathcal{F}_{op}$.

WYD information

 $I_\rho(\beta,A)=-\frac{1}{2}$ 2 $\text{Tr}([\rho^\beta,A]\cdot[\rho^{1-\beta},A])$

plays a role in

- **strong subadditivity of entropy** (Lieb-Ruskai,1973)
- **homogeneity of the state space of factors of** type III₁ (Connes-Stormer, 1978;
- **Paramers for quantum entanglement** (Chen,2005; Klyachko-Oztop-Shumovsky,2006;
- uncertainty relations ;
- quantum hypothesis testing (Calsamiglia et al., 2008

Indeed WYD information is a quantum Fisher information. To prove it one has to prove that the function

$$
f_{\beta}(x) = \beta(1-\beta)\frac{(x-1)^2}{(x^{\beta}-1)(x^{1-\beta}-1)} \qquad 0 < \beta < 1,
$$

is operator monotone. The original proof is quite complicated.

The inversion formula

For
$$
g \in \mathcal{F}_{op}^n
$$
 set

$$
\check{g}(x) = g''(1) \cdot \frac{(x-1)^2}{2g(x) - (x+1)}
$$

Then
$$
\tilde{f} = f
$$

WYD as QFI: a simple proof

The function $f_{\beta} \in \mathcal{F}_{op}^r$ for $0 < \beta < 1$. Proof The function

$$
g_{\beta}(x) = \frac{x^{\beta} + x^{1-\beta}}{2} \qquad 0 < \beta < 1
$$

is operator monotone. It easily follows that $g_{\beta} \in \mathcal{F}_{op}$ and that g_{β} is non-regular. Since $\tilde{f}_{\beta} = g_{\beta}$ we get the desired conclusion.

History of the results – I

- Luo (2000), *Lett. Math. Phys.*: **N=1; proof for the SLD metric**.
- Luo (2003), *Phys. Rev. Lett*: **N=1; proof for the WY metric**.
- Luo-Zhang Z.(2004.), *J. Statist. Phys.*: **N=2; conjecture for the WY metric**.
- Luo-Zhang Q. (2004), *IEEE Trans. Inform. Theory*: **N=2; proof for the WY metric**.

History of the results – II

- Kosaki (2005), *Internat. J. Math.*, **N=2; WYD(**β**) metric.**(Monotonicity for WYD and condition for equality)
- Yanagi *et alii* (2005), *IEEE Trans. Inform. Theory*: **N=2; WYD(**β**) metric.**
- Gibilisco-Isola (2007) *Ann. Ins. Stat. Math.*: **N=2; conjecture** f **arbitrary**
- Hansen (2008), *Proc. Nat. Acad. Sci. USA*, **N=1; proof** f **arbitrary.**

History of the results – III

- Gibilisco-Imparato-Isola (2007), *J. Math. Phys.* **N=2; proof** f **arbitrary**
- Gibilisco-Imparato-Isola (2008), *J. Stat. Phys.* **conjecture** N **and** f **arbitrary**
- Gibilisco-Imparato-Isola (2008), *Lin. Alg. Appl.* **proof** N **and** f **arbitrary**
- Andai (2008), *J. Math. Phys.*, **proof** N **and** f **arbitrary**

History of the results – IV

- Gibilisco-Isola (2008) *Inf. Dim. Anal. Quant. Prob.* **N=2; WYD(**β**) metric.; s.f. Von Neumann alg.**
- Gibilisco-Isola (2008) *Int. J. Math.* **N=2;** f **arbitrary; Von Neumann alg.**
- Gibilisco-Isola (2008) *J. Stat. Phys.* **N arbitrary;** f **arbitrary; Von Neumann alg.**
- Petz-Szabo (2009) *to appear on Int. J. Math.* **N arbitrary;** f **arbitrary; Von Neumann alg.**

History of the results – V

- Gibilisco-Petz-Hiai (2009) *IEEE Trans. Inf. Theor.* **Dynamical UP for arbitrary** g**-covariance**
- Audenaert-Cai-Hansen (2009) *Lett. Math. Phys.* **New simple proof of Dynamical UP**
- Gibilisco-Hansen-Isola (2009), *Lin. Alg. Appl.* Correspondence f ←→ f
- Gibilisco-Isola (2009) *Preprint* **Standard and dynamical UP for arbitrary** g**-covariance on Von Neumann alg.**