Monotonicity, thinning and discrete versions of the Entropy Power Inequality

Joint work with Yaming Yu - see arXiv:0909.0641

Oliver Johnson O.Johnson@bristol.ac.uk http://www.stats.bris.ac.uk/~maotj

Statistics Group, University of Bristol

4th December 2009

▶ Differential entropy *h* has many nice properties.

- ▶ Differential entropy *h* has many nice properties.
- Often Gaussian provides case of equality.

- ▶ Differential entropy h has many nice properties.
- Often Gaussian provides case of equality.
- Focus on 3 such properties:

- ▶ Differential entropy *h* has many nice properties.
- Often Gaussian provides case of equality.
- ► Focus on 3 such properties:
 - 1. Maximum entropy

- ▶ Differential entropy *h* has many nice properties.
- Often Gaussian provides case of equality.
- ► Focus on 3 such properties:
 - 1. Maximum entropy
 - 2. Entropy power inequality

- ▶ Differential entropy h has many nice properties.
- Often Gaussian provides case of equality.
- Focus on 3 such properties:
 - 1. Maximum entropy
 - 2. Entropy power inequality
 - 3. Monotonicity

- ▶ Differential entropy h has many nice properties.
- Often Gaussian provides case of equality.
- Focus on 3 such properties:
 - 1. Maximum entropy
 - 2. Entropy power inequality
 - 3. Monotonicity
- ▶ Will discuss discrete analogues for discrete entropy H.

- ▶ Differential entropy *h* has many nice properties.
- Often Gaussian provides case of equality.
- ► Focus on 3 such properties:
 - 1. Maximum entropy
 - 2. Entropy power inequality
 - 3. Monotonicity
- ▶ Will discuss discrete analogues for discrete entropy *H*.
- Infinite divisibility suggests Poisson should be case of equality.

Property 1: Maximum entropy

Theorem (Shannon 1948)

If X has mean μ and variance σ and $Y \sim N(\mu, \sigma^2)$ then

$$h(X) \leq h(Y),$$

with equality if and only if $X \sim N(\mu, \sigma^2)$.

Property 2: Entropy Power Inequality

▶ Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi et)$.

EPI

- ▶ Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi et)$.
- Define entropy power $v(X) = \mathcal{E}^{-1}(h(X)) = 2^{2h(X)}/(2\pi e)$.

Property 2: Entropy Power Inequality

EPI

- ▶ Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi et)$.
- ▶ Define entropy power $v(X) = \mathcal{E}^{-1}(h(X)) = 2^{2h(X)}/(2\pi e)$.

Theorem (EPI)

Consider independent continuous X and Y. Then

$$v(X+Y) \geq v(X) + v(Y),$$

with equality if and only if X and Y are Gaussian.

Property 2: Entropy Power Inequality

- ▶ Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi et)$.
- ▶ Define entropy power $v(X) = \mathcal{E}^{-1}(h(X)) = 2^{2h(X)}/(2\pi e)$.

Theorem (EPI)

Consider independent continuous X and Y. Then

$$v(X+Y) \geq v(X) + v(Y),$$

with equality if and only if X and Y are Gaussian.

First stated by Shannon.

- ▶ Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi et)$.
- ▶ Define entropy power $v(X) = \mathcal{E}^{-1}(h(X)) = 2^{2h(X)}/(2\pi e)$.

Theorem (EPI)

Consider independent continuous X and Y. Then

$$v(X+Y) \geq v(X) + v(Y),$$

with equality if and only if X and Y are Gaussian.

- First stated by Shannon.
- Lots of proofs (Stam/Blachman, Lieb, Dembo/Cover/Thomas, Tulino/Verdú/Guo).

Property 2: Entropy Power Inequality

- ▶ Define $\mathcal{E}(t) = h(N(0, t)) = \frac{1}{2} \log_2(2\pi et)$.
- ▶ Define entropy power $v(X) = \mathcal{E}^{-1}(h(X)) = 2^{2h(X)}/(2\pi e)$.

Theorem (EPI)

Consider independent continuous X and Y. Then

$$v(X+Y) \geq v(X) + v(Y),$$

with equality if and only if X and Y are Gaussian.

- First stated by Shannon.
- Lots of proofs (Stam/Blachman, Lieb, Dembo/Cover/Thomas, Tulino/Verdú/Guo).
- Restricted versions easier to prove? (cf Costa).

Theorem (ECI - not proved here!)

EPI

For independent X^*, Y^* with finite variance, for all $\alpha \in [0, 1]$,

$$h(\sqrt{\alpha}X^* + \sqrt{1-\alpha}Y^*) \ge \alpha h(X^*) + (1-\alpha)h(Y^*).$$

Lemma

EPI is equivalent to ECI.

Theorem (ECI – not proved here!)

For independent X^*, Y^* with finite variance, for all $\alpha \in [0, 1]$,

$$h(\sqrt{\alpha}X^* + \sqrt{1-\alpha}Y^*) \ge \alpha h(X^*) + (1-\alpha)h(Y^*).$$

Lemma

EPI is equivalent to ECI.

Key role played in Lemma by fact about scaling:

$$v(\sqrt{\alpha}X) = \alpha v(X). \tag{1}$$

Equivalent formulation

Theorem (ECI – not proved here!)

For independent X^*, Y^* with finite variance, for all $\alpha \in [0, 1]$,

$$h(\sqrt{\alpha}X^* + \sqrt{1-\alpha}Y^*) \ge \alpha h(X^*) + (1-\alpha)h(Y^*).$$

Lemma

EPI is equivalent to ECI.

Key role played in Lemma by fact about scaling:

$$v(\sqrt{\alpha}X) = \alpha v(X). \tag{1}$$

This holds since $h(\sqrt{\alpha}X) = h(X) + \frac{1}{2}\log \alpha$, and $v(\sqrt{\alpha}X) = 2^{2h(\sqrt{\alpha}X)}/(2\pi e)$.

EPI

EPI

▶ By the EPI (where $X = \sqrt{\alpha}X^*$ and $Y = \sqrt{1-\alpha}Y^*$) and scaling relation (1),

$$v(\sqrt{\alpha}X^* + \sqrt{1-\alpha}Y^*) \geq v(\sqrt{\alpha}X^*) + v(\sqrt{1-\alpha}Y^*)$$

= $\alpha v(X^*) + (1-\alpha)v(Y^*).$

Proof of Lemma: EPI implies ECI

EPI

▶ By the EPI (where $X = \sqrt{\alpha}X^*$ and $Y = \sqrt{1-\alpha}Y^*$) and scaling relation (1),

$$v(\sqrt{\alpha}X^* + \sqrt{1-\alpha}Y^*) \geq v(\sqrt{\alpha}X^*) + v(\sqrt{1-\alpha}Y^*)$$

= $\alpha v(X^*) + (1-\alpha)v(Y^*).$

ightharpoonup Applying $\mathcal E$ to both sides and using Jensen (since $\mathcal E\sim\log$, so is concave):

$$h(\sqrt{\alpha}X^* + \sqrt{1-\alpha}Y^*) \geq \mathcal{E}\left(\alpha v(X^*) + (1-\alpha)v(Y^*)\right)$$

$$\geq \alpha \mathcal{E}(v(X^*)) + (1-\alpha)\mathcal{E}(v(Y^*))$$

$$= \alpha h(X^*) + (1-\alpha)h(Y^*)$$

which is the ECL

Proof of Lemma: ECI implies EPI

Proof of Lemma: ECI implies EPI

▶ For some α , define $X^* = X/\sqrt{\alpha}$ and $Y^* = Y/\sqrt{1-\alpha}$.

Proof of Lemma: ECI implies EPI

- ▶ For some α , define $X^* = X/\sqrt{\alpha}$ and $Y^* = Y/\sqrt{1-\alpha}$.
- ▶ Then the ECI and scaling (1) imply that

$$h(X + Y) = h(\sqrt{\alpha}X^* + \sqrt{1 - \alpha}Y^*)$$

$$\geq \alpha h(X^*) + (1 - \alpha)h(Y^*)$$

$$= \alpha \mathcal{E}(v(X^*)) + (1 - \alpha)\mathcal{E}(v(Y^*))$$

$$= \alpha \mathcal{E}\left(\frac{v(X)}{\alpha}\right) + (1 - \alpha)\mathcal{E}\left(\frac{v(Y)}{1 - \alpha}\right)$$

- ▶ For some α , define $X^* = X/\sqrt{\alpha}$ and $Y^* = Y/\sqrt{1-\alpha}$.
- ▶ Then the ECI and scaling (1) imply that

$$h(X + Y) = h(\sqrt{\alpha}X^* + \sqrt{1 - \alpha}Y^*)$$

$$\geq \alpha h(X^*) + (1 - \alpha)h(Y^*)$$

$$= \alpha \mathcal{E}(v(X^*)) + (1 - \alpha)\mathcal{E}(v(Y^*))$$

$$= \alpha \mathcal{E}\left(\frac{v(X)}{\alpha}\right) + (1 - \alpha)\mathcal{E}\left(\frac{v(Y)}{1 - \alpha}\right)$$

▶ Pick $\alpha = \frac{v(X)}{v(X) + v(Y)}$ and the above inequality becomes

$$h(X + Y) \ge \mathcal{E}(v(X) + v(Y)),$$

and applying \mathcal{E}^{-1} to both sides gives the EPI.

EPI

Rephrased EPI

Note that this choice of α makes $v(X^*) = v(Y^*) = v(X) + v(Y).$

- Note that this choice of α makes $v(X^*) = v(Y^*) = v(X) + v(Y)$.
- ▶ This choice of scaling suggests the following rephrased EPI:

Corollary (Rephrased EPI)

Given independent X and Y with finite variance, there exist X^* and Y^* such that $X = \sqrt{\alpha}X^*$ and $Y = \sqrt{1-\alpha}Y^*$ for some α , and such that $h(X^*) = h(Y^*)$.

The EPI is equivalent to the fact that

$$h(X+Y) \ge h(X^*), \tag{2}$$

with equality if and only if X and Y are Gaussian.

Property 3: Monotonicity

 Exciting set of strong recent results, collectively referred to as 'monotonicity'.

- Exciting set of strong recent results, collectively referred to as 'monotonicity'.
- ► First proved by Artstein/Ball/Barthe/Naor, alternative proofs by Tulino/Verdú and Madiman/Barron.

Theorem

Given independent continuous X_i with finite variance, for any positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, writing $\alpha^{(j)} = 1 - \alpha_i$, then

$$nh\left(\sum_{i=1}^{n+1}\sqrt{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}h\left(\sum_{i\neq j}\sqrt{\alpha_i/\alpha^{(j)}}X_i\right).$$

Theorem

Given independent continuous X_i with finite variance, for any positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, writing $\alpha^{(j)} = 1 - \alpha_i$, then

$$nh\left(\sum_{i=1}^{n+1}\sqrt{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}h\left(\sum_{i\neq j}\sqrt{\alpha_i/\alpha^{(j)}}X_i\right).$$

Choosing $\alpha_i = 1/(n+1)$ for IID X_i shows $h\left(\sum_{i=1}^n X_i/\sqrt{n}\right)$ is monotone increasing in n.

Theorem

Given independent continuous X_i with finite variance, for any positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, writing $\alpha^{(j)} = 1 - \alpha_i$, then

$$nh\left(\sum_{i=1}^{n+1}\sqrt{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}h\left(\sum_{i\neq j}\sqrt{\alpha_i/\alpha^{(j)}}X_i\right).$$

- ▶ Choosing $\alpha_i = 1/(n+1)$ for IID X_i shows $h\left(\sum_{i=1}^n X_i/\sqrt{n}\right)$ is monotone increasing in n.
- ▶ Equivalently relative entropy $D\left(\sum_{i=1}^{n} X_i / \sqrt{n} \| Z\right)$ is monotone decreasing in n.

▶ By the right choice of α , monotonicity implies the following strengthened EPI.

Theorem (Strengthened EPI)

Given independent continuous Y_i with finite variance, the entropy powers satisfy

$$nv\left(\sum_{i=1}^{n+1}Y_i\right)\geq \sum_{j=1}^{n+1}v\left(\sum_{i\neq j}Y_i\right),$$

with equality if and only if all the Y_i are Gaussian.

Rephrased strengthened EPI

Again can rephrase this strengthened version:

Theorem (Rephrased strengthened EPI)

Given independent Y_i , if there exist α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$ and $Y_i^* = Y_i/\sqrt{lpha_i}$ have $h\left((\sum_{i
eq j} \sqrt{lpha_i} Y_i^*)/\sqrt{lpha^{(j)}}
ight) = h^*$ constant in j, then

$$h\left(\sum_{i=1}^{n+1}Y_i\right)\geq h^*.$$

For any λ , define class of ultra-log-concave V with mass function p_V satisfying

ULC(
$$\lambda$$
) = { $V : \mathbb{E}V = \lambda$ and $p_V(i)/\Pi_{\lambda}(i)$ is log-concave}.

For any λ , define class of ultra-log-concave V with mass function p_V satisfying

ULC(
$$\lambda$$
) = { $V : \mathbb{E}V = \lambda$ and $p_V(i)/\Pi_{\lambda}(i)$ is log-concave}.

That is

$$ip_V(i)^2 \ge (i+1)p_V(i+1)p_V(i-1)$$
, for all i.

For any λ , define class of ultra-log-concave V with mass function p_V satisfying

ULC(
$$\lambda$$
) = { $V : \mathbb{E}V = \lambda$ and $p_V(i)/\Pi_{\lambda}(i)$ is log-concave}.

That is

$$ip_V(i)^2 \ge (i+1)p_V(i+1)p_V(i-1)$$
, for all i.

Class includes Bernoulli sums and Poisson.

Theorem (Johnson, Stoch. Proc. Appl. 2007) If $X \in ULC(\lambda)$ and $Y \sim \Pi_{\lambda}$ then

$$H(X) \leq H(Y),$$

with equality if and only if $X \sim \Pi_{\lambda}$. (see also Harremoës, 2001)

Key operation: thinning

Definition

Given Y, define the α -thinned version of Y by

$$T_{\alpha}Y = \sum_{i=1}^{Y} B_i,$$

where $B_1, B_2 \dots$ i.i.d. Bernoulli(α), independent of Y.

Key operation: thinning

Definition

Given Y, define the α -thinned version of Y by

$$T_{\alpha}Y = \sum_{i=1}^{Y} B_i,$$

where $B_1, B_2 \dots$ i.i.d. Bernoulli(α), independent of Y.

Thinning has many interesting properties.

Given Y, define the α -thinned version of Y by

$$T_{\alpha}Y = \sum_{i=1}^{Y} B_i,$$

where $B_1, B_2 \dots$ i.i.d. Bernoulli(α), independent of Y.

- Thinning has many interesting properties.
- We believe T_{α} seems like scaling by $\sqrt{\alpha}$.

Given Y, define the α -thinned version of Y by

$$T_{\alpha}Y = \sum_{i=1}^{Y} B_i,$$

where $B_1, B_2 \dots$ i.i.d. Bernoulli(α), independent of Y.

- ▶ Thinning has many interesting properties.
- We believe T_{α} seems like scaling by $\sqrt{\alpha}$.
- 'Mean-preserving transform' $T_{\alpha}X + T_{1-\alpha}Y$ equivalent to 'variance-preserving transform' $\sqrt{\alpha}X + \sqrt{1-\alpha}Y$ in continuous case? (Matches max. ent. condition).

Discrete Property 2: EPI

▶ Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.

- ▶ Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.
- ▶ Define $V(X) = \mathcal{E}^{-1}(H(X))$.

- ▶ Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.
- ▶ Define $V(X) = \mathcal{E}^{-1}(H(X))$.

Conjecture

Consider independent discrete X and Y. Then

$$V(X+Y) \geq V(X) + V(Y),$$

- ▶ Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.
- ▶ Define $V(X) = \mathcal{E}^{-1}(H(X))$.

Conjecture

Consider independent discrete X and Y. Then

$$V(X+Y) \geq V(X) + V(Y),$$

with equality if and only if X and Y are Poisson.

Turns out not to be true!

- ▶ Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.
- ▶ Define $V(X) = \mathcal{E}^{-1}(H(X))$.

Conjecture

Consider independent discrete X and Y. Then

$$V(X+Y) \geq V(X) + V(Y),$$

- Turns out not to be true!
- ▶ Even natural restrictions e.g. ULC, Bernoulli sums don't help

Discrete Property 2: EPI

- ▶ Define $\mathcal{E}(t) = H(\Pi_t)$, an increasing, concave function.
- ▶ Define $V(X) = \mathcal{E}^{-1}(H(X))$.

Conjecture

Consider independent discrete X and Y. Then

$$V(X+Y) \geq V(X) + V(Y),$$

- Turns out not to be true!
- Even natural restrictions e.g. ULC, Bernoulli sums don't help
- Counterexample (not mine!): $X \sim Y$, $P_X(0) = 1/6$, $P_X(1) = 2/3$, $P_X(2) = 1/6$.

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any α . conjecture that

$$V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y),$$

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any α , conjecture that

$$V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y),$$

with equality if and only if X and Y are Poisson.

Again, not true in general!

Thinned Entropy Power Inequality

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any α , conjecture that

$$V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y),$$

- Again, not true in general!
- \triangleright Perhaps not all α ?

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any α , conjecture that

$$V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y),$$

- Again, not true in general!
- \triangleright Perhaps not all α ?
- \triangleright Have partial results, but not full description of which α .

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any α , conjecture that

$$V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y),$$

- Again, not true in general!
- ▶ Perhaps not all α ?
- ▶ Have partial results, but not full description of which α .
- ▶ For example, true for Poisson Y with $H(Y) \leq H(X)$.

Two weaker results

 Analogues of the continuous concavity and scaling results do hold. (Again, proofs not given here!)

Theorem (TECI, Johnson/Yu, ISIT '09)

Consider independent ULC X and Y. For any α ,

$$H(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha H(X) + (1-\alpha)H(Y).$$

Theorem (RTEPI, Johnson/Yu, arXiv:0909.0641)

Consider ULC X. For any α ,

$$V(T_{\alpha}X) \geq \alpha V(X).$$

Discrete EPI

Duplicating steps from the continuous case above, we deduce an analogue of rephrased EPI

Theorem (Johnson/Yu, arXiv:0909.0641)

Given independent ULC X and Y, suppose there exist X^* and Y^* such that $X = T_{\alpha}X^*$ and $Y = T_{1-\alpha}Y^*$ for some α , and such that $H(X^*) = H(Y^*)$. Then

$$H(X+Y) \ge H(X^*), \tag{3}$$

Discrete Property 3: Monotonicity

▶ Write D(X) for $D(X||\Pi_{\mathbb{E}X})$.

- ▶ Write D(X) for $D(X||\Pi_{\mathbb{E}X})$.
- \triangleright By convex ordering arguments, Yu showed that for IID X_i :
 - 1. relative entropy $D\left(\sum_{i=1}^{n} T_{1/n} X_{i}\right)$ is monotone decreasing in n,
 - 2. for ULC X_i the entropy $H\left(\sum_{i=1}^n T_{1/n}X_i\right)$ is monotone increasing in n.

- ▶ Write D(X) for $D(X||\Pi_{\mathbb{E}X})$.
- **b** By convex ordering arguments, Yu showed that for IID X_i :
 - 1. relative entropy $D\left(\sum_{i=1}^{n} T_{1/n}X_{i}\right)$ is monotone decreasing in n,
 - 2. for ULC X_i the entropy $H\left(\sum_{i=1}^n T_{1/n}X_i\right)$ is monotone increasing in n.
- ▶ In fact, implicit in work of Yu is following stronger theorem:

Theorem

Given positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, and writing $\alpha^{(j)} = 1 - \alpha_j$, then for any independent ULC X_i ,

$$nD\left(\sum_{i=1}^{n+1}T_{\alpha_i}X_i\right)\leq \sum_{j=1}^{n+1}\alpha^{(j)}D\left(\sum_{i\neq j}T_{\alpha_i/\alpha^{(j)}}X_i\right).$$

Theorem (Johnson/Yu, arXiv:0909.0641)

Given positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, and writing $\alpha^{(j)} = 1 - \alpha_i$, then for any independent ULC X_i ,

$$nH\left(\sum_{i=1}^{n+1}T_{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}H\left(\sum_{i\neq j}T_{\alpha_i/\alpha^{(j)}}X_i\right).$$

Generalization of monotonicity

Theorem (Johnson/Yu, arXiv:0909.0641)

Given positive α_i such that $\sum_{i=1}^{n+1} \alpha_i = 1$, and writing $\alpha^{(j)} = 1 - \alpha_i$, then for any independent ULC X_i ,

$$nH\left(\sum_{i=1}^{n+1}T_{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}H\left(\sum_{i\neq j}T_{\alpha_i/\alpha^{(j)}}X_i\right).$$

Exact analogue of Artstein/Ball/Barthe/Naor result,

$$nh\left(\sum_{i=1}^{n+1}\sqrt{\alpha_i}X_i\right)\geq \sum_{j=1}^{n+1}\alpha^{(j)}h\left(\sum_{i\neq j}\sqrt{\alpha_i/\alpha^{(j)}}X_i\right),$$

replacing scalings by thinnings.

Again leads to a strengthened version of the rephrased EPI

Theorem (Johnson/Yu, arXiv:0909.0641)

Assume there exist H^* , Y_i^* and α_i such that $Y_i = T_{\alpha_i} Y_i^*$ with entropies satisfying $H(\sum_{i\neq i} T_{\alpha_i/\alpha^{(i)}} Y_i^*) = H^*$ for all j. Then

$$H\left(\sum_{i=1}^{n+1} Y_i\right) \geq H^*.$$

Future work

Future work

 \triangleright Resolve for which α , the

$$V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y).$$

 \triangleright Resolve for which α , the

$$V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y).$$

Relation to Shepp-Olkin conjecture

 \triangleright Resolve for which α , the

$$V(T_{\alpha}X + T_{1-\alpha}Y) \geq \alpha V(X) + (1-\alpha)V(Y).$$

- Relation to Shepp-Olkin conjecture
- ▶ Conjecture: if there exist X^* and Y^* such that $X = T_{\alpha}X^*$ and $Y = T_{1-\alpha}Y^*$, where $\alpha = V(X)/(V(X) + V(Y))$, then

$$V(X+Y)\geq V(X)+V(Y).$$

