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The information plus noise model

Observation of N samples of a M-variate time series
(yn)n∈Z, N > M.

yn = an + σwn

(an)n=1,...,N deterministic vectors, correspond to the useful
signal

σwn additive complex white Gaussian noise,
E(wnwH

n ) = IM

Equivalent M × N matrix model

(y1, . . . , yN) = Y = A + σW

Y non zero mean Gaussian random matrix with independent
entries of variance σ2
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Typical applicative context : source localization

K source signals (sk )k=1,...,K observed on a M sensors
array, K < M

sn = (s1,n, . . . , sK ,n)T , sk ,n k-th source signal at time n

an = Dsn

D deterministic M × K directional vectors matrix, K < M

The associated Information plus Noise matrix model

Y = DS + σW, A = DS

Rank(A) < M
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The empirical covariance matrix

The associated empirical covariance matrix.

R̂N =
YYH

N
=

(A + σW)(A + σW)H

N

Study of the location of the eigenvalues of matrix R̂N
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If N → ∞, M fixed

RN = AAH

N

R̂N − (RN + σ2IM) → 0

Eigenvalues of R̂N ≃ eigenvalues of RN + σ2

Source localization context : σ2 eigenvalue with multiplicity
M − K , the K greatest eigenvalues > σ2
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If N → ∞, M fixed

RN = AAH

N

R̂N − (RN + σ2IM) → 0

Eigenvalues of R̂N ≃ eigenvalues of RN + σ2

Source localization context : σ2 eigenvalue with multiplicity
M − K , the K greatest eigenvalues > σ2

If M and N are of the same order of magnitude

M → ∞, N → ∞

cN = M
N → non zero constant

The histograms of the eigenvalues of R̂N have a deterministic
behaviour which can be characterized : Dozier-Silverstein 2007.
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Numerical illustration (I).

σ2 = 2,M = 256

Eigenvalues of RN 0 with multiplicity 128, 5 with multiplicity
128

If c = M
N ≃ 0, eigenvalues of R̂N ≃ 2 with multiplicity 128, 7

with multiplicity 128

c = M
N , c = 0.05,0.2,0.5

Representation of histograms of the eigenvalues of R̂N
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Numerical illustration (II).

c = M
N = 0.05
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Illustrations num ériques (III).

c = M
N = 0.2
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Illustrations num ériques (III).

c = M
N = 0.5
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Mathematical formulation

The asymptotic regime

M → ∞, N → ∞

cN = M
N → non zero constant

(λ̂k )k=1,...,M eigenvalues of R̂N , (λk )k=1,...,M eigenvalues of RN ,
arranged in increasing order.

D.Z 2007 : It exists a deterministic probability measure µN

carried by R
+ such that

1
M

∑M
k=1 δ(λ− λ̂k ) − µN → 0 weakly almost surely

1
M

∑M
k=1 δ(λ− λ̂k ) : empirical eigenvalue distribution of R̂N .
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How to characterize µN

The Stielj ès transform mN(z) of µN

mN(z) =
∫

R+
µN (dλ)

λ−z defined on C − R
+

∫

R+ φ(λ)µN(dλ) = 1
π

limy→0+ Im
∫

R+ φ(x)mN(x + iy)dx

Convergence of 1
M

∑M
k=1 δ(λ − λ̂k ) towards µN

Show that 1
M

∑M
k=1

1
λ̂k−z

− mN(z) → 0 a.s. for each z ∈ C − R
+.
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How to characterize µN

The Stielj ès transform mN(z) of µN

mN(z) =
∫

R+
µN (dλ)

λ−z defined on C − R
+

∫

R+ φ(λ)µN(dλ) = 1
π

limy→0+ Im
∫

R+ φ(x)mN(x + iy)dx

mN(z) is solution of the equation

mN(z)

1 + σ2cNmN(z)
= fN(wN(z))

wN(z) = z(1 + σ2cNmN(z))2 + σ2(1 − cN)(1 + σ2cNmN(z))

fN(w) = 1
M Trace(RN − w IM)−1 = 1

M

∑M
k=1

1
λk−z
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Properties of µN , cN =
M
N < 1.

µN(dλ) absolutely continuous

µN is compactly supported, SN support of µN
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Properties of µN , cN =
M
N < 1.

Characterization of SN : reformulation of D.Z 2007 in
Vallet-Loubaton-Mestre-2009

Function φN(w) defined on R by
φN(w) = w(1 − σ2cN fN(w))2 + σ2(1 − cN)(1 − σ2cN fN(w))

φN has 2Q extrema whose preimages
w (N)

1,− < w (N)
1,+ < . . .w (N)

Q,−
< w (N)

Q,+ satisfy 1 − σ2cN fN(w) > 0.

These extrema verify x (N)
1,− < x (N)

1,+ < . . . x (N)
Q,−

< x (N)
Q,+.

SN = [x (N)
1,−

, x (N)
1,+ ] ∪ . . . [x (N)

Q,−
, x (N)

Q,+]

Each eigenvalue λl of RN belongs to an interval
[w (N)

k ,−
,w (N)

k ,+]
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ww−1z−1 z+
1 z+

2 z+
3 w+

2z−3

φ(w)

x−2

x+
1

x−1

x+
2

λN−1 λN

0 z−2w+
1 w−2
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ww−1z−1 z+
1 z+

3 w+
2z−3

φ(w)

z−2 z+
2
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0
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Some definitions

Each interval [x (N)
k ,−

, x (N)
k ,+] is called a cluster

An eigenvalue λ(N)
l of RN is said to be associated to cluster

[x (N)
k ,−

, x (N)
k ,+] if λ(N)

l ∈ [w (N)
k ,−

,w (N)
k ,+]

2 eigenvalues of RN are said to be separated if they are
associated to different clusters
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The new results I.

Technical hypothesis : supN ‖RN‖ <∞

Theorem 1.
Let [a,b] such that ]a − ǫ,b + ǫ[⊂ (SN)c for each N > N0. Then,
almost surely, for N large enough, none of the eigenvalues of
R̂N appears in [a,b].
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The new results II.

To simplify the statement of the second theorem, formulation
adapted to the context of source localization.

K sources and M sensors, A = DS

Rank(RN) = K

0 is eigenvalue of RN with multiplicity M − K . 0 is of course
associated to cluster [x (N)

1,− , x
(N)
1,+ ].
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The new results II.

Theorem 2
Assume that it exists N0 such that for each N > N0, eigenvalue
0 is separated from the others and that

sup
N>N0

x (N)
1,+ < inf

N>N0

x (N)
2,−

Consider t1,− < t1,+ < t2,− such that

t1,− < inf
N>N0

x (N)
1,− < sup

N>N0

x (N)
1,+ < t1,+ < t2,− < inf

N>N0

x (N)
2,−

Then, almost surely, for N large enough,
λ̂

(N)
1 , . . . , λ̂

(N)
M−K ∈ [t1,−, t1,+] and λ̂(N)

M−K+1 > t2,−.
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The new results II.
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Assume that it exists N0 such that for each N > N0, eigenvalue
0 is separated from the others and that
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x (N)
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x (N)
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Consider t1,− < t1,+ < t2,− such that
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N>N0

x (N)
1,− < sup
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x (N)
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2,−

Then, almost surely, for N large enough,
λ̂

(N)
1 , . . . , λ̂
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Existing related results.

Bai and Silverstein 1998 in the context of the model
Y = HW. W possibly non Gaussian

Capitaine, Donati-Martin, and Feral 2009 in the context of
the deformed Wigner model Y = A + X, X Gaussian
Wigner matrix, A deterministic hermitian matrix with
constant rank.
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Sketch of the proofs I.

Follow the Gaussian methods of Capitaine, Donati-Martin,
and Feral 2009 based on ideas developed by Haagerup and
Thorbjornsen 2005 in a different context.

Show that E

(

1
M

∑M
k=1

1
λ̂k−z

)

= mN(z) + ξN(z)
N2 where ξN(z) is

analytic on C − R
+, and satisfies

|ξN(z)| ≤ (|z| + C)l P(
1

|Im(z)|
)

P is a polynomial independent of N, C and l are independent of
N. Use approaches developed by Pastur based on the
Poincaré-Nash inequality and a Gaussian integration by parts
formula (see Dumont-Hachem-Lasaulce-Loubaton-Najim 2010
in the context of a more general information plus noise model).
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Sketch of the proofs II.

Using a useful Lemma in Haagerup and Thorbjornsen 2005 as
well as the Stieljès inversion formula, we obtain that for each
compactly supported C∞ function ψ defined on R, then

E

(

1
M

M
∑

k=1

ψ(λ̂k )

)

=

∫

SN

ψ(λ)µN(dλ) + O(
1

N2 )

Use this identity for well chosen functions ψ.
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Proof of Theorem 2.

Assume Theorem 1 holds.

ǫ > 0 such that t1,+ + ǫ < t2,−

ψ(λ) = 1 on [t1,−, t1,+]

ψ(λ) = 0 on ([t1,− − ǫ, t1,+ + ǫ])c

ψ(λ) C∞

Useful lemma
Under the hypotheses of Theorem 2,
µN([x (N)

1,− , x
(N)
1,+ ]) = µN([t1,−, t1,+]) = M−K

M
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We recall that

ψ(λ) = 1 on [x (N)
1,− , x

(N)
1,+ ], ψ(λ) = 0 on the other components

of SN

E

(

1
M

∑M
k=1 ψ(λ̂k )

)

=
∫

SN
ψ(λ)µN (dλ) + O( 1

N2 )

Therefore

E

(

1
M

∑M
k=1 ψ(λ̂k )

)

− M−K
M = O( 1

N2 )
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Therefore

E

(

1
M

∑M
k=1 ψ(λ̂k )

)

− M−K
M = O( 1

N2 )

Use the Poincar é-Nash inequality to establish that

Var
(

1
M

∑M
k=1 ψ(λ̂k )

)

= O( 1
N4 )
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Therefore

E

(

1
M

∑M
k=1 ψ(λ̂k )

)

− M−K
M = O( 1

N2 )

Use the Poincar é-Nash inequality to establish that

Var
(

1
M

∑M
k=1 ψ(λ̂k )

)

= O( 1
N4 )

This implies immediately that

E

(

1
M

∑M
k=1 ψ(λ̂k ) − M−K

M

)2
= O( 1

N4 )
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Define EN = {ω,
∣

∣

∣

1
M

∑M
k=1 ψ(λ̂k ) − M−K

M

∣

∣

∣
> 1

N4/3

Markov inequality + Borel-Cantelli lemma :

P(EN) < 1
N4/3

P(lim sup EN) = 0
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Define EN = {ω,
∣

∣

∣

1
M

∑M
k=1 ψ(λ̂k ) − M−K

M

∣

∣

∣
> 1

N4/3

Almost surely, for N > N1,
∣

∣

∣

1
M

∑M
k=1 ψ(λ̂k ) − M−K

M

∣

∣

∣
< 1

N4/3

Almost surely, for N > N1,
∣

∣

∣

∑M
k=1 ψ(λ̂k ) − (M − K )

∣

∣

∣
= O( 1

N1/3 )

By Theorem 1, for each k , λ̂k does not belong to
[t1,− − ǫ, t1,−] ∪ [t1,+, t1,+ + ǫ].

Hence, ψ(λ̂k ) = 1 (iff λ̂k ∈ [t1,−, t1,+]) or ψ(λ̂k ) = 0 (iff λ̂k

does not belong to [t1,−, t1,+])

We finally obtain that
∑M

k=1 ψ(λ̂k ) = Card{k , λ̂k ∈ [t1,−, t1,+]}
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Conclusion
Almost surely, for N large enough,
∑M

k=1 ψ(λ̂k ) = Card{k , λ̂k ∈ [t1,−, t1,+]} = (M − K )

The M − K eigenvalues lying in [t1,−, t1,+] are necessarily
the M − K smallest. Otherwise, the smallest one would
belong to [0, t1,−], a contradiction by Theorem 1.
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Conclusion

These results have many statistical applications.

Consistent estimation of direction of arrivals using
subspace methods (Vallet-Loubaton-Mestre 2009)

Information plus Noise spiked models (Rank(A) is fixed) :
convergence of the largest eigenvalues, consistent
estimation of the largest eigenvalues and the
corresponding eigenvectors.

....
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