Monotonicity, thinning and discrete versions of the Entropy Power Inequality

Joint work with Yaming Yu – see arXiv:0909.0641

Oliver Johnson O.Johnson@bristol.ac.uk http://www.stats.bris.ac.uk/∼maotj

Statistics Group, University of Bristol

4th December 2009

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

メロト メタト メミトメ E 299 ∍

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 \triangleright Differential entropy h has many nice properties.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

∍

←ロ ▶ ← イ 同 →

 299

- \triangleright Differential entropy h has many nice properties.
- \triangleright Often Gaussian provides case of equality.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4. 0. 8.

- \triangleright Differential entropy h has many nice properties.
- Often Gaussian provides case of equality.
- \blacktriangleright Focus on 3 such properties:

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4.0.3

- \triangleright Differential entropy h has many nice properties.
- Often Gaussian provides case of equality.
- \blacktriangleright Focus on 3 such properties:
	- 1. Maximum entropy

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4.0.3

- \triangleright Differential entropy h has many nice properties.
- Often Gaussian provides case of equality.
- \blacktriangleright Focus on 3 such properties:
	- 1. Maximum entropy
	- 2. Entropy power inequality

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4 D F

- \triangleright Differential entropy h has many nice properties.
- Often Gaussian provides case of equality.
- \blacktriangleright Focus on 3 such properties:
	- 1. Maximum entropy
	- 2. Entropy power inequality
	- 3. Monotonicity

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4 D F

- \triangleright Differential entropy h has many nice properties.
- Often Gaussian provides case of equality.
- \blacktriangleright Focus on 3 such properties:
	- 1. Maximum entropy
	- 2. Entropy power inequality
	- 3. Monotonicity
- \triangleright Will discuss discrete analogues for discrete entropy H.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4 D F

- \triangleright Differential entropy h has many nice properties.
- Often Gaussian provides case of equality.
- \blacktriangleright Focus on 3 such properties:
	- 1. Maximum entropy
	- 2. Entropy power inequality
	- 3. Monotonicity
- \triangleright Will discuss discrete analogues for discrete entropy H.
- Infinite divisibility suggests Poisson should be case of equality.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

Property 1: Maximum entropy

Theorem (Shannon 1948)

If X has mean μ and variance σ and $Y \sim N(\mu, \sigma^2)$ then

 $h(X) \leq h(Y)$,

with equality if and only if $X \sim N(\mu, \sigma^2)$.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4.0.3

 QQ 4000 ∢ 何

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

► Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi \epsilon t)$.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

- ► Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi \epsilon t)$.
- ► Define entropy power $v(X) = \mathcal{E}^{-1}(h(X)) = 2^{2h(X)}/(2\pi e)$.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

重き

4000

- ► Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi \epsilon t)$.
- ► Define entropy power $v(X) = \mathcal{E}^{-1}(h(X)) = 2^{2h(X)}/(2\pi e)$.

Theorem (EPI)

Consider independent continuous X and Y . Then

$$
v(X + Y) \geq v(X) + v(Y),
$$

with equality if and only if X and Y are Gaussian.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

- ► Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi \epsilon t)$.
- ► Define entropy power $v(X) = \mathcal{E}^{-1}(h(X)) = 2^{2h(X)}/(2\pi e)$.

Theorem (EPI)

Consider independent continuous X and Y . Then

$$
v(X + Y) \geq v(X) + v(Y),
$$

with equality if and only if X and Y are Gaussian.

 \blacktriangleright First stated by Shannon.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

 \rightarrow \equiv \rightarrow

- ► Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi \epsilon t)$.
- ► Define entropy power $v(X) = \mathcal{E}^{-1}(h(X)) = 2^{2h(X)}/(2\pi e)$.

Theorem (EPI)

Consider independent continuous X and Y . Then

$$
v(X + Y) \geq v(X) + v(Y),
$$

with equality if and only if X and Y are Gaussian.

- \blacktriangleright First stated by Shannon.
- \blacktriangleright Lots of proofs (Stam/Blachman, Lieb, Dembo/Cover/Thomas, Tulino/Verdú/Guo).

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

- ► Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi \epsilon t)$.
- ► Define entropy power $v(X) = \mathcal{E}^{-1}(h(X)) = 2^{2h(X)}/(2\pi e)$.

Theorem (EPI)

Consider independent continuous X and Y . Then

$$
v(X + Y) \geq v(X) + v(Y),
$$

with equality if and only if X and Y are Gaussian.

- \blacktriangleright First stated by Shannon.
- \blacktriangleright Lots of proofs (Stam/Blachman, Lieb, Dembo/Cover/Thomas, Tulino/Verdú/Guo).
- \triangleright \triangleright \triangleright Restricted versions easier to prove? (cf [Co](#page-16-0)[st](#page-18-0)a[\).](#page-11-0)

 Ω

Equivalent formulation

Theorem (ECI – not proved here!)

For independent X^* , Y^* with finite variance, for all $\alpha \in [0,1]$,

$$
h(\sqrt{\alpha}X^*+\sqrt{1-\alpha}Y^*)\geq \alpha h(X^*)+(1-\alpha)h(Y^*).
$$

Lemma EPI is equivalent to ECI.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4.0.3

Equivalent formulation

Theorem (ECI – not proved here!)

For independent X^* , Y^* with finite variance, for all $\alpha \in [0,1]$,

$$
h(\sqrt{\alpha}X^*+\sqrt{1-\alpha}Y^*)\geq \alpha h(X^*)+(1-\alpha)h(Y^*).
$$

Lemma EPI is equivalent to ECI.

 \triangleright Key role played in Lemma by fact about scaling:

$$
v(\sqrt{\alpha}X)=\alpha v(X). \qquad (1)
$$

4.0.3

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

Equivalent formulation

Theorem (ECI – not proved here!)

For independent X^* , Y^* with finite variance, for all $\alpha \in [0,1]$,

$$
h(\sqrt{\alpha}X^*+\sqrt{1-\alpha}Y^*)\geq \alpha h(X^*)+(1-\alpha)h(Y^*).
$$

Lemma EPI is equivalent to ECI.

 \triangleright Key role played in Lemma by fact about scaling:

$$
v(\sqrt{\alpha}X)=\alpha v(X). \qquad (1)
$$

► This holds since
$$
h(\sqrt{\alpha}X) = h(X) + \frac{1}{2} \log \alpha
$$
, and
 $v(\sqrt{\alpha}X) = 2^{2h(\sqrt{\alpha}X)}/(2\pi e)$.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

K ロ ▶ K 何 ▶ 299 ÷. \rightarrow

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

← ロ ▶ → イ 冊

Proof of Lemma: EPI implies ECI

► By the EPI (where $X = \sqrt{\alpha}X^*$ and $Y =$ √ $\overline{1-\alpha}Y^*)$ and scaling relation [\(1\)](#page-18-1),

$$
v(\sqrt{\alpha}X^* + \sqrt{1-\alpha}Y^*) \geq v(\sqrt{\alpha}X^*) + v(\sqrt{1-\alpha}Y^*)
$$

= $\alpha v(X^*) + (1-\alpha)v(Y^*).$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

► By the EPI (where $X = \sqrt{\alpha}X^*$ and $Y =$ √ $\overline{1-\alpha}Y^*)$ and scaling relation [\(1\)](#page-18-1),

$$
v(\sqrt{\alpha}X^* + \sqrt{1-\alpha}Y^*) \geq v(\sqrt{\alpha}X^*) + v(\sqrt{1-\alpha}Y^*)
$$

= $\alpha v(X^*) + (1-\alpha)v(Y^*).$

► Applying E to both sides and using Jensen (since $\mathcal{E} \sim$ log, so is concave):

$$
h(\sqrt{\alpha}X^* + \sqrt{1-\alpha}Y^*) \geq \mathcal{E}\bigg(\alpha v(X^*) + (1-\alpha)v(Y^*)\bigg) \geq \alpha \mathcal{E}(v(X^*)) + (1-\alpha)\mathcal{E}(v(Y^*)) = \alpha h(X^*) + (1-\alpha)h(Y^*)
$$

4.0.3

which is the ECI.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

K ロ ▶ K 何 ▶ 299 ÷. $\,$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

► For some α , define $X^* = X/\sqrt{\alpha}$ and $Y^* = Y/\sqrt{\alpha}$ $1-\alpha$.

> **←ロ ▶ ← イ 同 →** Ω

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

- ► For some α , define $X^* = X/\sqrt{\alpha}$ and $Y^* = Y/\sqrt{\alpha}$ $1-\alpha$.
- \blacktriangleright Then the ECI and scaling [\(1\)](#page-18-1) imply that

$$
h(X + Y) = h(\sqrt{\alpha}X^* + \sqrt{1 - \alpha}Y^*)
$$

\n
$$
\geq \alpha h(X^*) + (1 - \alpha)h(Y^*)
$$

\n
$$
= \alpha \mathcal{E}(v(X^*)) + (1 - \alpha)\mathcal{E}(v(Y^*))
$$

\n
$$
= \alpha \mathcal{E}\left(\frac{v(X)}{\alpha}\right) + (1 - \alpha)\mathcal{E}\left(\frac{v(Y)}{1 - \alpha}\right)
$$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4000

- ► For some α , define $X^* = X/\sqrt{\alpha}$ and $Y^* = Y/\sqrt{\alpha}$ $1-\alpha$.
- \triangleright Then the ECI and scaling [\(1\)](#page-18-1) imply that

$$
h(X + Y) = h(\sqrt{\alpha}X^* + \sqrt{1 - \alpha}Y^*)
$$

\n
$$
\geq \alpha h(X^*) + (1 - \alpha)h(Y^*)
$$

\n
$$
= \alpha \mathcal{E}(v(X^*)) + (1 - \alpha)\mathcal{E}(v(Y^*))
$$

\n
$$
= \alpha \mathcal{E}\left(\frac{v(X)}{\alpha}\right) + (1 - \alpha)\mathcal{E}\left(\frac{v(Y)}{1 - \alpha}\right)
$$

Pick $\alpha = \frac{v(X)}{v(X)+v(X)}$ $\frac{V(X)}{V(X)+V(Y)}$ and the above inequality becomes $h(X + Y) > \mathcal{E}(v(X) + v(Y)),$

and applying \mathcal{E}^{-1} to both sides gives t[he](#page-26-0) [EP](#page-28-0)[I.](#page-23-0)

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

Rephrased EPI

(ロ) (@) \rightarrow \Rightarrow \rightarrow 299 \prec Þ ∍

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Rephrased EPI

 \blacktriangleright Note that this choice of α makes $v(X^*) = v(Y^*) = v(X) + v(Y).$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

∍

← ロ ▶ → イ 冊

Rephrased EPI

- \blacktriangleright Note that this choice of α makes $v(X^*) = v(Y^*) = v(X) + v(Y).$
- \triangleright This choice of scaling suggests the following rephrased EPI:

Corollary (Rephrased EPI)

Given independent X and Y with finite variance, there exist X^* and Y^{*} such that $X = \sqrt{\alpha}X^*$ and $Y =$ √ $\overline{1-\alpha}$ Y* for some α , and such that $h(X^*) = h(Y^*)$. The EPI is equivalent to the fact that

$$
h(X + Y) \ge h(X^*), \tag{2}
$$

with equality if and only if X and Y are Gaussian.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

Property 3: Monotonicity

K ロ ▶ K 何 ▶ 299 ∍ þ.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Property 3: Monotonicity

 \triangleright Exciting set of strong recent results, collectively referred to as 'monotonicity'.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4 D F

Property 3: Monotonicity

- \triangleright Exciting set of strong recent results, collectively referred to as 'monotonicity'.
- \triangleright First proved by Artstein/Ball/Barthe/Naor, alternative proofs by Tulino/Verdú and Madiman/Barron.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

Monotonicity theorem

Theorem

Given independent continuous X_i with finite variance, for any positive α_i such that $\sum_{i=1}^{n+1}\alpha_i=1$, writing $\alpha^{(j)}=1-\alpha_j$, then

$$
nh\left(\sum_{i=1}^{n+1}\sqrt{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}h\left(\sum_{i\neq j}\sqrt{\alpha_i/\alpha^{(j)}}X_i\right).
$$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

Monotonicity theorem

Theorem

Given independent continuous X_i with finite variance, for any positive α_i such that $\sum_{i=1}^{n+1}\alpha_i=1$, writing $\alpha^{(j)}=1-\alpha_j$, then

$$
nh\left(\sum_{i=1}^{n+1}\sqrt{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}h\left(\sum_{i\neq j}\sqrt{\alpha_i/\alpha^{(j)}}X_i\right).
$$

• Choosing $\alpha_i = 1/(n+1)$ for IID X_i shows $h\left(\sum_{i=1}^n X_i\right)$ √ \overline{n}) is monotone increasing in n.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω
Monotonicity theorem

Theorem

Given independent continuous X_i with finite variance, for any positive α_i such that $\sum_{i=1}^{n+1}\alpha_i=1$, writing $\alpha^{(j)}=1-\alpha_j$, then

$$
nh\left(\sum_{i=1}^{n+1}\sqrt{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}h\left(\sum_{i\neq j}\sqrt{\alpha_i/\alpha^{(j)}}X_i\right).
$$

- Choosing $\alpha_i = 1/(n+1)$ for IID X_i shows $h\left(\sum_{i=1}^n X_i\right)$ √ \overline{n}) is monotone increasing in n.
- \blacktriangleright Equivalently relative entropy $D\left(\sum_{i=1}^n X_i\right)$ √ \overline{n} \parallel Z) is monotone decreasing in n.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

つへへ

4母 ▶ 4回 ▶

Monotonicity strengthens EPI

 299 **←ロ ▶ ← イ 同 →** ∍

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotonicity strengthens EPI

- \triangleright By the right choice of α , monotonicity implies the following strengthened EPI.
- Theorem (Strengthened EPI)

Given independent continuous Y_i with finite variance, the entropy powers satisfy

$$
nv\left(\sum_{i=1}^{n+1}Y_i\right)\geq \sum_{j=1}^{n+1}v\left(\sum_{i\neq j}Y_i\right),
$$

with equality if and only if all the Y_i are Gaussian.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

つへへ

Rephrased strengthened EPI

4000 299 ∢ 母 J. ∍

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Rephrased strengthened EPI

 \triangleright Again can rephrase this strengthened version:

Theorem (Rephrased strengthened EPI)

Given independent Y_i , if there exist α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$ and $Y_i^* = Y_i / \sqrt{\alpha_i}$ have $h\left((\sum_{i \neq j}$ $\sqrt{\alpha_i} Y_i^*$)/ √ $\overline{\alpha^{(j)}}\big)=h^*$ constant in j, then

$$
h\left(\sum_{i=1}^{n+1} Y_i\right) \geq h^*.
$$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

つへへ

Discrete Property 1: Poisson maximum entropy

Definition

For any λ , define class of ultra-log-concave V with mass function p_V satisfying

 $ULC(\lambda) = \{V : \mathbb{E}V = \lambda \text{ and } p_V(i)/\Pi_\lambda(i) \text{ is log-concave}\}.$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

Discrete Property 1: Poisson maximum entropy

Definition

For any λ , define class of ultra-log-concave V with mass function p_V satisfying

ULC(
$$
\lambda
$$
) = { V : $\mathbb{E}V = \lambda$ and $p_V(i)/\Pi_{\lambda}(i)$ is log-concave}.

That is

$$
ip_V(i)^2 \ge (i+1)p_V(i+1)p_V(i-1)
$$
, for all *i*.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4.0.3

Discrete Property 1: Poisson maximum entropy

Definition

For any λ , define class of ultra-log-concave V with mass function p_V satisfying

ULC(
$$
\lambda
$$
) = { V : $\mathbb{E}V = \lambda$ and $p_V(i)/\Pi_{\lambda}(i)$ is log-concave}.

That is

$$
ip_V(i)^2 \ge (i+1)p_V(i+1)p_V(i-1)
$$
, for all *i*.

\triangleright Class includes Bernoulli sums and Poisson.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4.0.3

Maximum entropy and $\mathsf{ULC}(\lambda)$

Theorem (Johnson, Stoch. Proc. Appl. 2007) If $X \in \mathsf{ULC}(\lambda)$ and $Y \sim \Pi_{\lambda}$ then

 $H(X) < H(Y)$,

with equality if and only if $X \sim \Pi_{\lambda}$. (see also Harremoës, 2001)

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4. 0. 8.

Definition Given Y, define the α -thinned version of Y by

$$
T_{\alpha}Y=\sum_{i=1}^Y B_i,
$$

where $B_1, B_2 \ldots$ i.i.d. Bernoulli (α) , independent of Y.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

つへへ

← ロ ▶ → イ 冊

Definition Given Y, define the α -thinned version of Y by

$$
T_{\alpha}Y=\sum_{i=1}^Y B_i,
$$

where $B_1, B_2 \ldots$ i.i.d. Bernoulli (α) , independent of Y.

 \blacktriangleright Thinning has many interesting properties.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

つへへ

← ロ ▶ → イ 冊

Definition Given Y, define the α -thinned version of Y by

$$
T_{\alpha}Y=\sum_{i=1}^Y B_i,
$$

where $B_1, B_2 \ldots$ i.i.d. Bernoulli (α) , independent of Y.

- \blacktriangleright Thinning has many interesting properties.
- ► We believe T_α seems like scaling by $\sqrt{\alpha}$.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

つへへ

← ロ ▶ → イ 冊

Definition Given Y, define the α -thinned version of Y by

$$
T_{\alpha}Y=\sum_{i=1}^Y B_i,
$$

where B_1, B_2, \ldots i.i.d. Bernoulli (α) , independent of Y.

- \blacktriangleright Thinning has many interesting properties.
- ► We believe T_α seems like scaling by $\sqrt{\alpha}$.
- ► 'Mean-preserving transform' $T_{\alpha}X + T_{1-\alpha}Y$ equivalent to The intervention of the intervention of $\sqrt{\alpha}X + 1-\alpha Y$ interventional transform' $\sqrt{\alpha}X + \sqrt{1-\alpha}Y$ in continuous case? (Matches max. ent. condition).

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

つへへ

 \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow

←ロト ←何ト 299 Ε þ.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 \blacktriangleright Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.

← ロ ▶ → イ 冊 Ω

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

- \blacktriangleright Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.
- ► Define $V(X) = \mathcal{E}^{-1}(H(X))$.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

÷.

←ロ ▶ ← イ 同 →

 \blacktriangleright Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.

$$
\blacktriangleright
$$
 Define $V(X) = \mathcal{E}^{-1}(H(X)).$

Conjecture

Consider independent discrete X and Y . Then

$$
V(X + Y) \geq V(X) + V(Y),
$$

with equality if and only if X and Y are Poisson.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

つへへ

4.0.3

- \triangleright Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.
- ► Define $V(X) = \mathcal{E}^{-1}(H(X))$.

Conjecture

Consider independent discrete X and Y . Then

$$
V(X + Y) \geq V(X) + V(Y),
$$

with equality if and only if X and Y are Poisson.

 \blacktriangleright Turns out not to be true!

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

つへへ

- \triangleright Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.
- ► Define $V(X) = \mathcal{E}^{-1}(H(X))$.

Conjecture

Consider independent discrete X and Y . Then

$$
V(X + Y) \geq V(X) + V(Y),
$$

with equality if and only if X and Y are Poisson.

- \blacktriangleright Turns out not to be true!
- ▶ Even natural restrictions e.g. ULC, Bernoulli sums don't help

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

つへへ

 $\leftarrow \equiv$

 \triangleright Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.

$$
\blacktriangleright
$$
 Define $V(X) = \mathcal{E}^{-1}(H(X)).$

Conjecture

Consider independent discrete X and Y . Then

$$
V(X + Y) \geq V(X) + V(Y),
$$

with equality if and only if X and Y are Poisson.

- \blacktriangleright Turns out not to be true!
- \triangleright Even natural restrictions e.g. ULC, Bernoulli sums don't help

 \triangleright Counterexample (not mine!): $X \sim Y$, $P_X(0) = 1/6$, $P_X(1) = 2/3$, $P_X(2) = 1/6$. \Box

 Ω

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any α , conjecture that

$$
V(\mathcal{T}_{\alpha}X+\mathcal{T}_{1-\alpha}Y)\geq \alpha V(X)+(1-\alpha)V(Y),
$$

with equality if and only if X and Y are Poisson.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4 D F

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any α , conjecture that

$$
V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y),
$$

with equality if and only if X and Y are Poisson.

 \blacktriangleright Again, not true in general!

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4.0.3

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any α , conjecture that

$$
V(\mathcal{T}_{\alpha}X+\mathcal{T}_{1-\alpha}Y)\geq \alpha V(X)+(1-\alpha)V(Y),
$$

with equality if and only if X and Y are Poisson.

- \triangleright Again, not true in general!
- Perhaps not all α ?

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4.0.3

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any α , conjecture that

$$
V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y),
$$

with equality if and only if X and Y are Poisson.

- \triangleright Again, not true in general!
- \blacktriangleright Perhaps not all α ?
- \blacktriangleright Have partial results, but not full description of which α .

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

4.0.3

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any α , conjecture that

$$
V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y),
$$

with equality if and only if X and Y are Poisson.

- \triangleright Again, not true in general!
- Perhaps not all α ?
- \blacktriangleright Have partial results, but not full description of which α .
- ► For example, true for Poisson Y with $H(Y) < H(X)$.

 Ω

 \Rightarrow

Two weaker results

(ロ) (@) \Rightarrow 299 \rightarrow

Oliver Johnson 0. Johnson@bristol.ac.uk Statistics Group, University of Bristol

Two weaker results

 \triangleright Analogues of the continuous concavity and scaling results do hold. (Again, proofs not given here!)

Theorem (TECI, Johnson/Yu, ISIT '09) Consider independent ULC X and Y. For any α ,

$$
H(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha H(X) + (1-\alpha)H(Y).
$$

Theorem (RTEPI, Johnson/Yu, arXiv:0909.0641) Consider ULC X. For any α ,

```
V(T_{\alpha}X) > \alpha V(X).
```
Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

Discrete EPI?

メロト メタト メミトメ 299 Þ ∍

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Discrete EPI?

 \triangleright Duplicating steps from the continuous case above, we deduce an analogue of rephrased EPI

Theorem (Johnson/Yu, arXiv:0909.0641)

Given independent ULC X and Y, suppose there exist X^* and Y^* such that $X = T_{\alpha}X^*$ and $Y = T_{1-\alpha}Y^*$ for some α , and such that $H(X^*) = H(Y^*)$. Then

$$
H(X + Y) \ge H(X^*), \tag{3}
$$

with equality if and only if X and Y are Poisson.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

 299 **← ロ ▶ → イ 冊** ×. Þ

Oliver Johnson 0. Johnson@bristol.ac.uk Statistics Group, University of Bristol

 \blacktriangleright Write $D(X)$ for $D(X||\Pi_{\mathbb{E}X})$.

← ロ ▶ → イ 冊 Ω

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

- \blacktriangleright Write $D(X)$ for $D(X||\Pi_{\mathbb{R}X})$.
- By convex ordering arguments, Yu showed that for IID X_i :
	- 1. relative entropy $D\left(\sum_{i=1}^n T_{1/n}X_i\right)$ is monotone decreasing in n,
	- 2. for ULC X_i the entropy $H\left(\sum_{i=1}^n T_{1/n}X_i\right)$ is monotone increasing in n.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

- \blacktriangleright Write $D(X)$ for $D(X||\Pi_{\mathbb{R}X})$.
- By convex ordering arguments, Yu showed that for IID X_i :
	- 1. relative entropy $D\left(\sum_{i=1}^n T_{1/n}X_i\right)$ is monotone decreasing in n,
	- 2. for ULC X_i the entropy $H\left(\sum_{i=1}^n T_{1/n}X_i\right)$ is monotone increasing in n.
- In fact, implicit in work of Yu is following stronger theorem:

Theorem

Given positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, and writing $\alpha^{(j)}=1-\alpha_j$, then for any independent ULC X_i ,

$$
nD\left(\sum_{i=1}^{n+1}T_{\alpha_i}X_i\right)\leq \sum_{j=1}^{n+1}\alpha^{(j)}D\left(\sum_{i\neq j}T_{\alpha_i/\alpha^{(j)}}X_i\right).
$$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

K 何 ▶ 【 三 ▶

Generalization of monotonicity

Theorem (Johnson/Yu, arXiv:0909.0641)

Given positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, and writing $\alpha^{(j)}=1-\alpha_j$, then for any independent ULC X_i ,

$$
nH\left(\sum_{i=1}^{n+1}T_{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}H\left(\sum_{i\neq j}T_{\alpha_i/\alpha^{(j)}}X_i\right).
$$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

Generalization of monotonicity

Theorem (Johnson/Yu, arXiv:0909.0641)

Given positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, and writing $\alpha^{(j)}=1-\alpha_j$, then for any independent ULC X_i ,

$$
nH\left(\sum_{i=1}^{n+1}T_{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}H\left(\sum_{i\neq j}T_{\alpha_i/\alpha^{(j)}}X_i\right).
$$

Exact analogue of Artstein/Ball/Barthe/Naor result,

$$
nh\left(\sum_{i=1}^{n+1}\sqrt{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}h\left(\sum_{i\neq j}\sqrt{\alpha_i/\alpha^{(j)}}X_i\right),
$$

replacing scalings by thinnings.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

Generalized EPI

メロメ メタメ メミメ 299 \rightarrow Þ ∍

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol
Generalized EPI

 \triangleright Again leads to a strengthened version of the rephrased EPI

Theorem (Johnson/Yu, arXiv:0909.0641)

Assume there exist H^* , Y_i^* and α_i such that $Y_i = \mathcal{T}_{\alpha_i} Y_i^*$ with entropies satisfying $H(\sum_{i\neq j} T_{\alpha_i/\alpha^{(j)}} Y^*_i)=H^*$ for all j. Then

$$
H\left(\sum_{i=1}^{n+1} Y_i\right) \geq H^*.
$$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

K ロ ト K 御 ト K 君 ト 299 \rightarrow Þ ∍

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Resolve for which α , the

$$
V(\mathcal{T}_{\alpha}X+\mathcal{T}_{1-\alpha}Y)\geq \alpha V(X)+(1-\alpha)V(Y).
$$

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Ε þ. 299

K ロ ▶ K 何 ▶

Resolve for which α , the

$$
V(\mathcal{T}_{\alpha}X+\mathcal{T}_{1-\alpha}Y)\geq \alpha V(X)+(1-\alpha)V(Y).
$$

 \blacktriangleright Relation to Shepp-Olkin conjecture

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω

← ロ ▶ → 何

Resolve for which α , the

$$
V(\mathcal{T}_{\alpha}X+\mathcal{T}_{1-\alpha}Y)\geq \alpha V(X)+(1-\alpha)V(Y).
$$

- Relation to Shepp-Olkin conjecture
- ► Conjecture: if there exist X^* and Y^* such that $X = T_\alpha X^*$ and $Y = T_{1-\alpha}Y^*$, where $\alpha = V(X)/(V(X) + V(Y))$, then

$$
V(X + Y) \geq V(X) + V(Y).
$$

4.0.3.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

 Ω