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PLAN

I Code-Division-Multiple-Access setting

I Results in literature for gaussian and binary inputs

I New contributions for binary inputs

I Statistical mechanics formulation

I Interpolation method



DEFINITION OF CDMA
Users k = 1, ..., K transmit xk (1)xk (2)xk (3)... over a common
gaussian channel to a single receiver y(1)y(2)y(3)....

Users have N "degrees of freedom" available (time slots,
frequencies, ...) j = 1, ..., N.

I Code division: user k "spreads" its current symbol xk over
the N "degrees of freedom" and transmits the vector

1√
N

skj xk , E[x2
k ] = 1,

1
N

N∑
j=1

s2
kj = 1

I Received signal: vector j = 1, ..., N

yj =
1√
N

K∑
k=1

skj xk + σnj , E[n2
j ] = 1



I Conventional CDMA: (Verdu 1986) spreading sequences
are fixed.

C = maxQ
pXk

1
K

I(X ; Y ) =
1

2K
log det(IK + σ−2SSt)

The max is attained at standard gaussian distribution for
inputs.

I Random model:(Verdu-Shamai 1999) spreading sequence
i.i.d standard gaussian skj ; look at limK→∞ with K

N = β
fixed.

C =
1

2K
ES log det(IK + σ−2SSt)︸ ︷︷ ︸

can be calculated by RMT



I Discrete input alphabets: pXk = pkδ−1 + (1− pk )δ+1

maxQ
pXk

1
K

I(X ; Y )

is not known.

I Random model with discrete inputs: i.i.d standard
gaussian skj ; look at limK→∞ with K

N = β fixed.

C = ES
1
K

I(X ; Y )︸ ︷︷ ︸
no logdet RMT formula

, pk =
1
2



TANAKA’S FORMULA (2001)

Using the formal "replica method" of statistical mechanics one
reduces the problem to a variational problem,

lim
K→∞

C = min
m∈[0,1]

c(m), β =
K
N

fixed

For binary input symbols xk ∈ {+1,−1} and any symmetric
distr for skj with finite second and fourth moments:

c(m) =
λ

2
(1 + m)− 1

2β
ln λσ2 −

∫
dz

e−
z2
2

√
2π

ln(2 cosh(
√

λz + λ))

with
λ =

1
σ2 + β(1−m)



The minimizer m∗ is one of the solutions of

m =

∫
dz

e−
z2
2

√
2π

tanh(
√

λz + λ)), λ =
1

σ2 + β(1−m)

m

σ−1

(β < βu)

m

σ−1

(β > βu)

��*

I β < βu unique solution: m∗(σ) continuous.

I β > βu many solutions: m∗(σ) first order phase transition.



The replica method is very powerful...

I "Any" type of input symbol: discrete or continuous. For
gaussian inputs,

c(m) =
1
2

ln(1 + λ)− 1
2β

ln λσ2 − λ

2
(1−m)

C = minm∈[0,1] c(m) agrees with RMT.

I Unequal powers for users.

I Colored noise

I Communication on CDMA channel with LDPC codes.

(Tanaka, Guo-Verdu, Kabashima-Saad, ...)



RIGOROUS CONTRIBUTIONS (binary inputs)

General assumption: i.i.d

p(skj) = p(−skj), p(skj ≥ s) ≤ e−As2
if s ≥ s0

Theorem (S. Korada, N.M 2007)

I The limK→∞ C exists and is equal to limK→∞ Cg where Cg
is the capacity for gaussian p(skj).

I Tanaka’s formula is a lower bound for all β

lim
K→∞

C ≤ min
m∈[0,1]

c(m)



Montanari and Tse (ITW 2005) sketch the derivation of a lower
bound on,

lim
K→∞

d
dσ

C, all β

I For β ≤ βu there is no phase transition and by integrating
properly the bound you get limK→∞ CK = minm∈[0,1] c(m)
for all σ.

I For β ≥ βu there is a phase transition at σc(β). Above the
critical noise their bound is the same than ours. Well below
the critical noise their bound is the converse one so by
combining their result with ours one gets again the equality.



STATISTICAL MECHANICS FORMULATION

To compute C = ln 2− 1
K ESH(X | Y ) we consider the posterior

p(x | y , s) =
1

Z (y , s)
e−

1
2σ2 ‖y−N−

1
2 sx‖2

with

Z (y , s) =
∑

x

e−
1

2σ2 ‖y−N−
1
2 sx‖2

and

p(y | s) =
∑
x input

1
2K

e−
1

2σ2 ‖y−N−
1
2 sx input‖2

(
√

2πσ2)N

and
p(s) i .i .d gaussian



This leads to

CK = ln 2− 1
2β

− 1
K

EY ,S[ln Z (y , s)]

Fundamental object of stat mech "free energy"

1
K

ln Z (y , s)

where Z is the "partition function"

Z (y , s) =
∑

x

e−
1

2σ2 ‖y−N−
1
2 sx‖2

=
∑

x

e−H(x)

and H(x) is the "Hamiltonian" or cost function (log of channel
transition probability).



For CDMA the Hamiltonian is

H(x) =

√
β

2σ2
√

K

K∑
k ,l

Jklxkxl −
1
σ2

K∑
k=1

hkxk +
1

2σ2 ‖y‖
2

with

Jkl =
1√
N

N∑
j=1

skjslj , hk =
1√
N

N∑
j=1

yjskj

I Spins xk ∈ {−1,+1} are the dynamical degrees of
freedom.

I Couplings Jkl , hk are frozen/quenched disorder.



I CDMA is a complicated spin glass model.

I Superficialy similar to the Sherington-Kirkpatrick model

H(x) =
1√
K

∑
k ,l

Jklxkxl i .i .d Jkl distr N (0, J)

I If you change H(x) → −H(x) you get a kind of Hopfield
Hamiltonian.

I As for other communications problems: Nishimori gauge
symmetry → replica symmetric solution is expected to be
correct.



THE INTERPOLATION METHOD
It was pioneered by Guerra-Toninelli. Based on it Talagrand
arrived at a proof of the Parisi formula for SK.

I Takes the replica solution as the favorite guess and tries to
find the corresponding "mean field Hamiltonian or channel"

I Construct an interpolating Hamiltonian or channel:
0 ≤ t ≤ 1

I Fundamental theorem of calculus

ln Z (1)︸ ︷︷ ︸
true system

= ln Z (0)︸ ︷︷ ︸
mean field syst

+

∫ 1

0
dt

d
dt

ln Z (t)︸ ︷︷ ︸
interpolating syst

I The derivative produces correlation functions with a
controllable sign (hopefully).



Step 1. Guessing: limK→∞ C = minm∈[0,1] c(m)

c(m) =
λ

2
(1 + m)− 1

2β
ln λσ2 −

∫
dz

e−
z2
2

√
2π

ln(2 cosh(
√

λz + λ))︸ ︷︷ ︸
almost capacity of BIAWGN(λ−1)

Mean field Hamiltonian correspond to K independent BIAWGN
channels

y ′k = xk + λ−1/2mk , mk ∼ N (0, λ−1)

Recall λ−1 = σ2 + β(1−m).



Step 2. Interpolation channel 0 ≤ t ≤ 1:
sK

xK

s2

x2

s1

x1

n ∼ N (0, σ(t)2)

y = Sx + n

m1 ∼ N (0, 1
λ(t) )

m2 ∼ N (0, 1
λ(t) )

mK ∼ N (0, 1
λ(t) )

y′
1

y′
2

y′
K

λ(t) +
1

σ2(t) + β(1−m)
=

1
σ2 + β(1−m)



t=1 is the original CDMA channel

σ(1) = σ

λ(1) = 0

sK

xK

s2

x2

s1

x1

n ∼ N (0, σ2)

y = Sx + n



t=0 are K independent BIAWGN channels

σ(0) = ∞

λ(0) = λ = 1
σ2+β(1−m)

xK

x2

x1

m1 ∼ N (0, 1
λ

)

m2 ∼ N (0, 1
λ

)

mK ∼ N (0, 1
λ

)

y′
1

y′
2

y′
K

sK

s2

s1

n ∼ N (0, σ2)

y = Sx + n



Capacity of interpolating system

1
K

ESIt(X ; Y , Y ′) = ln 2− 1
2β

− ES,Y ,Y ′ ln Z (t)

where
Z (t) =

∑
x

e
− 1

2σ(t)2
‖y−N−1/2Sx‖2−λ(t)

2 ‖y ′−x‖2

and

y =
1√
N

Sx input + n, ni ∼ N (0, σ(t)2)

y ′ = x input + m, mk ∼ N (0,
1

λ(t)
).



Step 3. Fundamental theorem of calculus:

ES,Y ,Y ′ ln Z (1) = ES,Y ,Y ′ ln Z (0) +

∫ 1

0
dt

d
dt

ES,Y ,Y ′ ln Z (t)

This leads to

C = c(m) +

∫ 1

0
dt R(t) + oK (1)

with
R(t) ≤ 0, for all 0 ≤ t ≤ 1



Step 4. Sign of remainder: (hard to bring in ratio form)

R(t) = − β
σ′(t)
σ(t)

(
EY ,Y ′,S〈µ−m〉t

)2(
σ(t)2 + β(1−m)

)(
σ(t)2 + βEY ,Y ′,S〈1− µ〉t

)
where

µ =
1
K

K∑
k=1

x input
k xk (magnetization)

〈−〉t is pt(x | y , y ′, s) =
e−Ht (x)

Zt
(interpolating Gibbs)



Main ingredients for calculating the remainder

d
dt

EY ,Y ′,S ln Z (t) = EY ,Y ′,S〈horrible polynomial(x , y , y ′, s)〉t

I Integration by parts formula for Gaussian r.v (Guerra)

E[uϕ(u)] = E[ϕ′(u)]

I Gauge symmetry

I Concentration theorems



Gauge symmetry implies remarkable identities (Nishimori)

µ =
1
K

K∑
k=1

x input
k xk and q =

1
K

K∑
k=1

x (1)
k x (2)

k

have the same distribution

EY ,Y ′,S〈µp 〉t = EY ,Y ′,S〈qp 〉t

I Such identities arise in a natural way for various channel
models.



Concentration: we need E〈(µ− E〈µ〉)2〉 → 0

Applying concentration thms for Lipschiz functions of i.i.d
gaussians:

Theorem

For p(skj) standard gaussian:

P[| ln Z (y , s)− EY ,S ln Z (y , s)| ≥ εK ] ≤ e−α(β,σ)ε2
√

K

P[|I(X ; Y )− ESI(X ; Y )| ≥ εK ] ≤ e−α(β,σ)ε2K



Remark that

〈µ〉 =
∂

∂u
ln

∑
x

e−H(x)+u
P

k x input
k xk

︸ ︷︷ ︸
Zu

Turn concentration of ln Zu into

Corollary
Fix ε > 0. For Lebesgue almost every u > ε,

lim
K→∞

∫ 1

0
dtE〈(µ− E〈µ〉t ,u)2〉t ,u = 0

In reality the u- perturbation is more subtle because our
methods do not afford to break the channel symmetry.



CONCLUSION

I Other sorts of interpolations allow to prove that lim CK
exists and is independent of distribution of spreading
sequence.

I More general input distributions, Unequal powers of users,
MIMO , CDMA with users using LDPC Codes, Coloured
noise.

I Main open question: lower bound on Capacity. We can do
this for simpler special spin glasses with gauge symmetry.

I For LDPC codes over BMS channels the interpolation
method has been developed but the lower bound is also
missing.


