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Abstract

» Differential entropy h has many nice properties.

» Often Gaussian provides case of equality.
» Focus on 3 such properties:

1. Maximum entropy
2. Entropy power inequality
3. Monotonicity

» Will discuss discrete analogues for discrete entropy H.
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Abstract
» Differential entropy h has many nice properties.
» Often Gaussian provides case of equality.
» Focus on 3 such properties:
1. Maximum entropy
2. Entropy power inequality
3. Monotonicity
» Will discuss discrete analogues for discrete entropy H.
» Infinite divisibility suggests Poisson should be case of equality.
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Gaussian maximum entropy

Property 1: Maximum entropy

Theorem (Shannon 1948)

If X has mean p and variance o and Y ~ N(u,c?) then
h(X) < h(Y),

with equality if and only if X ~ N(u,d?).
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Property 2: Entropy Power Inequality
» Define £(t) = h(N(0, t)) =  log,(2met).

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotoni ng and discrete versions of the Entropy Power Inequ Meeting



Property 2: Entropy Power Inequality

» Define £(t) = h(N(0, t)) =  log,(2met).
» Define entropy power v(X) = £~1(h(X)) = 22/(X) /(2re).
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Property 2: Entropy Power Inequality

> Define £(t) = h(N(0,t)) = 5 logy(2met).
> Define entropy power v(X) = £-1(h(X)) = 22/(X) /(2re).

Theorem (EPI)
Consider independent continuous X and Y. Then

v(X+Y) > v(X)+v(Y),

with equality if and only if X and Y are Gaussian.
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Property 2: Entropy Power Inequality
> Define £(t) = h(N(0,t)) = 5 logy(2met).
> Define entropy power v(X) = £-1(h(X)) = 22/(X) /(2re).

Theorem (EPI)
Consider independent continuous X and Y. Then

v(X+Y) > v(X)+v(Y),
with equality if and only if X and Y are Gaussian.

» First stated by Shannon.

> Lots of proofs (Stam/Blachman, Lieb,
Dembo/Cover/Thomas, Tulino/Verdii/Guo).
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Property 2: Entropy Power Inequality

> Define £(t) = h(N(0,t)) = 5 logy(2met).
> Define entropy power v(X) = £-1(h(X)) = 22/(X) /(2re).

Theorem (EPI)
Consider independent continuous X and Y. Then

v(X+Y) > v(X)+v(Y),
with equality if and only if X and Y are Gaussian.

» First stated by Shannon.

> Lots of proofs (Stam/Blachman, Lieb,
Dembo/Cover/Thomas, Tulino/Verdii/Guo).

> Restricted versions easier to prove? (cf Costa).
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Equivalent formulation

Theorem (ECI — not proved here!)
For independent X*, Y* with finite variance, for all o € [0, 1],

h(VaX* + VI —aY*) > ah(X*) + (1 — a)h(Y*).

Lemma
EPI is equivalent to ECI.
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Equivalent formulation

Theorem (ECI — not proved here!)
For independent X*, Y* with finite variance, for all o € [0, 1],

h(VaX* + VI —aY*) > ah(X*) + (1 — a)h(Y*).

Lemma
EPI is equivalent to ECI.

» Key role played in Lemma by fact about scaling:

v(vaX) = av(X). (1)

» This holds since h(y/aX) = h(X) + 5 log , and
v(vaX) = 22hveX) /(ore).
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Proof of Lemma: EPI implies ECI
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Proof of Lemma: EPI implies ECI
» By the EPI (where X = /aX* and Y = /1 —aY™) and
scaling relation (1),
v(vVaX* +vV1—-aY*) > v(vaX*)+v(V1-—aY?¥)
= av(X*)+ (1 —a)v(Y").
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Proof of Lemma: EPI implies ECI

» By the EPI (where X = /aX* and Y = V1 — aY*) and
scaling relation (1),

v(vVaX* +vV1—-aY*) > v(vaX*)+v(V1-—aY?¥)
= av(X*)+ (1 —a)v(Y").

» Applying £ to both sides and using Jensen (since £ ~ log, so
is concave):

h(vVaX* +vV1—aY®)

v

5<av(X*) +(1- a)v(y*)>
a(v(X)) + (1 —a)e(v(Y7))
ah(X*) + (1 — a)h(Y*)

v

which is the ECI.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotonicity, thinning and discrete versions of the Entropy Power Inequality: 3rd EPFL/MLV Meeting



Proof of Lemma: ECI implies EPI

Oliver Johnso ohnson@bristol

Monotonicity, thinning and discrete versions of the Entropy Power Inequality



Proof of Lemma: ECI implies EPI
» For some «, define X* = X//a and Y* =Y /{/1—a.
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Proof of Lemma: ECI implies EPI

» For some «, define X* = X/y/a and Y* =Y /\/1 — a.
» Then the ECI and scaling (1) imply that

h(X+Y) = h(vVaX*+V1—aY")
ah(X*) + (1 —a)h(Y™)
al(v(X™)+ (1 —a)&(v(Y™))

v
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Proof of Lemma: ECI implies EPI

» For some «, define X* = X/y/a and Y* =Y /\/1 — a.
» Then the ECI and scaling (1) imply that

h(X+Y) = h(vVaX*+V1—aY")
ah(X*) + (1 —a)h(Y™)
al(v(X™)+ (1 —a)&(v(Y™))

o (M09 o e (X2

% and the above inequality becomes

v

» Pick a =
h(X+Y) > E(v(X)+ v(Y)),

and applying £7! to both sides gives the EPI.
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Rephrased EPI
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Rephrased EPI

» Note that this choice of o makes
v(X*) = v(Y*) = v(X) + v(Y).
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Rephrased EPI

» Note that this choice of o makes
v(X*) = v(Y*) = v(X) + v(Y).
» This choice of scaling suggests the following rephrased EPI:

Corollary (Rephrased EPI)

Given independent X and Y with finite variance, there exist X*

and Y* such that X = y/JaX* and Y = /1 — aY* for some «,
and such that h(X*) = h(Y™).

The EPI is equivalent to the fact that
h(X 4+ Y) > h(X™), (2)
with equality if and only if X and Y are Gaussian.
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Monotonicity

Property 3: Monotonicity
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Monotonicity

Property 3: Monotonicity

» Exciting set of strong recent results, collectively referred to as
‘monotonicity’.
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Monotonicity

Property 3: Monotonicity

» Exciting set of strong recent results, collectively referred to as
‘monotonicity’.

» First proved by Artstein/Ball/Barthe/Naor, alternative proofs
by Tulino/Verdd and Madiman/Barron.
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Monotonicity

Monotonicity theorem

Theorem

Given independent continuous X; with finite variance, for any

positive «j such that 27:11 ai = 1, writing o) =1 — «j, then

n+1 n+1
nh Z VaiXi| > Z aWh Z \ai/al)X;
i=1 j=1 i
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Monotonicity

Monotonicity theorem

Theorem
Given independent continuous X; with finite variance, for any
positive «j such that Z"H ai = 1, writing o) =1 — «j, then

n+1 n+1

nh Z@x >Za0>h >y ai/aVX;

i#]

» Choosing aj = 1/(n+ 1) for IID X; shows h (374 Xj/\/n) is
monotone increasing in n.
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Monotonicity

Monotonicity theorem

Theorem
Given independent continuous X; with finite variance, for any
positive a; such that S 71

i—1 o =1, writing o) =1— «j, then

n+1 n+1
nh Z VaiXi| > Z aWh Z \ai/al)X;
i=1 j=1 i

» Choosing aj = 1/(n+ 1) for IID X; shows h (374 Xj/\/n) is
monotone increasing in n.

» Equivalently relative entropy D (27:1 X,/ﬁH Z)is
monotone decreasing in n.
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Monotonicity strengthens EPI
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Monotonicity

Monotonicity strengthens EPI

» By the right choice of o, monotonicity implies the following
strengthened EPI.

Theorem (Strengthened EPI)

Given independent continuous Y; with finite variance, the entropy
powers satisfy

n+1 n+1
nv(zn> Sal
=1

=t \i#

with equality if and only if all the Y; are Gaussian.
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Monotonicity

Rephrased strengthened EPI
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Monotonicity

Rephrased strengthened EPI

» Again can rephrase this strengthened version:

Theorem (Rephrased strengthened EPI)
Given independent Y;, if there exist «; such that Zf’+11 a; =1 and

Y7 =Y/ /a; have h ((Z;# \/07,-\/,.*)/\/04(1)> — h* constant in j,

then
n+1

h ZY,- > h*.
i=1
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Poisson maximum entropy

Discrete Property 1: Poisson maximum entropy

Definition
For any A, define class of ultra-log-concave V' with mass function
py satisfying

ULC(A\) = {V :EV = X and py(i)/MNx(i) is log-concave}.
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Poisson maximum entropy

Discrete Property 1: Poisson maximum entropy

Definition
For any A, define class of ultra-log-concave V' with mass function
py satisfying

ULC(A\) = {V :EV = X and py(i)/MNx(i) is log-concave}.
That is

ipv(i)? > (i + 1)pv (i + 1)py (i — 1), for all i.
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Poisson maximum entropy

Discrete Property 1: Poisson maximum entropy

Definition
For any A, define class of ultra-log-concave V' with mass function
py satisfying

ULC(A\) = {V :EV = X and py(i)/MNx(i) is log-concave}.
That is

ipv(i)? > (i + 1)pv (i + 1)py (i — 1), for all i.

» Class includes Bernoulli sums and Poisson.
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Poisson maximum entropy

Maximum entropy and ULC()\)

Theorem (Johnson, Stoch. Proc. Appl. 2007)
If X € ULC(A) and Y ~ Iy then

H(X) < H(Y),

with equality if and only if X ~ I1y.
(see also Harremoés, 2001)
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Poisson maximum entropy

Key operation: thinning

Definition
Given Y, define the a-thinned version of Y by

Y
.Y =Y B,
i=1

where By, By ... i.i.d. Bernoulli(e), independent of Y.
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Poisson maximum entropy

Key operation: thinning

Definition
Given Y, define the a-thinned version of Y by

Y
T.Y = Z B;,
i=1

where By, By ... i.i.d. Bernoulli(e), independent of Y.

» Thinning has many interesting properties.
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Poisson maximum entropy

Key operation: thinning

Definition
Given Y, define the a-thinned version of Y by

Y
T.Y = Z B;,
i=1

where By, By ... i.i.d. Bernoulli(e), independent of Y.

» Thinning has many interesting properties.

» We believe T, seems like scaling by \/a.
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Poisson maximum entropy

Key operation: thinning

Definition
Given Y, define the a-thinned version of Y by
Y
.Y =Y B,
i=1
where By, By ... i.i.d. Bernoulli(e), independent of Y.

» Thinning has many interesting properties.
» We believe T, seems like scaling by \/a.

» ‘Mean-preserving transform’ T, X + T1_,Y equivalent to
‘variance-preserving transform’ /aX ++/1 —aY in
continuous case? (Matches max. ent. condition).
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Discrete EPI

Discrete Property 2: EPI
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Discrete EPI

Discrete Property 2: EPI

» Define £(t) = H(M;), an increasing, concave function.
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Discrete EPI

Discrete Property 2: EPI

» Define £(t) = H(M;), an increasing, concave function.
» Define V(X) = E7Y(H(X)).
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Discrete EPI

Discrete Property 2: EPI

» Define £(t) = H(IM;), an increasing, concave function.
> Define V(X) = E~L(H(X)).

Conjecture
Consider independent discrete X and Y. Then

V(X + Y) > V(X)+ V(Y),

with equality if and only if X and Y are Poisson.
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Discrete EPI

Discrete Property 2: EPI

» Define £(t) = H(IM;), an increasing, concave function.
> Define V(X) = E~L(H(X)).

Conjecture
Consider independent discrete X and Y. Then

VIX+Y)>V(X)+ V(Y),
with equality if and only if X and Y are Poisson.

» Turns out not to be truel
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Discrete EPI

Discrete Property 2: EPI
» Define £(t) = H(IM;), an increasing, concave function.

> Define V(X) = E~L(H(X)).

Conjecture
Consider independent discrete X and Y. Then

VIX+Y)>V(X)+ V(Y),
with equality if and only if X and Y are Poisson.

» Turns out not to be truel

» Even natural restrictions e.g. ULC, Bernoulli sums don't help
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Discrete EPI

Discrete Property 2: EPI
» Define £(t) = H(IM;), an increasing, concave function.

> Define V(X) = E~L(H(X)).

Conjecture
Consider independent discrete X and Y. Then

VIX+Y)>V(X)+ V(Y),
with equality if and only if X and Y are Poisson.

» Turns out not to be true!
» Even natural restrictions e.g. ULC, Bernoulli sums don't help

» Counterexample (not mine!): X ~ Y,
Px(0) = 1/6, Px(1) = 2/3, Px(2) = 1/6.
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Discrete EPI

Thinned Entropy Power Inequality

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any «,
conjecture that

V(ToX + Ti_aY) > aV(X) + (1 — a)V(Y),

with equality if and only if X and Y are Poisson.
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Discrete EPI

Thinned Entropy Power Inequality

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any «,
conjecture that

V(ToX + TioY) > aV(X)+ (1 — a)V(Y),
with equality if and only if X and Y are Poisson.

» Again, not true in general!
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Discrete EPI

Thinned Entropy Power Inequality

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any «,
conjecture that

V(ToX + TioY) > aV(X)+ (1 — a)V(Y),
with equality if and only if X and Y are Poisson.

» Again, not true in general!

» Perhaps not all a?
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Discrete EPI

Thinned Entropy Power Inequality

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any «,
conjecture that

V(ToX + TioY) > aV(X)+ (1 — a)V(Y),
with equality if and only if X and Y are Poisson.

» Again, not true in general!
» Perhaps not all a?

» Have partial results, but not full description of which a.
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Discrete EPI

Thinned Entropy Power Inequality

Conjecture (TEPI)

Consider independent discrete ULC X and Y. For any «,
conjecture that

V(ToX + TioY) > aV(X)+ (1 — a)V(Y),
with equality if and only if X and Y are Poisson.

» Again, not true in general!

» Perhaps not all a?

» Have partial results, but not full description of which a.
» For example, true for Poisson Y with H(Y) < H(X).
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Discrete EPI

Two weaker results
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Discrete EPI

Two weaker results

» Analogues of the continuous concavity and scaling results do
hold. (Again, proofs not given herel!)

Theorem (TECI, Johnson/Yu, ISIT '09)
Consider independent ULC X and Y. For any «,

H(ToX + Ti—aY) > aH(X) + (1 — a)H(Y).
Theorem (RTEPI, Johnson/Yu, arXiv:0909.0641)
Consider ULC X. For any «,

V(TaX) > aV(X).
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Discrete EPI

Discrete EPI?
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Discrete EPI

Discrete EPI?

» Duplicating steps from the continuous case above, we deduce
an analogue of rephrased EPI

Theorem (Johnson/Yu, arXiv:0909.0641)

Given independent ULC X and Y, suppose there exist X* and Y*
such that X = T, X* and Y = T1_, Y™ for some «, and such that
H(X*) = H(Y*). Then

H(X + Y) > H(X*), (3)

with equality if and only if X and Y are Poisson.
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Discrete Monoton

Discrete Property 3: Monotonicity
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Discrete Monotonicity

Discrete Property 3: Monotonicity
» Write D(X) for D(X||Mgx).
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Discrete Monotonicity

Discrete Property 3: Monotonicity

» Write D(X) for D(X||Mgx).
» By convex ordering arguments, Yu showed that for IID X;:
1. relative entropy D (3_7_; T1/,X;) is monotone decreasing in n,
2. for ULC X; the entropy H (3°7_; T1/,X;) is monotone
increasing in n.
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Discrete Monotonicity

Discrete Property 3: Monotonicity

» Write D(X) for D(X||Mgx).
» By convex ordering arguments, Yu showed that for IID X;:
1. relative entropy D (3_7_; T1/,X;) is monotone decreasing in n,
2. for ULC X; the entropy H (3°7_; T1/,X;) is monotone
increasing in n.

» In fact, implicit in work of Yu is following stronger theorem:

Theorem
Given positive «j such that Z;’;rll aj =1, and writing
al) =1 — «j, then for any independent ULC X;,

n+1 n+1
nD (Z Ta,X,-> <Y oD ([>T, 00X
i=1 j=1

i#j
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Discrete Monotonicity

Generalization of monotonicity
Theorem (Johnson/Yu, arXiv:0909.0641)

Given positive o such that Z”fll a;j = 1, and writing

al) =1 — «j, then for any independent ULC X;,

n+1 n+1
nH Z Ta,-Xi > Za( Z /a(J
i=1 j=1 i#j
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Discrete Monotonicity

Generalization of monotonicity
Theorem (Johnson/Yu, arXiv:0909.0641)

Given positive o such that Z”fll a;j = 1, and writing

al) =1 — «j, then for any independent ULC X;,

n+1 n+1
nH <Z Ta,-Xi> Z Za Z /a(J
i=1 j=1

i#

» Exact analogue of Artstein/Ball/Barthe/Naor result,
n+1 n+1
nh (Z \/(JT,-X,-) > Za(j)h Z \/ ai/al)X;
i=1 j=1 i#j

replacing scalings by thinnings.

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotonicity, thinning and discrete versions of the Entropy Power Inequality: 3rd EP LV Meeting



Discrete Monotonicity

Generalized EPI
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Discrete Monotonicity

Generalized EPI

» Again leads to a strengthened version of the rephrased EPI

Theorem (Johnson/Yu, arXiv:0909.0641)
Assume there exist H*, Y;* and «; such that Y; = T, Y. with

1

entropies satisfying H(Zi# T /o) Y?) = H* for all j. Then

«

n+1
H ZY,- > H*.
i=1
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Discrete Monotonicity

Future work

Oliver Johnso Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotonicity, thinning and discrete versions of the Entropy Power Inequali



Discrete Monotonicity

Future work

» Resolve for which «, the

V(ToX + Ti—oY) > aV(X) + (1 —a)V(Y).
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Discrete Monotonicity

Future work

» Resolve for which «, the

V(ToX + Ti—oY) > aV(X) + (1 —a)V(Y).

» Relation to Shepp-Olkin conjecture
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Discrete Monotonicity

Future work

» Resolve for which «, the

V(ToX + Ti—oY) > aV(X) + (1 —a)V(Y).

» Relation to Shepp-Olkin conjecture

» Conjecture: if there exist X* and Y™* such that X = T, X*
and Y = T1_,Y*, where o = V(X)/(V(X) + V(Y)), then

V(X +Y)>V(X)+ V(Y).

Oliver Johnson 0.Johnson@bristol.ac.uk Statistics Group, University of Bristol

Monotonicity, thinning and discrete versions of the Entropy Power Inequality: 3rd EPFL/MLV Meeting



	Gaussian maximum entropy
	EPI
	Monotonicity
	Poisson maximum entropy
	Discrete EPI
	Discrete Monotonicity

