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Smart Parts dynamics - a fashionable trend in logistics

Highly complex decision issues = tendency to decentralize the management

e Huge number of control parameters

e Feedback (i.e. non-linearity) in the underlying dynamics
e Ubiquitous presence of randomness in the dynamics
[ ]
4
Decisions based on limited rationality = Rigid pre-planning offers poor performance

mutual interactions |} self-organization
Autonomous agents might better perform than a central controller

|  Goal of today’s lecture

Exhibit a solvable model showing performance of decentralized control
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Stylized model for Smart Parts dynamics

A simple model for competitive dynamics

Xi(t) = () = Te(X(0), X(1)) +qe(X(1)dBer,  k=1,2,..,N.

velocity multi—agent interactions noise sources

Multi-agent interactions:

T(X(t), Xu(t = ZI (X(t) Nk := neighbourhood of ageri
j#k

0 if 0 <X(t) < Xk(t), (velocityunchangeq
(X)) =<¢ 1 it Xe(t) < Xj(t) < X(t) + U, (U>0), (acceleraty
0 if  X(t) > X«(t) + U, (velocityunchangey

(U := "mutual influence" interval).
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Stylized model for Smart Parts dynamics

Homogeneous population of agents

dX(t) = [v(t) - wﬂ(i(t),xk(t))] dt  + q dBes.

.— drift field Dy vixt) k indep White Gaussian Noise

| diffusion process

Fokker - Planck diffusion equation

Do t) = =3 L [Deyro PR 0] + 26 S L
3t 9 - 8Xk k,v(X,t) ) 2 - axﬁ 9 9

P(X,t) := conditional probability density.
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Stylized model for Smart Parts dynamics

Mean Field Dynamics, (MFD) for homogeneous population of agents

N«c=N — co = Mean Field Dynamics, (MFD).
U, dynamics for a representative effective agent

trajectories point of view probabilistic point of view

X+U
7 ZI Xi(t) / P(x, 1) dx

j#k —————

proportion of representative ageritated in [x,x+U]

Q

proportion of influencing agentacting onk
| effective Fokker-Planck equation

%P(x,t):—%{{v(t)—7</xx+UP(X,t)dX>] P(x, )}+ qzaaxzz[ P(x,1)],

non—linear and non—local field equation
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Stylized model for Smart Parts dynamics
Small influence region - Burgers equation dynamics

Small values of U = Taylor expand up to 1st order in U.

U VP tdx~ UP(x, 1).

o 1,8

ot

nonlinear but local drift field

t
X—/V(S)ds
t— 7=t U X»—>Z:7°2U .

Burgers Equation - (to be solved with initial condition P(z, t) = &(z_)).

Pzt =12 [PV + |55 & P 1)
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Stylized model for Smart Parts dynamics

Burgers Eq. «— logarithmic transformatign(Hopf — Cole)

— Heat Eq.
Initial density: P(y,t = 0) = §(y_) U Exact integration
2
_ _ 9 2 - ()]
P(y,t) = yRYE 8y|n 1+ 5 Erfc i
2
R 1 o3&
B 1 (e l) /—qute gt B 1 (eR o l)@(y, t) (1)
Flis Cleme ()| R OEO0Y

Typical shape of P(y, t) for various R factors.

(view from the relative moving frame)

Normalization and positivity are visually manifest !!
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Stylized model for Smart Parts dynamics

The explicit benefit of competition - noise induced transport enhancement.

Position probability distribution: without interaction, with interactions.
@ Additional traveled distance when R= 2% — oo (X))o = BV,

@ Additional traveled distance when R= 2 — 0: (X(t)} o0 ~ O.
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Average costs estimations

Centralized optimal control

Controlled diffusion process

d¥i = c(Y,t)dt + qda, Yo=0, (0<t<T),
N——
central controller initial condition

U, (Fokker-Planck equation)

2 o2

q

DPe(y,1) = 2 [ely,1Pely. ] + o7

Construct a drift controller c(Y, t) which, for time T, fulfills

PC(y7 T) = P(y7 T)
——
Proh density withcentral controller Proh density due toagents interactions

Burgers’ exact solution
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Average costs estimations

Centralized optimal control - (continued)

Introduce an utility function Jeenvair [C(Y, t; T)| defined as:

T (y,sT)
2072

cost ratep(y,s)

Jeentral T [C<Y~t1 T)] = </0 dS>,

((-) := average over the realization of underlying stochastic process).

Optimal controller problem

Construct an optimal drift c*(y,t;T) such that:
——

i.e. yielding minimal cost
Jeentralt [€° (¥, 6 T)] < Jeenwar [C(Y; 1 T)]-
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Average costs estimations

The Paolo Dai Pra solution of the optimal control problem

Optimal drift controller

c(y.t;T) = & In[h(y,t)],

) = [ 61—y, (T- 0] o

Paolo Dai Pra. "A Stochastic Control Approach to Reciprocal Diffusion Processes" . Appl. Math, Optim. 23, (1991), 313-329.

Minimal cost

0 for t=0,

Jeentral T [C‘" (y t; T” = D(P‘ML) (R_1)
—_—— R =1
Kullback—Leibler 2 +1In { R :| for t>0.
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Average costs estimations

Decentralized agents - cost estimation

Cost Jagentd T) for decentralized evolution during time horizon T :

T
0
Jagered T) i = N - fv - / ds  ®(s)
v 0 g
f population scm:ost interacting agents

kinetic energy

2112
. p= Lz/z := individual cost rate function
diffusion rate
. d(t) € [0, 1] := proportion ofinteracting agentst timet.

F*hkkkkkkkkkkkkk
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Il
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Cost upper-bound - reached when &(t)

¥

Jagen(T) < pT
12/14
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Average costs estimations

Costs comparison for our specific model

Aversge et
Upperband OecenFotired coup
\ét)ia/ e tenKolirec coy it
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/e P07/ Zon where AgenH solirechins
bect rne o,/a}na/ Cenks/ conkte

Heuristic interpretation :
For times t < tc, the huge number of interactions favors the decentralized control.
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Average costs estimations

To summarize and to somehow "philosophically" conclude !

The stylized model cartoons basic and somehow "universal” features:

. Agents’ mimetic interactions produce an emergent structure - (here a "shock'- like wave).
. Competition enhances global transport flow - (here a \/t-increase of the traveled distance).
° Self-organization via autonomous agents interactions can reduce costs.
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