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Abstract

I Differential entropy h has many nice properties.

I Often Gaussian provides case of equality.
I Focus on 3 such properties:

1. Maximum entropy
2. Entropy power inequality
3. Monotonicity

I Will discuss discrete analogues for discrete entropy H.

I Infinite divisibility suggests Poisson should be case of equality.
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Property 1: Maximum entropy

Theorem (Shannon 1948)

If X has mean µ and variance σ and Y ∼ N(µ, σ2) then

h(X ) ≤ h(Y ),

with equality if and only if X ∼ N(µ, σ2).
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Property 2: Entropy Power Inequality

I Define E(t) = h(N(0, t)) = 1
2 log2(2πet).

I Define entropy power v(X ) = E−1(h(X )) = 22h(X )/(2πe).

Theorem (EPI)

Consider independent continuous X and Y . Then

v(X + Y ) ≥ v(X ) + v(Y ),

with equality if and only if X and Y are Gaussian.

I First stated by Shannon.

I Lots of proofs (Stam/Blachman, Lieb,
Dembo/Cover/Thomas, Tulino/Verdú/Guo).

I Restricted versions easier to prove? (cf Costa).
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I Restricted versions easier to prove? (cf Costa).

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotonicity, thinning and discrete versions of the Entropy Power Inequality: 3rd EPFL/MLV Meeting



Gaussian maximum entropy EPI Monotonicity Poisson maximum entropy Discrete EPI Discrete Monotonicity

Equivalent formulation

Theorem (ECI – not proved here!)

For independent X ∗,Y ∗ with finite variance, for all α ∈ [0, 1],

h(
√
αX ∗ +

√
1− αY ∗) ≥ αh(X ∗) + (1− α)h(Y ∗).

Lemma
EPI is equivalent to ECI.

I Key role played in Lemma by fact about scaling:

v(
√
αX ) = αv(X ). (1)

I This holds since h(
√
αX ) = h(X ) + 1

2 logα, and

v(
√
αX ) = 22h(

√
αX )/(2πe).
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Proof of Lemma: EPI implies ECI

I By the EPI (where X =
√
αX ∗ and Y =

√
1− αY ∗) and

scaling relation (1),

v(
√
αX ∗ +

√
1− αY ∗) ≥ v(

√
αX ∗) + v(

√
1− αY ∗)

= αv(X ∗) + (1− α)v(Y ∗).

I Applying E to both sides and using Jensen (since E ∼ log, so
is concave):

h(
√
αX ∗ +

√
1− αY ∗) ≥ E

(
αv(X ∗) + (1− α)v(Y ∗)

)
≥ αE(v(X ∗)) + (1− α)E(v(Y ∗))

= αh(X ∗) + (1− α)h(Y ∗)

which is the ECI.
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Proof of Lemma: ECI implies EPI

I For some α, define X ∗ = X/
√
α and Y ∗ = Y /

√
1− α.

I Then the ECI and scaling (1) imply that

h(X + Y ) = h(
√
αX ∗ +

√
1− αY ∗)

≥ αh(X ∗) + (1− α)h(Y ∗)

= αE(v(X ∗)) + (1− α)E(v(Y ∗))

= αE
(

v(X )

α

)
+ (1− α)E

(
v(Y )

1− α

)

I Pick α = v(X )
v(X )+v(Y ) and the above inequality becomes

h(X + Y ) ≥ E(v(X ) + v(Y )),

and applying E−1 to both sides gives the EPI.

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotonicity, thinning and discrete versions of the Entropy Power Inequality: 3rd EPFL/MLV Meeting



Gaussian maximum entropy EPI Monotonicity Poisson maximum entropy Discrete EPI Discrete Monotonicity

Proof of Lemma: ECI implies EPI

I For some α, define X ∗ = X/
√
α and Y ∗ = Y /

√
1− α.

I Then the ECI and scaling (1) imply that

h(X + Y ) = h(
√
αX ∗ +

√
1− αY ∗)

≥ αh(X ∗) + (1− α)h(Y ∗)

= αE(v(X ∗)) + (1− α)E(v(Y ∗))

= αE
(

v(X )

α

)
+ (1− α)E

(
v(Y )

1− α

)

I Pick α = v(X )
v(X )+v(Y ) and the above inequality becomes

h(X + Y ) ≥ E(v(X ) + v(Y )),

and applying E−1 to both sides gives the EPI.

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotonicity, thinning and discrete versions of the Entropy Power Inequality: 3rd EPFL/MLV Meeting



Gaussian maximum entropy EPI Monotonicity Poisson maximum entropy Discrete EPI Discrete Monotonicity

Proof of Lemma: ECI implies EPI

I For some α, define X ∗ = X/
√
α and Y ∗ = Y /

√
1− α.

I Then the ECI and scaling (1) imply that

h(X + Y ) = h(
√
αX ∗ +

√
1− αY ∗)

≥ αh(X ∗) + (1− α)h(Y ∗)

= αE(v(X ∗)) + (1− α)E(v(Y ∗))

= αE
(

v(X )

α

)
+ (1− α)E

(
v(Y )

1− α

)

I Pick α = v(X )
v(X )+v(Y ) and the above inequality becomes

h(X + Y ) ≥ E(v(X ) + v(Y )),

and applying E−1 to both sides gives the EPI.

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotonicity, thinning and discrete versions of the Entropy Power Inequality: 3rd EPFL/MLV Meeting



Gaussian maximum entropy EPI Monotonicity Poisson maximum entropy Discrete EPI Discrete Monotonicity

Proof of Lemma: ECI implies EPI

I For some α, define X ∗ = X/
√
α and Y ∗ = Y /

√
1− α.

I Then the ECI and scaling (1) imply that

h(X + Y ) = h(
√
αX ∗ +

√
1− αY ∗)

≥ αh(X ∗) + (1− α)h(Y ∗)

= αE(v(X ∗)) + (1− α)E(v(Y ∗))

= αE
(

v(X )

α

)
+ (1− α)E

(
v(Y )

1− α

)

I Pick α = v(X )
v(X )+v(Y ) and the above inequality becomes

h(X + Y ) ≥ E(v(X ) + v(Y )),

and applying E−1 to both sides gives the EPI.

Oliver Johnson O.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotonicity, thinning and discrete versions of the Entropy Power Inequality: 3rd EPFL/MLV Meeting



Gaussian maximum entropy EPI Monotonicity Poisson maximum entropy Discrete EPI Discrete Monotonicity

Rephrased EPI

I Note that this choice of α makes
v(X ∗) = v(Y ∗) = v(X ) + v(Y ).

I This choice of scaling suggests the following rephrased EPI:

Corollary (Rephrased EPI)

Given independent X and Y with finite variance, there exist X ∗

and Y ∗ such that X =
√
αX ∗ and Y =

√
1− αY ∗ for some α,

and such that h(X ∗) = h(Y ∗).
The EPI is equivalent to the fact that

h(X + Y ) ≥ h(X ∗), (2)

with equality if and only if X and Y are Gaussian.
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Property 3: Monotonicity

I Exciting set of strong recent results, collectively referred to as
‘monotonicity’.

I First proved by Artstein/Ball/Barthe/Naor, alternative proofs
by Tulino/Verdú and Madiman/Barron.
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Monotonicity theorem

Theorem
Given independent continuous Xi with finite variance, for any
positive αi such that

∑n+1
i=1 αi = 1, writing α(j) = 1− αj , then

nh

(
n+1∑
i=1

√
αiXi

)
≥

n+1∑
j=1

α(j)h

∑
i 6=j

√
αi/α(j)Xi

 .

I Choosing αi = 1/(n + 1) for IID Xi shows h
(∑n

i=1 Xi/
√

n
)

is
monotone increasing in n.

I Equivalently relative entropy D
(∑n

i=1 Xi/
√

n
∥∥Z ) is

monotone decreasing in n.
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Monotonicity strengthens EPI

I By the right choice of α, monotonicity implies the following
strengthened EPI.

Theorem (Strengthened EPI)

Given independent continuous Yi with finite variance, the entropy
powers satisfy

nv

(
n+1∑
i=1

Yi

)
≥

n+1∑
j=1

v

∑
i 6=j

Yi

 ,

with equality if and only if all the Yi are Gaussian.
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Rephrased strengthened EPI

I Again can rephrase this strengthened version:

Theorem (Rephrased strengthened EPI)

Given independent Yi , if there exist αi such that
∑n+1

i=1 αi = 1 and

Y ∗i = Yi/
√
αi have h

(
(
∑

i 6=j

√
αiY

∗
i )/
√
α(j)
)

= h∗ constant in j,

then

h

(
n+1∑
i=1

Yi

)
≥ h∗.
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Discrete Property 1: Poisson maximum entropy

Definition
For any λ, define class of ultra-log-concave V with mass function
pV satisfying

ULC(λ) = {V : EV = λ and pV (i)/Πλ(i) is log-concave}.

That is

ipV (i)2 ≥ (i + 1)pV (i + 1)pV (i − 1), for all i .

I Class includes Bernoulli sums and Poisson.
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Maximum entropy and ULC(λ)

Theorem (Johnson, Stoch. Proc. Appl. 2007)

If X ∈ ULC(λ) and Y ∼ Πλ then

H(X ) ≤ H(Y ),

with equality if and only if X ∼ Πλ.

(see also Harremoës, 2001)
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Key operation: thinning

Definition
Given Y , define the α-thinned version of Y by

TαY =
Y∑

i=1

Bi ,

where B1,B2 . . . i.i.d. Bernoulli(α), independent of Y .

I Thinning has many interesting properties.

I We believe Tα seems like scaling by
√
α.

I ‘Mean-preserving transform’ TαX + T1−αY equivalent to
‘variance-preserving transform’

√
αX +

√
1− αY in

continuous case? (Matches max. ent. condition).
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Discrete Property 2: EPI

I Define E(t) = H(Πt), an increasing, concave function.

I Define V (X ) = E−1(H(X )).

Conjecture

Consider independent discrete X and Y . Then

V (X + Y ) ≥ V (X ) + V (Y ),

with equality if and only if X and Y are Poisson.

I Turns out not to be true!

I Even natural restrictions e.g. ULC, Bernoulli sums don’t help

I Counterexample (not mine!): X ∼ Y ,
PX (0) = 1/6, PX (1) = 2/3, PX (2) = 1/6.
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Thinned Entropy Power Inequality

Conjecture (TEPI)

Consider independent discrete ULC X and Y . For any α,
conjecture that

V (TαX + T1−αY ) ≥ αV (X ) + (1− α)V (Y ),

with equality if and only if X and Y are Poisson.

I Again, not true in general!

I Perhaps not all α?

I Have partial results, but not full description of which α.

I For example, true for Poisson Y with H(Y ) ≤ H(X ).
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Two weaker results

I Analogues of the continuous concavity and scaling results do
hold. (Again, proofs not given here!)

Theorem (TECI, Johnson/Yu, ISIT ’09)

Consider independent ULC X and Y . For any α,

H(TαX + T1−αY ) ≥ αH(X ) + (1− α)H(Y ).

Theorem (RTEPI, Johnson/Yu, arXiv:0909.0641)

Consider ULC X . For any α,

V (TαX ) ≥ αV (X ).
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Discrete EPI?

I Duplicating steps from the continuous case above, we deduce
an analogue of rephrased EPI

Theorem (Johnson/Yu, arXiv:0909.0641)

Given independent ULC X and Y , suppose there exist X ∗ and Y ∗

such that X = TαX ∗ and Y = T1−αY ∗ for some α, and such that
H(X ∗) = H(Y ∗). Then

H(X + Y ) ≥ H(X ∗), (3)

with equality if and only if X and Y are Poisson.
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Discrete Property 3: Monotonicity

I Write D(X ) for D(X‖ΠEX ).
I By convex ordering arguments, Yu showed that for IID Xi :

1. relative entropy D
(∑n

i=1 T1/nXi

)
is monotone decreasing in n,

2. for ULC Xi the entropy H
(∑n

i=1 T1/nXi

)
is monotone

increasing in n.

I In fact, implicit in work of Yu is following stronger theorem:

Theorem
Given positive αi such that

∑n+1
i=1 αi = 1, and writing

α(j) = 1− αj , then for any independent ULC Xi ,

nD

(
n+1∑
i=1

Tαi Xi

)
≤

n+1∑
j=1

α(j)D

∑
i 6=j

Tαi/α(j)Xi

 .
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is monotone

increasing in n.

I In fact, implicit in work of Yu is following stronger theorem:

Theorem
Given positive αi such that

∑n+1
i=1 αi = 1, and writing

α(j) = 1− αj , then for any independent ULC Xi ,

nD

(
n+1∑
i=1

Tαi Xi

)
≤

n+1∑
j=1

α(j)D

∑
i 6=j

Tαi/α(j)Xi

 .
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Generalization of monotonicity

Theorem (Johnson/Yu, arXiv:0909.0641)

Given positive αi such that
∑n+1

i=1 αi = 1, and writing
α(j) = 1− αj , then for any independent ULC Xi ,

nH

(
n+1∑
i=1

Tαi Xi

)
≥

n+1∑
j=1

α(j)H

∑
i 6=j

Tαi/α(j)Xi

 .

I Exact analogue of Artstein/Ball/Barthe/Naor result,

nh

(
n+1∑
i=1

√
αiXi

)
≥

n+1∑
j=1

α(j)h

∑
i 6=j

√
αi/α(j)Xi

 ,

replacing scalings by thinnings.
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Generalized EPI

I Again leads to a strengthened version of the rephrased EPI

Theorem (Johnson/Yu, arXiv:0909.0641)

Assume there exist H∗, Y ∗i and αi such that Yi = Tαi Y
∗
i with

entropies satisfying H(
∑

i 6=j Tαi/α(j)Y ∗i ) = H∗ for all j . Then

H

(
n+1∑
i=1

Yi

)
≥ H∗.
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Future work

I Resolve for which α, the

V (TαX + T1−αY ) ≥ αV (X ) + (1− α)V (Y ).

I Relation to Shepp-Olkin conjecture

I Conjecture: if there exist X ∗ and Y ∗ such that X = TαX ∗

and Y = T1−αY ∗, where α = V (X )/(V (X ) + V (Y )), then

V (X + Y ) ≥ V (X ) + V (Y ).
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