Correlation screening in high dimension

Alfred Hero

University of Michigan, Ann Arbor

December 3, 2009

KORK SERVER SHOP

KORK ERKER ER AGA

Acknowledgements

- Kumar Sricharan (UM Grad student)
- Bala Rajaratnam (Stanford)
- NSF: ITR CCR-032557
- AFOSR: FA9550-06-1-0324
- ONR: N00014-08-1-1065
- ARO: W911NF-05-1-0403
- DIGITEO, Paris France

- [Persistent correlation screening](#page-24-0)
- [Dependency extensions](#page-32-0)

Outline

- 2 [Correlation screening](#page-8-0)
- 3 [Persistent correlation screening](#page-24-0)
- [Dependency extensions](#page-32-0)
- **[Application](#page-41-0)**
-

Smoker network

Social interaction network (Framingham study, NEJM 2008)

• By 2000 smokers more likely to be at periphery of their networks and in smaller subgroups than non-smokers (see dark circled areas)

- Size of circle: number of cigarettes per day
- Yellow circle: smoker
- Green circle: non-smoker

Curated gene expression networks

Canonical Pathway Involvement by Significant Genes: Cellular Growth and Proliferation / Organism Injury

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Discovery of gene expression networks

For testing correlations between gene samples on a Affy gene microarray chip need to test $\binom{24,000}{2}$ sample correlations based on small sample size (here $N=8$).

イロメ イ押メ イヨメ イヨメート

 \equiv

 Ω

Is discovered correlation network statistically significant?

Why sample correlation?

Sample correlation has been of great interest in signal processing

- Invariant to translation and scale transformations on variables
- Used to discover of dependency structure and graphical models (Willsky, Jordan)
- Used to estimate number of signals in a random mixture (Nadakaduti and Edelmann, Wax and Kailath)
- Used in spectral analysis and sensor array beamforming (Parzen, Schultheiss)

KORKAR KERKER DRAM

Outline

[Motivation](#page-3-0)

2 [Correlation screening](#page-8-0)

- 3 [Persistent correlation screening](#page-24-0)
- [Dependency extensions](#page-32-0)
- **[Application](#page-41-0)**

Correlation screening

- p-variate random sample: $\mathbf{X} = [X_1, \ldots, X_p]^T$
- *p* \times *p* covariance matrix (unknown): $\Sigma = E[XX^T]$
- **Objective**: given *n* i.i.d. samples $\mathbb{X} = [\mathsf{X}_1, \dots, \mathsf{X}_n]^T$ detect highest correlations
- Difficulty: $p \gg n$

Sample covariance matrix:

$$
\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_i - \hat{\mu})(\mathbf{X}_i - \hat{\mu})^{\mathsf{T}}
$$

Sample correlation matrix:

$$
\textbf{R}=\hat{\textbf{D}}^{-1/2}\hat{\Sigma}\hat{\textbf{D}}^{-1/2}
$$

KORKAR KERKER ORA

where $\hat{\mathbf{D}} = \text{diag}(\hat{\Sigma})$.

Thresholded sample correlation matrix

- Define $\rho_{ij} = (\mathbf{R})_{ij}$ and ρ a user-defined threshold in [0, 1]
- **•** Fisher's correlation screening test: $|\rho_{ii}| > \rho$
- Screening gives set of "discovered" (*i*, *j*) correlation pairs

イロト イ押 トイヨ トイヨ トーヨ

 Ω

HSS o>0.95 w/analytes

Phase transitions in correlation screening

- Number of discoveries exhibit phase transition phenomenon
- This phenomenon gets worse as *p*/*n* increases.

Mathematical results

Two types of results obtained

- Characterize large *p* phase transition and its threshold.
- Predict mean discovery rate and p-values for correlation screening and persistent correlation screening.

How we approach the analysis

- Start with assuming Gaussian diagonal covariance null model
- Extend results to dependent or non-Gaussian null model

Basis for analysis

- Projected Z-scores embedding of sample correlation
- Geometric probability on (*ⁿ* [−] 1)-sphere *^Sn*−¹ [⊂] IR*n*−¹
- Exchangeable process theory for handling dependent variables

KORKAR KERKER DRAM

Z-score representation of sample correlation

Z-score representation of correlation matrix

$$
\mathbf{R} = \mathbb{Z}^T \mathbb{Z}
$$

$$
\mathbb{Z} = [\mathbf{Z}_1, \ldots, \mathbf{Z}_p] = (n-1)^{-1/2} (\mathbf{I} - n^{-1} \mathbf{1} \mathbf{1}^T) \mathbb{X} \mathbf{D}^{-1/2}.
$$

Z*ⁱ* standardizes X*ⁱ* by scale/translation transformation

$$
\mathbf{Z}_i = \frac{\mathbf{X}_i - \hat{\mu}_i \mathbf{1}}{\hat{s}_i \sqrt{n-1}}, \quad i = 1, \ldots, p
$$

$$
\hat{\mu}_i = \frac{1}{n} \sum_{i=1}^n X_{ij}, \quad \hat{s}_i^2 = \frac{1}{n-1} \sum_{j=1}^n (X_{ij} - \hat{\mu}_j)^2
$$

n-dimensional Z*ⁱ* lies in *n* − 2 dimensional subpsace

$$
\mathbf{1}^T \mathbf{Z}_i = 0 \text{ and } \|\mathbf{Z}_i\| = 1
$$

Sample correlation and Z-score distances

Sample correlation between X*ⁱ* and X*^j* is equal to Z-score inner product

$$
\rho_{ij} = \mathbf{Z}_i^T \mathbf{Z}_j
$$

This is directly related to Euclidean distance between Z*ⁱ* and Z*j*

$$
\|\mathbf{Z}_i-\mathbf{Z}_j\|=\sqrt{2(1-\rho_{ij})}
$$

KORK ERKER ORANDI

Sⁿ−¹ embedding via projected Z-scores

Easier to work with projected Z-scores $\mathbb{U} = [\mathbf{U}_1,\ldots,\mathbf{U}_p]$

- U*ⁱ* are (*n* − 1)-element summaries of *n*-element Z*ⁱ*
- \bullet **U**_{*i*} satisfy $||\mathbf{U}_i|| = 1$ and lie on sphere $S_{n-1} \subset \mathbb{R}^{n-1}$
- \bullet U gives more parsimonious representation than $\mathbb Z$

$$
\textbf{R} = \mathbb{U}^{\mathcal{T}}\mathbb{U}
$$

 $\rho_{ij} = \mathbf{U}_i^{\mathcal{T}} \mathbf{U}_j$ and geodesic distance between \mathbf{U}_i and \mathbf{U}_j satisfies

$$
d(\mathbf{U}_i, \mathbf{U}_j) = \arccos(\rho_{ij})
$$

KORKAR KERKER DRAM

Sⁿ−¹ embedding example: diagonal Gaussian

K ロ ▶ K 伊 ▶ K

 299

Sⁿ−¹ embedding example : ARMA(2,2) Gaussian

K ロ ▶ | K 伊 ▶ | K ヨ ▶

İ,

 2990

Phase transition analysis

Define $\phi = [\phi_1, \ldots, \phi_p]$ the "discovery" indicator sequence:

$$
\phi_i = \left\{ \begin{array}{ll} 1, & \max_{j \neq i} |\rho_{ij}| > \rho \\ 0, & \text{o.w.} \end{array} \right.
$$

Define *N* the number of discoveries:

$$
N=\sum_{i=1}^p \phi_i
$$

Objective: Find mathematical expressions for *E*[*N*] as a function of *p*, *n*, ρ.

KID KA KE KE KE KE YA G

Phase transition analysis

Conditional expectation of ϕ_i has representation

$$
E[\phi_i|\mathbf{U}_i] = P(\cup_{j\neq i}\mathbf{U}_j \in C_{\rho,\mathbf{U}_i} \cup C_{\rho,-\mathbf{U}_i}|\mathbf{U}_i)
$$

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

 \Rightarrow

 2990

Given \mathbf{U}_i define the binary sequence $\mathbf{b} = [b_1, \ldots, b_{p-1}]$

$$
b_i = \left\{ \begin{array}{ll} 1, & \mathbf{U}_j \in C_{\rho, \mathbf{U}_i} \cup C_{\rho, -\mathbf{U}_i} \\ 0, & \text{o.w.} \end{array} \right.
$$

Then, have equivalent representation

$$
E[\phi_i|\mathbf{U}_i] = P(\sum_{i=1}^{p-1}b_i > 0|\mathbf{U}_i)
$$

Classical result of multivariate statistics [Thm. 4.5.4]{TW Anderson, 2003}:

Lemma

Let X *be a p-variate Gaussian vector with covariance matrix* Σ*. The projected Z-scores* $\{U_i\}_{i=1}^p$ *are i.i.d. random vectors uniformly distributed on Sn*−1*.*

Implication: $[b_1, \ldots, b_{p-1}]$ is i.i.d. Bernoulli sequence and

$$
E[\phi_i|\mathbf{U}_i]=1-B(0,P_0,p-1)
$$

where

$$
B(k,\theta,m) = {m \choose k} \theta^k (1-\theta)^{m-k}
$$

and

$$
P_o = P_o(\rho, n) = \frac{2\Gamma((n-1)/2)}{\sqrt{\pi}\Gamma((n-2)/2)} \int_0^{\arccos(\rho)} \sin^{(n-3)}(\theta) d\theta.
$$
 (1)

Result: mean number of false discoveries

$$
E[N] = M(\rho, n, p) \stackrel{\text{def}}{=} p(1 - B(0, P_0, p - 1)) = p(1 - (1 - P_0)^{p-1})
$$

 299

∍

Proposition

The slope of E[*N*] *is*

$$
dE[N]/d\rho = -p(p-1)(1-P_o)^{p-2}(1-\rho^2)^{\frac{n-4}{2}}c_n,
$$

where

$$
c_n = (2\Gamma((n-1)/2)/(\sqrt{\pi}\Gamma(n/2-1)))^{-2/(n-4)}.
$$

Critical threshold $\rho_c = \max\{\rho : dE[N]/d\rho = -1\}$ *is*

$$
\rho_c = \sqrt{1 - c_n (p-1)^{-2/(n-4)}}, \quad (pP_o \ll 1)
$$
 (2)

KORK (FRAGER (ER) EL PORO

Outline

- 2 [Correlation screening](#page-8-0)
- 3 [Persistent correlation screening](#page-24-0)
- [Dependency extensions](#page-32-0)
- **[Application](#page-41-0)**
-

Persistent correlation screening

- Pair of p-variate random vectors: $\mathbf{X}^{a} = [X_1^{a}, \dots, X_p^{a}]^T$, $\mathbf{X}^b = [X_1^b, \ldots, X_p^b]^T$
- *^p* [×] *^p* covariance matrices: ^Σ*a*, ^Σ*^b*
- **Objective**: Discover variables with correlations that persist in *a* and *b* given samples

$$
\begin{array}{ll}\n\bullet & \mathbb{X}^a = [\mathbf{X}^a_1, \dots, \mathbf{X}^a_{n_a}]^T \\
\bullet & \mathbb{X}^b = [\mathbf{X}^b_1, \dots, \mathbf{X}^b_{n_b}]^T\n\end{array}
$$

• Method: jointly screen sample correlation matrices: R^a and R*b*.

KORK ERKER ORANDI

Thresholded sample correlation matrices

- Given sample correlations $\rho_{ij}^{\mathsf{a}}, \, \rho_{ij}^{\mathsf{b}}$ and thresholds $\rho^{\mathsf{a}}, \, \rho^{\mathsf{b}}$
- V ariable *i* declared PC if both max $_{j\neq i}$ $|\rho_{ij}^{\mathsf{a}}| > \rho^{\mathsf{a}}$ and $\max_{j \neq i} |\rho_{ij}^b| > \rho^b$
- *L* is number of persistent correlation discoveries

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 QQ

PC phase transition analysis

Define $\phi^a = [\phi_1^a, \ldots, \phi_p^a]$ and $\phi^b = [\phi_1^b, \ldots, \phi_p^b]$ the *a* and *b* discovery indicator vectors.

Define *M* and *N* the number of discoveries in *a* and *b*

$$
M = \sum_{i=1}^{p} \phi_i^a, \qquad N = \sum_{i=1}^{p} \phi_i^b
$$

Then *L*, the number of common discoveries, is

$$
L = \sum_{i=1}^{p} \phi_i^a \phi_i^b
$$

Objective: Find expressions for *E*[*L*] as a function of $p, n_a, n_b, \rho^a, \rho^b$.

Proposition

Assume that the two sets of observations $\{X_n^a\}_{n=1}^{n_a}$ *and* $\{X_n^b\}_{n=1}^{n_b}$ *are mutually independent and each is composed of i.i.d. p-variate Gaussian random vectors with diagonal covariances. Then*

$$
P(L = k) = \frac{1}{k!} \left(\frac{E[N]E[M]}{p} \right)^k (1 + O(1/p)), 0 < k \le p
$$
 (3)

and

$$
P(L=0)=\exp\left(-\frac{E[N]E[M]}{p}\right)\left(1+O(1/p)\right).
$$

KORKARYKERKE POLO

Mean number of persistent discoveries: $E[L] = \frac{E[M]E[N]}{p}$

KORK ERKER ER AGA

PC phase transition vs previous phase transition

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

重

 299

Proof of PC Proposition

Note: *L* is number of matching "1"s in binary sequences ϕ^a , ϕ^b . As these sequences are Bernoulli, conditioned on *N*, *M* we have

$$
P(L=k|N,M)=\frac{\left(\frac{p!}{k!(N-k)!(M-k)!(p-N-M+k)!}\right)}{\binom{p}{M}\binom{p}{N}},\ \ 0\leq k\leq \min\{N,M\}.
$$

or, applying Stirling approximation to terms involving *p*,

$$
P(L = k | N, M) = \frac{N!M!}{k!(N-k)!(M-k)!} p^{-k} (1 + O(NM/p)).
$$

As *M*,*N* are binomial, elementary combinatorial identities yield

$$
P(L=k) = \frac{1}{k!} \left(\frac{E[N]E[M]}{p} \right)^k (1+O(1/p)), \ 0 < k \leq p
$$

 $Q \cap R$

Outline

[Motivation](#page-3-0)

- 2 [Correlation screening](#page-8-0)
- 3 [Persistent correlation screening](#page-24-0)
- 4 [Dependency extensions](#page-32-0)
- **[Application](#page-41-0)**

Extension to arbitrary distributions

Central concept: invariance of *M*, *N* and *L* to index reordering.

• For π an arbitrary permutation:

$$
N=\sum_{i=1}^p\phi_i=\sum_{i=1}^p\phi_{\pi(i)}
$$

• An exchangeable sequence of binary random variables **has probability mass function** *f* **that satisfies**

$$
\textit{f}_{\textbf{b}_{\pi(1)},\ldots,\textbf{b}_{\pi(\rho)}}(b_1,\ldots,b_\rho)=\textit{f}_{\textbf{b}_1,\ldots,\textbf{b}_\rho}(b_1,\ldots,b_\rho)
$$

KORK ERKER ORANDI

Extension to arbitrary distributions: de Finetti theorem

Proposition

(Diaconis and Freedman, 1980) A length p subsequence of a length P exchangeable binary sequence $\mathbf{b}_1, \ldots, \mathbf{b}_P$, *is almost i.i.d. in the sense that there exists a distribution* μ *on* [0, 1] *such that*

$$
\|f_{\mathbf{b}_1,\ldots,\mathbf{b}_p}(b_1,\ldots,b_p)-\int \theta^N(1-\theta)^{p-N}\mu(d\theta)\|\leq \frac{4p}{P}
$$

where $N = \sum_{i=1}^{p} b_i$ *. Furthermore,*

$$
E[\theta] = \frac{1}{P} \sum_{i=1}^{P} E[b_i]
$$

KORKARYKERKE POLO

Correlation screening with dependencies

Single treatment correlation screening with dependencies.

Proposition

Let the n × *p random matrix* X *have independent rows but possibly dependent columns. Then*

$$
E[N] = p((p-1)P_0H_2(\overline{f_0}) + \epsilon), \qquad (4)
$$

where

$$
H_2(\overline{f_{\mathbf{U}}})=|S_{n-1}|\int_{S_{n-1}}\overline{f_{\mathbf{U}}}^2(\mathbf{u})d\mathbf{u}
$$

 w ith $\overline{f_{\mathbf{U}}} = p^{-1} \sum_{i=1}^p f_{\mathbf{U}_i}$ the avg population density and $\epsilon \leq (pP_0 \sup \overline{f_{\mathbf{U}}})^2.$

Implications of Proposition

Effect of multivariate dependency on *E*[*N*] is inflation by factor

$$
H_2(\overline{f_{\mathbf{U}}})=|S_{n-1}|\int_{S_{n-1}}\overline{f_{\mathbf{U}}}^2(\mathbf{u})d\mathbf{u}.
$$

- $1 \leq H_2(\overline{f_0}) < \infty$, with "=1" iff $\overline{f_0}$ is uniform over S_{n-1} and $=\infty$ iff $\overline{f_{\text{U}}}$ is dirac.
- $H_2(\overline{f_{U}})$ is decreasing in Rényi α -entropy of order $\alpha = 2$.
- Phase transition threshold is

$$
\rho_c = \sqrt{1-d_n(p-1)^{-2/(n-4)}},
$$

KORK ERKER ORANDI

where $d_n = c_n H_2(f_1)$.

Proof of Proposition

Recall definitions:
$$
\phi_i = I(\sum_{i=1}^{p-1} b_i > 0), N = \sum_{i=1}^{p} \phi_i,
$$

$$
b_i = \begin{cases} 1, & \mathbf{U}_j \in C_{\rho, \mathbf{U}_i} \cup C_{\rho, -\mathbf{U}_i} \\ 0, & o.w. \end{cases}
$$

Wrt *N*, *bⁱ* is subsequence of infinite exchangable sequence. Therefore, to order $O(p^2E^2[\theta | \mathbf{U}_i])$:

$$
E[\phi_i|\mathbf{U}_i] = 1 - \int B(0,\theta,p-1)\mu(d\theta) = (p-1)E[\theta|\mathbf{U}_i]
$$

By the de Finetti representation, to order $O(\sup f_{\mathbf{U}}/p)$

$$
E[\theta | \mathbf{U}_i] = \frac{1}{p-1} \sum_{j \neq i} E[b_i | \mathbf{U}_i] = \int_{C_{\rho, \mathbf{U}_i} \cup C_{\rho, -\mathbf{U}_i}} \overline{f_{\mathbf{U}}}(u) du.
$$

Therefore, applying MVT and summing over *i*,

$$
E[N] = \sum_{i=1}^{p} E[\phi_i] = p(p-1)|S_{n-1}P_0 \int_{S_{n-1}} \overline{f_0}^2(u) du
$$

Persistent correlation screening with dependencies

Proposition

Assume that two sets of observations $\{X_n^a\}_{n=1}^{n_a}$ *and* $\{X_n^b\}_{n=1}^{n_b}$ *are mutually independent, each composed of i.i.d. p-variate random vectors. Then the mean number of discovered PC's is*

$$
E[L] = E_0[L] H_2(\overline{f_{\mathbf{U}^a}f_{\mathbf{U}^b}}) H_2(\overline{f_{\mathbf{U}^a}} \overline{f_{\mathbf{U}^b}}) A(\overline{f_{\mathbf{U}^a}f_{\mathbf{U}^b}}, \overline{f_{\mathbf{U}^a}} \overline{f_{\mathbf{U}^b}})
$$

*where E*0[*L*] *is mean for diagonal Gaussian case, A*(*g*, *h*) *is*

$$
A(g, h) = \frac{\int gh}{\sqrt{\int g^2} \sqrt{\int h^2}}
$$

KORKARYKERKE POLO

and $\overline{f_{\mathbf{U}_{i}^{a}}f_{\mathbf{U}^{b}}}=\frac{1}{p}\sum_{i=1}^{p}f_{\mathbf{U}_{i}^{a}}f_{\mathbf{U}_{i}^{b}}$

Implications of dependent PC Proposition

• Affinity $A(g, h)$ is normalized l_2 inner product between distributions *h* and *g* on $S_{n_{a}-1} \times S_{n_{b}-1}$

 $0 < A(g, h) < 1$

KORK ERKER ORANDI

- $A(f_{\mathbf{U}^a}f_{\mathbf{U}^b},f_{\mathbf{U}^a}f_{\mathbf{U}^b})=1$ iff $f_{\mathbf{U}^a_i}$ and $f_{\mathbf{U}^b_i}$ do not depend on *i*.
- \bullet *E*[*L*] = *E*₀[*L*] if *f*_U_{*a*} and *f*_U_{*b*} uniform on *S*_{*n*₂−1} and *S*_{*n*^{*b*}−1}.

Proof of dependent PC Proposition

Wrt $L = \sum_{i=1}^{p} \phi_i^a \phi_i^b$, $\{\phi_i^a \phi_i^b\}_{i=1}^{p}$ is a segment of an infinite exchangable sequence. Therefore, by de Finetti

$$
P(L = k | \mathbf{U}_i^a, \mathbf{U}_i^b) = \binom{p}{k} \int \theta^k (1 - \theta)^{p-k} \mu(d\theta)
$$

with

$$
E[\theta | \mathbf{U}_i^a, \mathbf{U}_i^b] = p^{-1} \sum_{i=1}^p E[\phi_i^a | \mathbf{U}_i^a] E[\phi_i^b | \mathbf{U}_i^b].
$$

From previous proposition

$$
E[\phi_i^a | \mathbf{U}_i^a = \mathbf{u}^a] = (p-1)P_0(\rho^a, n^a) |S_{n_a-1}|f_{\mathbf{U}_i^a}(\mathbf{u}^a)
$$

$$
E[\phi_i^b | \mathbf{U}_i^b = \mathbf{u}^b] = (p-1)P_0(\rho^b, n^b) |S_{n_b-1}|f_{\mathbf{U}_i^b}(\mathbf{u}^b)
$$

Mean is therefore

$$
E[L] = E_0[L] \int d\mathbf{u}^a \int d\mathbf{u}^b \left(\frac{1}{p} \sum_{i=1}^p f_{\mathbf{U}_i^a}(\mathbf{u}^a) f_{\mathbf{U}_i^b}(\mathbf{u}^b) \right) \overline{f_{\mathbf{U}_i^b}}(\mathbf{u}^b) \overline{f_{\mathbf{U}_i^b}}(\mathbf{u}^b).
$$

Outline

[Motivation](#page-3-0)

- 2 [Correlation screening](#page-8-0)
- 3 [Persistent correlation screening](#page-24-0)
- [Dependency extensions](#page-32-0)

5 [Application](#page-41-0)

Application: screening for high correlations

Consider testing simple null hypotheses on γ*ij*

$$
H_i : g(\gamma_{ij}) = 0, \ \forall j \neq i, j = 1, \ldots, p
$$

Objective

For given *p*, *n* and average false positive rate $\alpha = P(N > 0|H)$ what is the minimum detectable level ρ_1 of correlation?

- $N = \sum_{i=1}^{p} \phi_i$ is number of false positives
- For large *p*, fpr $P(N > 0|H)$ is approximately Poisson($E[N]$)

KORKAR KERKER DRAM

Using Gaussian distribution of Fisher Z transform, tpr $P(\phi_{true} = 1|H^c)$ can be computed

Application: screening for high correlations

Table: Minimum detectable correlation and level- α threshold (given as entry ρ_1/ρ in table) for $p = 1000$ and $\beta = 0.8$.

KORK ERKER ORANDI

Application: screening for high correlations

Figure: Comparison between predicted (diamonds) and actual (numbers) operating points (α, β) using the star-shaped decomposition and Poisson approximation to false positive rate (α) and Fisher approximation to false negative rate (β) . Each number is located at an operating point determined by the sample size *n* ranging over $n = 10, 15, 20, 25, 30, 35$.

KORK ERKER ER AGA

Outline

[Motivation](#page-3-0)

- 2 [Correlation screening](#page-8-0)
- 3 [Persistent correlation screening](#page-24-0)
- [Dependency extensions](#page-32-0)
- 5 [Application](#page-41-0)

Conclusions

- Correlation and persistent correlation screening are important in applications
- Screening negatively affected by false positive phase transition as function of threshold
- Asymptotic expression for critical PT threshold ρ*^c* is available for single treatment
- Effect of dependency on phase transitions is mediated by Rényi 2-entropy of average marginal density on sphere
- Key concepts:
	- Stochastic representation of sample correlation on sphere

KORK ERKER ORANDI

Exchangeable processes