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Smoker network

Social interaction network (Framingham study, NEJM 2008)

By 2000 smokers more likely to be at periphery of their
networks and in smaller subgroups than non-smokers (see dark
circled areas)
Size of circle: number of cigarettes per day
Yellow circle: smoker
Green circle: non-smoker
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Curated gene expression networks
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Discovery of gene expression networks

For testing correlations between gene samples on a Affy gene
microarray chip need to test

�
24,000

2

�
sample correlations based on

small sample size (here N=8).

Is discovered correlation network statistically significant?
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Why sample correlation?

Sample correlation has been of great interest in signal processing

Invariant to translation and scale transformations on variables

Used to discover of dependency structure and graphical
models (Willsky, Jordan)

Used to estimate number of signals in a random mixture
(Nadakaduti and Edelmann, Wax and Kailath)

Used in spectral analysis and sensor array beamforming
(Parzen, Schultheiss)
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Correlation screening

p-variate random sample: X = [X1, . . . ,Xp]T

p × p covariance matrix (unknown): Σ = E [XXT ]

Objective: given n i.i.d. samples X = [X1, . . . ,Xn]T detect
highest correlations

Difficulty: p � n

Sample covariance matrix:

Σ̂ =
1

n − 1

n�

i=1

(Xi − µ̂)(Xi − µ̂)T

Sample correlation matrix:

R = D̂
−1/2Σ̂D̂

−1/2

where D̂ = diag(Σ̂).
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Thresholded sample correlation matrix

Define ρij = (R)ij and ρ a user-defined threshold in [0, 1]

Fisher’s correlation screening test: |ρij | > ρ

Screening gives set of “discovered” (i , j) correlation pairs
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Phase transitions in correlation screening

Number of discoveries exhibit phase transition phenomenon
This phenomenon gets worse as p/n increases.
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Mathematical results

Two types of results obtained

Characterize large p phase transition and its threshold.

Predict mean discovery rate and p-values for correlation
screening and persistent correlation screening.

How we approach the analysis

Start with assuming Gaussian diagonal covariance null model

Extend results to dependent or non-Gaussian null model

Basis for analysis

Projected Z-scores embedding of sample correlation

Geometric probability on (n − 1)-sphere Sn−1 ⊂ IRn−1

Exchangeable process theory for handling dependent variables
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Z-score representation of sample correlation

Z-score representation of correlation matrix

R = ZT Z

Z = [Z1, . . . ,Zp] = (n − 1)−1/2(I− n−1
11

T )XD
−1/2.

Zi standardizes Xi by scale/translation transformation

Zi =
Xi − µ̂i1

ŝi
√

n − 1
, i = 1, . . . , p

µ̂i =
1

n

n�

i=1

Xij , ŝ2
i =

1

n − 1

n�

j=1

(Xij − µ̂j)
2

n-dimensional Zi lies in n − 2 dimensional subpsace

1
T
Zi = 0 and �Zi� = 1
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Sample correlation and Z-score distances

Sample correlation between Xi and Xj is equal to Z-score
inner product

ρij = Z
T
i Zj

This is directly related to Euclidean distance between Zi and
Zj

�Zi − Zj� =
�

2(1− ρij)
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Sn−1 embedding via projected Z-scores

Easier to work with projected Z-scores U = [U1, . . . ,Up]

Ui are (n − 1)-element summaries of n-element Zi

Ui satisfy �Ui� = 1 and lie on sphere Sn−1 ⊂ IRn−1

U gives more parsimonious representation than Z

R = UT U

ρij = UT
i Uj and geodesic distance between Ui and Uj satisfies

d(Ui ,Uj) = arccos(ρij)
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Sn−1 embedding example: diagonal Gaussian
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Sn−1 embedding example : ARMA(2,2) Gaussian
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Phase transition analysis

Define φ = [φ1, . . . , φp] the ”discovery” indicator sequence:

φi =

�
1, maxj �=i |ρij | > ρ
0, o.w .

Define N the number of discoveries:

N =
p�

i=1

φi

Objective: Find mathematical expressions for E [N] as a function
of p, n, ρ.
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Phase transition analysis

Conditional expectation of φi has representation

E [φi |Ui ] = P(∪j �=iUj ∈ Cρ,Ui ∪ Cρ,−Ui |Ui )
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Phase transition analysis: diagonal Gaussian case

Given Ui define the binary sequence b = [b1, . . . , bp−1]

bi =

�
1, Uj ∈ Cρ,Ui ∪ Cρ,−Ui

0, o.w .

Then, have equivalent representation

E [φi |Ui ] = P(
p−1�

i=1

bi > 0|Ui )

Classical result of multivariate statistics [Thm. 4.5.4]{TW
Anderson, 2003}:

Lemma

Let X be a p-variate Gaussian vector with covariance matrix Σ.
The projected Z-scores {Ui}p

i=1
are i.i.d. random vectors uniformly

distributed on Sn−1.
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Phase transition analysis: diagonal Gaussian case

Implication: [b1, . . . , bp−1] is i.i.d. Bernoulli sequence and

E [φi |Ui ] = 1− B(0,P0, p − 1)

where

B(k, θ,m) =

�
m

k

�
θk(1− θ)m−k

and

Po = Po(ρ, n) =
2Γ((n − 1)/2)√
πΓ((n − 2)/2)

�
arccos(ρ)

0

sin(n−3)(θ)dθ. (1)
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Phase transition analysis: diagonal Gaussian case

Result: mean number of false discoveries

E [N] = M(ρ, n, p)
def
= p(1−B(0,P0, p − 1)) = p(1− (1− P0)

p−1)

n 550 500 450 150 100 50 10 8 6

ρc 0.188 0.197 0.207 0.344 0.413 0.559 0.961 0.988 0.9997
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Phase transition analysis: diagonal Gaussian case

Proposition

The slope of E [N] is

dE [N]/dρ = −p(p − 1)(1− Po)p−2(1− ρ2)
n−4

2 cn,

where

cn = (2Γ((n − 1)/2)/(
√

πΓ(n/2− 1)))−2/(n−4).

Critical threshold ρc = max{ρ : dE [N]/dρ = −1} is

ρc =
�

1− cn(p − 1)−2/(n−4), (pPo � 1) (2)
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Persistent correlation screening

Pair of p-variate random vectors: Xa = [X a
1
, . . . ,X a

p ]T ,

Xb = [X b
1
, . . . ,X b

p ]T

p × p covariance matrices: Σa, Σb

Objective: Discover variables with correlations that persist in
a and b given samples

Xa = [Xa
1, . . . ,X

a
na

]T

Xb = [Xb
1 , . . . ,X

b
nb

]T

Method: jointly screen sample correlation matrices: Ra and
Rb.
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Thresholded sample correlation matrices

Given sample correlations ρa
ij , ρb

ij and thresholds ρa, ρb

Variable i declared PC if both maxj �=i |ρa
ij | > ρa and

maxj �=i |ρb
ij | > ρb

L is number of persistent correlation discoveries
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PC phase transition analysis

Define φa = [φa
1
, . . . , φa

p] and φb = [φb
1
, . . . , φb

p] the a and b
discovery indicator vectors.
Define M and N the number of discoveries in a and b

M =
p�

i=1

φa
i , N =

p�

i=1

φb
i

Then L, the number of common discoveries, is

L =
p�

i=1

φa
i φ

b
i

Objective: Find expressions for E [L] as a function of
p, na, nb, ρa, ρb.
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PC phase transition analysis: diagonal Gaussian case

Proposition

Assume that the two sets of observations {Xa
n}na

n=1
and {Xb

n}
nb
n=1

are mutually independent and each is composed of i.i.d. p-variate
Gaussian random vectors with diagonal covariances. Then

P(L = k) =
1

k!

�
E [N]E [M]

p

�k

(1 + O(1/p)) , 0 < k ≤ p (3)

and

P(L = 0) = exp

�
−E [N]E [M]

p

�
(1 + O(1/p)) .



Outline Motivation Correlation screening Persistent correlation screening Dependency extensions Application Conclusions

PC phase transition analysis: diagonal Gaussian case

Mean number of persistent discoveries: E [L] = E [M]E [N]

p
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PC phase transition vs previous phase transition
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Proof of PC Proposition

Note: L is number of matching ”1”s in binary sequences φa, φb.
As these sequences are Bernoulli, conditioned on N,M we have

P(L = k|N,M) =

�
p!

k!(N−k)!(M−k)!(p−N−M+k)!

�

� p
M

��p
N

� , 0 ≤ k ≤ min{N,M}.

or, applying Stirling approximation to terms involving p,

P(L = k|N,M) =
N!M!

k!(N − k)!(M − k)!
p−k (1 + O(NM/p)) .

As M,N are binomial, elementary combinatorial identities yield

P(L = k) =
1

k!

�
E [N]E [M]

p

�k

(1 + O(1/p)) , 0 < k ≤ p
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Extension to arbitrary distributions

Central concept: invariance of M, N and L to index reordering.

For π an arbitrary permutation:

N =
p�

i=1

φi =
p�

i=1

φπ(i)

An exchangeable sequence of binary random variables
b1, . . . ,bp has probability mass function f that satisfies

fbπ(1),...,bπ(p)
(b1, . . . , bp) = fb1,...,bp(b1, . . . , bp)
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Extension to arbitrary distributions: de Finetti theorem

Proposition

(Diaconis and Freedman, 1980) A length p subsequence of a
length P exchangeable binary sequence b1, . . . ,bP , is almost i.i.d.
in the sense that there exists a distribution µ on [0, 1] such that

�fb1,...,bp(b1, . . . , bp)−
�

θN(1− θ)p−Nµ(dθ)� ≤ 4p

P

where N =
�p

i=1
bi . Furthermore,

E [θ] =
1

P

P�

i=1

E [bi ]
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Correlation screening with dependencies

Single treatment correlation screening with dependencies.

Proposition

Let the n × p random matrix X have independent rows but
possibly dependent columns. Then

E [N] = p
�
(p − 1)P0H2(fU) + �

�
, (4)

where

H2(fU) = |Sn−1|
�

Sn−1

fU
2
(u)du

with fU = p−1
�p

i=1
fUi the avg population density and

� ≤ (pP0 sup fU)2.
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Implications of Proposition

Effect of multivariate dependency on E [N] is inflation by
factor

H2(fU) = |Sn−1|
�

Sn−1

fU
2
(u)du.

1 ≤ H2(fU) <∞, with “=1” iff fU is uniform over Sn−1 and
=∞ iff fU is dirac.

H2(fU) is decreasing in Rényi α-entropy of order α = 2.

Phase transition threshold is

ρc =
�

1− dn(p − 1)−2/(n−4),

where dn = cnH2(fU).



Outline Motivation Correlation screening Persistent correlation screening Dependency extensions Application Conclusions

Proof of Proposition

Recall definitions: φi = I (
�p−1

i=1
bi > 0), N =

�p
i=1

φi ,

bi =

�
1, Uj ∈ Cρ,Ui ∪ Cρ,−Ui

0, o.w .

Wrt N, bi is subsequence of infinite exchangable sequence.
Therefore, to order O(p2E 2[θ|Ui ]):

E [φi |Ui ] = 1−
�

B(0, θ, p − 1)µ(dθ) = (p − 1)E [θ|Ui ]

By the de Finetti representation, to order O(sup fU/p)

E [θ|Ui ] =
1

p − 1

�

j �=i

E [bi |Ui ] =

�

Cρ,Ui
∪Cρ,−Ui

fU(u)du.

Therefore, applying MVT and summing over i ,

E [N] =
p�

i=1

E [φi ] = p(p − 1)|Sn−1P0

�

Sn−1

fU
2
(u)du
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Persistent correlation screening with dependencies

Proposition

Assume that two sets of observations {Xa
n}na

n=1
and {Xb

n}
nb
n=1

are
mutually independent, each composed of i.i.d. p-variate random
vectors. Then the mean number of discovered PC’s is

E [L] = E0[L] H2(fUa fUb)H2(fUa fUb) A(fUa fUb , fUa fUb)

where E0[L] is mean for diagonal Gaussian case, A(g , h) is

A(g , h) =

�
gh��

g2

��
h2

and fUa
i
fUb = 1

p

�p
i=1

fUa
i
f
Ub

i
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Implications of dependent PC Proposition

Affinity A(g , h) is normalized l2 inner product between
distributions h and g on Sna−1 × Snb−1

0 ≤ A(g , h) ≤ 1

A(fUa fUb , fUa fUb) = 1 iff fUa
i

and f
Ub

i
do not depend on i .

E [L] = E0[L] if fUa and fUb uniform on Sna−1 and Snb−1.
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Proof of dependent PC Proposition

Wrt L =
�p

i=1
φa

i φ
b
i , {φa

i φ
b
i }

p
i=1

is a segment of an infinite
exchangable sequence. Therefore, by de Finetti

P(L = k|Ua
i ,U

b
i ) =

�
p

k

� �
θk(1− θ)p−kµ(dθ)

with

E [θ|Ua
i ,U

b
i ] = p−1

p�

i=1

E [φa
i |Ua

i ]E [φb
i |Ub

i ].

From previous proposition

E [φa
i |Ua

i = u
a] = (p − 1)P0(ρ

a, na)|Sna−1|fUa
i
(ua)

E [φb
i |Ub

i = u
b] = (p − 1)P0(ρ

b, nb)|Snb−1|fUb
i
(ub)

Mean is therefore

E [L] = E0[L]

�
du

a
�

du
b

�
1

p

p�

i=1

fUa
i
(ua)f

Ub
i
(ub)

�
f
Ub

i
(ub)f

Ub
i
(ub).
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Application: screening for high correlations

Consider testing simple null hypotheses on γij

Hi : g(γij) = 0, ∀j �= i , j = 1, . . . , p

Objective

For given p, n and average false positive rate α = P(N > 0|H)
what is the minimum detectable level ρ1 of correlation?

N =
�p

i=1
φi is number of false positives

For large p, fpr P(N > 0|H) is approximately Poisson(E [N])

Using Gaussian distribution of Fisher Z transform, tpr
P(φtrue = 1|Hc) can be computed
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Application: screening for high correlations

n�α 0.010 0.025 0.050 0.075 0.100
10 0.99\0.99 0.99\0.99 0.99\0.99 0.99\0.99 0.99\0.99
15 0.96\0.96 0.96\0.95 0.95\0.95 0.95\0.94 0.95\0.94
20 0.92\0.91 0.91\0.90 0.91\0.89 0.90\0.89 0.90\0.89
25 0.88\0.87 0.87\0.86 0.86\0.85 0.85\0.84 0.85\0.83
30 0.84\0.83 0.83\0.81 0.82\0.80 0.81\0.79 0.81\0.79
35 0.80\0.79 0.79\0.77 0.78\0.76 0.77\0.76 0.77\0.75

Table: Minimum detectable correlation and level-α threshold (given as
entry ρ1/ρ in table) for p = 1000 and β = 0.8.
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Application: screening for high correlations

Figure: Comparison between predicted (diamonds) and actual (numbers)
operating points (α, β) using the star-shaped decomposition and Poisson
approximation to false positive rate (α) and Fisher approximation to false
negative rate (β). Each number is located at an operating point
determined by the sample size n ranging over n = 10, 15, 20, 25, 30, 35.
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Conclusions

Correlation and persistent correlation screening are important
in applications

Screening negatively affected by false positive phase transition
as function of threshold

Asymptotic expression for critical PT threshold ρc is available
for single treatment

Effect of dependency on phase transitions is mediated by
Rényi 2-entropy of average marginal density on sphere

Key concepts:

Stochastic representation of sample correlation on sphere
Exchangeable processes
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