Almost sure location of the singular values of Gaussian large random matrices: the information plus noise model case

Philippe Loubaton, Pascal Vallet

Université de Paris-Est / Marne la Vallée, LIGM

EPFL/UMLV Workshop, 4/12/2009

ADD REPARTMENTS

Plan

² [The asymptotic behaviour of the eigenvalue distribution of](#page-12-0) Rˆ N

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

3 [Almost sure locations of the eigenvalues of](#page-21-0) $\hat{\mathsf{R}}_N$.

Plan

1 [Problem statement.](#page-2-0)

2 [The asymptotic behaviour of the eigenvalue distribution of](#page-12-0) $\hat{\mathbf{R}}_N$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니

3 [Almost sure locations of the eigenvalues of](#page-21-0) $\hat{\mathbf{R}}_N$.

4 [Conclusion](#page-36-0)

The information plus noise model

Observation of N **samples of a** M**-variate time series** $({\bf y}_n)_{n\in\mathbb{Z}}$, $N > M$.

- \bullet **y**_n = **a**_n + σ **w**_n
- \bullet (\mathbf{a}_n)_{n=1,...,N} deterministic vectors, correspond to the useful signal
- \bullet σ **w**_n additive complex white Gaussian noise, $\mathbb{E}(\mathbf{w}_n\mathbf{w}_n^H)=\mathbf{I}_M$

Equivalent M × N **matrix model**

$$
(\bm{y}_1,\ldots,\bm{y}_N)=\bm{Y}=\bm{A}+\sigma\bm{W}
$$

Y non zero mean Gaussian random matrix with independent entries of variance σ^2

Typical applicative context : source localization

K source signals $(s_k)_{k=1,\dots,K}$ observed on a M sensors **array,** K < M

- $\textbf{s}_n = (s_{1,n}, \ldots, s_{\mathsf{K},n})^{\mathsf{T}}$, $s_{k,n}$ *k*-th source signal at time n
- \bullet $a_n = Ds_n$
- **O** D deterministic $M \times K$ directional vectors matrix, $K \times M$

KORK EX KEY KORK KORK

The associated Information plus Noise matrix model

$$
\bullet\ \mathsf{Y}=\mathsf{DS}+\sigma\mathsf{W},\,\mathsf{A}=\mathsf{DS}
$$

$$
\bullet \ \text{Rank}(\mathbf{A}) < M
$$

The empirical covariance matrix

The associated empirical covariance matrix.

$$
\hat{\mathbf{R}}_N = \frac{\mathbf{YY}^H}{N} = \frac{(\mathbf{A} + \sigma \mathbf{W})(\mathbf{A} + \sigma \mathbf{W})^H}{N}
$$

ADD REPARTMENTS

Study of the location of the eigenvalues of matrix $\hat{\mathsf{R}}_{\mathsf{N}}$

If $N \rightarrow \infty$, M **fixed**

$$
\bullet \ \mathsf{R}_N = \tfrac{\mathsf{A} \mathsf{A}^H}{N}
$$

$$
\bullet \ \hat{\mathsf{R}}_N - (\mathsf{R}_N + \sigma^2 \mathsf{I}_M) \to 0
$$

- Eigenvalues of $\hat{\mathsf{R}}_{N} \simeq$ eigenvalues of $\mathsf{R}_{N} + \sigma^2$
- Source localization context : σ^2 eigenvalue with multiplicity $M - K$, the K greatest eigenvalues $> \sigma^2$

ADD REPARTMENTS

If $N \rightarrow \infty$, M **fixed**

$$
\bullet \ \mathbf{R}_N = \frac{\mathbf{A} \mathbf{A}^H}{N}
$$

$$
\bullet \ \hat{\mathsf{R}}_N - (\mathsf{R}_N + \sigma^2 \mathsf{I}_M) \to 0
$$

- Eigenvalues of $\hat{\mathsf{R}}_{N} \simeq$ eigenvalues of $\mathsf{R}_{N} + \sigma^2$
- Source localization context : σ^2 eigenvalue with multiplicity $M - K$, the K greatest eigenvalues $> \sigma^2$

If M **and** N **are of the same order of magnitude**

•
$$
M \to \infty
$$
, $N \to \infty$

$$
\bullet \ \ c_N = \tfrac{M}{N} \to \text{non zero constant}
$$

The histograms of the eigenvalues of $\hat{\mathsf{R}}_\mathsf{N}$ have a deterministic behaviour which can be characterized : Dozier-Silverstein 2007.

Numerical illustration (I).

- $\sigma^2=2, M=256$
- \bullet Eigenvalues of \mathbf{R}_{N} 0 with multiplicity 128, 5 with multiplicity 128
- If $\pmb{c} = \frac{M}{N} \simeq 0$, eigenvalues of $\hat{\pmb{\mathsf{R}}}_N \simeq 2$ with multiplicity 128, 7 with multiplicity 128

KORK EX KEY KORK KORK

- $c = \frac{M}{N}$ $\frac{M}{N}$, $c=0.05, 0.2, 0.5$
- Representation of histograms of the eigenvalues of $\hat{\mathsf{R}}_{\mathsf{N}}$

Numerical illustration (II).

 2990

Illustrations numériques (III).

 2990

Illustrations numériques (III).

 2990

Plan

² [The asymptotic behaviour of the eigenvalue distribution of](#page-12-0) Rˆ N

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

3 [Almost sure locations of the eigenvalues of](#page-21-0) $\hat{\mathbf{R}}_N$.

Mathematical formulation

The asymptotic regime

$$
\bullet \ M \to \infty, \ N \to \infty
$$

 $c_N = \frac{M}{N} \rightarrow$ non zero constant

 $(\hat{\lambda}_k)_{k=1,...,M}$ eigenvalues of $\hat{\mathsf{R}}_{N},$ $(\lambda_k)_{k=1,...,M}$ eigenvalues of $\mathsf{R}_N,$ arranged in increasing order.

D.Z 2007 : It exists a deterministic probability measure μ_N **carried by** R ⁺ **such that**

$$
\bullet \ \frac{1}{M}\textstyle\sum_{k=1}^M \delta(\lambda - \hat{\lambda}_k) - \mu_N \to 0 \text{ weakly almost surely}
$$

1 $\frac{1}{M}\sum_{k=1}^M \delta(\lambda - \hat{\lambda}_k)$: empirical eigenvalue distribution of $\hat{\mathsf{R}}_N.$

How to characterize $\mu_{\mathcal{N}}$

The Stieljes transform $m_N(z)$ of μ_N

•
$$
m_N(z) = \int_{\mathbb{R}^+} \frac{\mu_N(d\lambda)}{\lambda - z}
$$
 defined on $\mathbb{C} - \mathbb{R}^+$

$$
\bullet \ \int_{\mathbb{R}^+} \phi(\lambda) \mu_N(d\lambda) = \tfrac{1}{\pi} \lim_{y \to 0^+} \operatorname{Im} \int_{\mathbb{R}^+} \phi(x) m_N(x + iy) dx
$$

Convergence of $\frac{1}{M}\sum_{k=1}^M \delta(\lambda - \hat{\lambda}_k)$ towards μ_N

Show that $\frac{1}{M}\sum_{k=1}^{M}\frac{1}{\hat{\lambda}_{k-1}}$ $\frac{1}{\hat{\lambda}_k - z} - m_\mathsf{N}(z) \rightarrow 0$ a.s. for each $z \in \mathbb{C} - \mathbb{R}^+.$

-
◆ ロ ▶ ◆ @ ▶ → ミ ▶ → ミ ▶ → ミ → つ Q (V)

How to characterize μ_N

The Stieljes transform $m_N(z)$ of μ_N

•
$$
m_N(z) = \int_{\mathbb{R}^+} \frac{\mu_N(d\lambda)}{\lambda - z}
$$
 defined on $\mathbb{C} - \mathbb{R}^+$

$$
\bullet \ \ \int_{\mathbb{R}^+} \phi(\lambda) \mu_N(d\lambda) = \tfrac{1}{\pi} \lim_{y \to 0^+} \mathrm{Im} \int_{\mathbb{R}^+} \phi(x) m_N(x + iy) dx
$$

$m_N(z)$ is solution of the equation

$$
\frac{m_N(z)}{1+\sigma^2c_Nm_N(z)}=f_N(w_N(z))
$$

•
$$
w_N(z) = z(1 + \sigma^2 c_N m_N(z))^2 + \sigma^2 (1 - c_N)(1 + \sigma^2 c_N m_N(z))
$$

\n• $f_N(w) = \frac{1}{M} \text{Trace}(\mathbf{R}_N - w \mathbf{I}_M)^{-1} = \frac{1}{M} \sum_{k=1}^M \frac{1}{\lambda_k - z}$

KORK EX KEY KORK KORK

YO A HER YEAR ARA YOUR

Properties of μ_N , $c_N = \frac{M}{N} < 1$.

\bullet $\mu_N(d\lambda)$ absolutely continuous

 \bullet μ_N is compactly supported, \mathcal{S}_N support of μ_N

Properties of μ_N , $c_N = \frac{M}{N} < 1$.

Characterization of S_N : reformulation of D.Z 2007 in **Vallet-Loubaton-Mestre-2009**

- Function $\phi_N(w)$ defined on $\mathbb R$ by $\phi_N(w) = w(1 - \sigma^2 c_N f_N(w))^2 + \sigma^2 (1 - c_N)(1 - \sigma^2 c_N f_N(w))$
- \bullet ϕ_N has 2Q extrema whose preimages $w_{1,-}^{(N)} < w_{1,+}^{(N)} < \ldots w_{Q,-}^{(N)} < w_{Q,+}^{(N)}$ $\sigma_{\rm Q,+}^{(N)}$ satisfy 1 $-\sigma^2 c_N f_N(w) > 0.$ These extrema verify $x_{1,-}^{(N)} < x_{1,+}^{(N)} < \ldots x_{\mathrm{Q},-}^{(N)} < x_{\mathrm{Q},+}^{(N)}$ Q,+ .

$$
\bullet \enspace \mathcal{S}_N = [x_{1,-}^{(N)}, x_{1,+}^{(N)}] \cup \ldots [x_{Q,-}^{(N)}, x_{Q,+}^{(N)}]
$$

Each eigenvalue λ_1 **of** \mathbf{R}_N **belongs to an interval** $[w_k^{(N)}]$ $\mathcal{W}^{(N)}_{k,-},\, \mathcal{W}^{(N)}_{k,+}$ $\binom{(N)}{k,+}$

Some definitions

- Each interval $[x_{k,-}^{(N)}]$ $\mathsf{x}_{k,-}^{(\mathsf{N})},\mathsf{x}_{k,+}^{(\mathsf{N})}$ $\binom{N}{k,+}$ is called a cluster
- An eigenvalue $\lambda^{(N)}_I$ $\binom{N}{l}$ of \mathbf{R}_N is said to be associated to cluster $\left[\mathsf{x}_{k}^{(N)}\right]$,(N)
 $\mathsf{x}^{(N)}_{k,-},\mathsf{x}^{(N)}_{k,+}$ $[\lambda_{k,+}^{(N)}]$ if $\lambda_I^{(N)}$ $\stackrel{(N)}{l} \in [w^{(N)}_{k,-}]$ $\begin{array}{c} l_{\mathcal{K},-},~\mathcal{W}^{(\mathcal{N})}_{\mathcal{K},+}, \end{array}$ $\binom{k^{(1)}-1}{k+1}$

KORK EX KEY KORK KORK

• 2 eigenvalues of \mathbf{R}_N are said to be separated if they are associated to different clusters

Plan

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니

3 [Almost sure locations of the eigenvalues of](#page-21-0) $\hat{\mathsf{R}}_N$.

4 [Conclusion](#page-36-0)

The new results I.

Technical hypothesis : $\sup_M ||R_N|| < \infty$

Theorem 1.

Let $[a, b]$ such that $]a - \epsilon, b + \epsilon [\subset (\mathcal{S}_N)^c$ for each $N > N_0$. Then, almost surely, for N large enough, none of the eigenvalues of $\hat{\mathsf{R}}_{N}$ appears in $[a,b].$

KORK EX KEY KORK KORK

The new results II.

To simplify the statement of the second theorem, formulation adapted to the context of source localization.

• K sources and M sensors, $A = DS$

$$
\bullet \ \text{Rank}(\mathbf{R}_N) = \mathbf{K}
$$

0 is eigenvalue of \mathbf{R}_N with multiplicity $M - K$. 0 is of course associated to cluster $[x_{1}^{(N)}]$ $\boldsymbol{\chi}_{1,-}^{(N)},\boldsymbol{\chi}_{1,+}^{(N)}$ $\binom{(N)}{1,+}$.

KORK EX KEY KORK KORK

The new results II.

Theorem 2

Assume that it exists N_0 such that for each $N > N_0$, eigenvalue 0 is separated from the others and that

$$
\sup_{N>N_0} x_{1,+}^{(N)} < \inf_{N>N_0} x_{2,-}^{(N)}
$$

Consider $t_{1,-} < t_{1,+} < t_{2,-}$ such that

$$
t_{1,-} < \inf_{N > N_0} x_{1,-}^{(N)} < \sup_{N > N_0} x_{1,+}^{(N)} < t_{1,+} < t_{2,-} < \inf_{N > N_0} x_{2,-}^{(N)}
$$

Then, almost surely, for N large enough, $\hat{\lambda}_1^{(N)}$ $\overset{(N)}{1},\ldots,\overset{\hat{\lambda}^{(N)}}{M-}$ $\binom{(N)}{M-K}$ ∈ [$t_{1,-}, t_{1,+}$] and $\hat{\lambda}_{M-K+1}^{(N)}> t_{2,-}.$

The new results II.

Theorem 2

Assume that it exists N_0 such that for each $N > N_0$, eigenvalue 0 is separated from the others and that

$$
\sup_{N>N_0} x_{1,+}^{(N)} < \inf_{N>N_0} x_{2,-}^{(N)}
$$

Consider $t_{1,-} < t_{1,+} < t_{2,-}$ such that

$$
t_{1,-} < \inf_{N > N_0} x_{1,-}^{(N)} < \sup_{N > N_0} x_{1,+}^{(N)} < t_{1,+} < t_{2,-} < \inf_{N > N_0} x_{2,-}^{(N)}
$$

Then, almost surely, for N large enough, $\hat{\lambda}_1^{(N)}$ $\overset{(N)}{1},\ldots,\overset{\hat{\lambda}^{(N)}}{M-}$ $\binom{(N)}{M-K}$ ∈ [$t_{1,-}, t_{1,+}$] and $\hat{\lambda}_{M-K+1}^{(N)}> t_{2,-}.$

Existing related results.

- Bai and Silverstein 1998 in the context of the model $Y = HW$. W possibly non Gaussian
- Capitaine, Donati-Martin, and Feral 2009 in the context of the deformed Wigner model $Y = A + X$, X Gaussian Wigner matrix, **A** deterministic hermitian matrix with constant rank.

YO A HER YEAR ARA YOUR

Sketch of the proofs I.

Follow the Gaussian methods of Capitaine, Donati-Martin, and Feral 2009 based on ideas developed by Haagerup and Thorbjornsen 2005 in a different context.

Show that
$$
\mathbb{E}\left(\frac{1}{M}\sum_{k=1}^{M}\frac{1}{\hat{\lambda}_k - z}\right) = m_N(z) + \frac{\xi_N(z)}{N^2}
$$
 where $\xi_N(z)$ is analytic on $\mathbb{C} - \mathbb{R}^+$, and satisfies

$$
|\xi_N(z)|\leq (|z|+C)^lP(\frac{1}{|\text{Im}(z)|})
$$

P is a polynomial independent of N, C and I are independent of N. Use approaches developed by Pastur based on the Poincaré-Nash inequality and a Gaussian integration by parts formula (see Dumont-Hachem-Lasaulce-Loubaton-Najim 2010 in the context of a more general information plus noise model).

Sketch of the proofs II.

Using a useful Lemma in Haagerup and Thorbjornsen 2005 as well as the Stieljes inversion formula, we obtain that for each compactly supported \mathcal{C}_{∞} function ψ defined on R, then

$$
\mathbb{E}\left(\frac{1}{M}\sum_{k=1}^{M}\psi(\hat{\lambda}_{k})\right)=\int_{\mathcal{S}_{N}}\psi(\lambda)\mu_{N}(d\lambda)+O(\frac{1}{N^{2}})
$$

KORK EX KEY KORK KORK

Use this identity for well chosen functions ψ**.**

Proof of Theorem 2.

Assume Theorem 1 holds.

$\epsilon > 0$ such that $t_{1,+} + \epsilon < \overline{t_{2,-}}$

•
$$
\psi(\lambda) = 1
$$
 on $[t_{1,-}, t_{1,+}]$

$$
\bullet \ \psi(\lambda) = 0 \text{ on } ([t_{1,-}-\epsilon,t_{1,+}+\epsilon])^c
$$

$$
\bullet \ \psi(\lambda) \ \mathcal{C}_{\infty}
$$

Useful lemma

Under the hypotheses of Theorem 2, $\mu_N([x_{1,-}^{(N)}$ $\mathsf{x}_{1,-}^{(\mathsf{N})},\mathsf{x}_{1,+}^{(\mathsf{N})}$ $\mu_{1,+}^{(N)}]) = \mu_N([t_{1,-}, t_{1,+}]) = \frac{M-K}{M}$

We recall that

•
$$
\psi(\lambda) = 1
$$
 on $[x_{1,-}^{(N)}, x_{1,+}^{(N)}], \psi(\lambda) = 0$ on the other components of S_N

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 1990

$$
\bullet \ \mathbb{E}\left(\tfrac{1}{M}\sum_{k=1}^M \psi(\hat{\lambda}_k)\right) = \int_{\mathcal{S}_N} \psi(\lambda) \mu_N(d\lambda) + O(\tfrac{1}{N^2})
$$

Therefore

$$
\mathbb{E}\left(\tfrac{1}{M}\sum_{k=1}^M \psi(\hat{\lambda}_k)\right) - \tfrac{M-K}{M} = O(\tfrac{1}{N^2})
$$

Therefore

$$
\mathbb{E}\left(\tfrac{1}{M}\sum_{k=1}^M \psi(\hat{\lambda}_k)\right) - \tfrac{M-K}{M} = O(\tfrac{1}{N^2})
$$

Use the Poincaré-Nash inequality to establish that

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 | X 9 Q @

$$
\text{Var}\left(\frac{1}{M}\sum_{k=1}^{M}\psi(\hat{\lambda}_{k})\right)=O(\frac{1}{N^{4}})
$$

Therefore

$$
\mathbb{E}\left(\frac{1}{M}\sum_{k=1}^{M}\psi(\hat{\lambda}_{k})\right)-\frac{M-K}{M}=O(\frac{1}{N^{2}})
$$

Use the Poincaré-Nash inequality to establish that

$$
\text{Var}\left(\tfrac{1}{M}\sum_{k=1}^M \psi(\hat{\lambda}_k)\right) = O(\tfrac{1}{N^4})
$$

This implies immediately that

$$
\mathbb{E}\left(\tfrac{1}{M}\sum_{k=1}^M \psi(\hat{\lambda}_k) - \tfrac{M-K}{M}\right)^2 = O(\tfrac{1}{N^4})
$$

ADD REPARTMENTS

Define
$$
E_N = {\omega, \left| \frac{1}{M} \sum_{k=1}^M \psi(\hat{\lambda}_k) - \frac{M-K}{M} \right| > \frac{1}{N^{4/3}}}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 1990

Markov inequality + Borel-Cantelli lemma :

\n- $$
P(E_N) < \frac{1}{N^{4/3}}
$$
\n- $P(\limsup E_N) = 0$
\n

Define
$$
E_N = \{\omega, \left| \frac{1}{M} \sum_{k=1}^M \psi(\hat{\lambda}_k) - \frac{M-K}{M} \right| > \frac{1}{N^{4/3}}
$$

Almost surely, for $N > N_1$, $\Big|$ 1 $\frac{1}{M}\sum_{k=1}^M \psi(\hat{\lambda}_k) - \frac{M-K}{M}$ $\left|\frac{1-K}{M}\right| < \frac{1}{N^{4}}$ N4/³

• Almost surely, for
$$
N > N_1
$$
,
\n
$$
\left| \sum_{k=1}^{M} \psi(\hat{\lambda}_k) - (M - K) \right| = O(\frac{1}{N^{1/3}})
$$

- By Theorem 1, for each $k, \, \hat{\lambda}_k$ does not belong to $[t_{1,-} - \epsilon, t_{1,-}] \cup [t_{1,+}, t_{1,+} + \epsilon].$
- Hence, $\psi(\hat{\lambda}_k)=1$ (iff $\hat{\lambda}_k\in[t_{1,-},t_{1,+}]$) or $\psi(\hat{\lambda}_k)=0$ (iff $\hat{\lambda}_k$ does not belong to $[t_{1,-}, t_{1,+}]$
- We finally obtain that $\sum_{k=1}^{M} \psi(\hat{\lambda}_k) = \text{Card}\{k, \hat{\lambda}_k \in [t_{1,-}, t_{1,+}]\}$

Conclusion

- Almost surely, for N large enough, $\sum_{k=1}^{M} \psi(\hat{\lambda}_k) = \text{Card}\{k, \hat{\lambda}_k \in [t_{1,-}, t_{1,+}]\} = (M - K)$
- \bullet The *M K* eigenvalues lying in $[t_{1,-}, t_{1,+}]$ are necessarily the $M - K$ smallest. Otherwise, the smallest one would belong to $[0, t_{1,-}]$, a contradiction by Theorem 1.

KORK EX KEY KORK KORK

Plan

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 수 있습니

3 [Almost sure locations of the eigenvalues of](#page-21-0) $\hat{\mathbf{R}}_N$.

Conclusion

These results have many statistical applications.

- Consistent estimation of direction of arrivals using subspace methods (Vallet-Loubaton-Mestre 2009)
- **•** Information plus Noise spiked models (Rank(A) is fixed) : convergence of the largest eigenvalues, consistent estimation of the largest eigenvalues and the corresponding eigenvectors.

KORK EX KEY KORK KORK

