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Motivations

Time weightings improves the quality of volatility-based forecasts
(covariance, variance, Value-at-Risk (VaR), ...).
E.g.: Use decreasing weights to take advantage of volatility clustering.

Time weightings embody the limited and fading memory of market
participants.
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Weight profiles: the shape of memory

Extreme cases: uniform (REC) and exponential (EXP) weightings

time

REC

no memory

equal perception

time

0

EXP

exponentially fading 
memory

Do markets forget all about their past? Sparing long-term memory.

time

POW1

time

POW2
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Weight profiles: definitions

REC EXP

w(k) = 1
T 1{1≤k≤T} w(k)∼

(
1− 1

c

)k
Power-law decay of memory:

POW1 POW2

w(k)∼ 1
1+( k

c )
γ

w(k)∼ 1
(1+ k

c )
γ

As γ → ∞, POW1∼REC and POW2∼EXP.
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Weight profiles: their attributes

Attributes are useful for

understanding the role of parameters.
comparing profiles with each other.

REC EXP POW1 POW2

t̄
∫

∞

0
t α(t)dt

T
2

c
c (2cos π

γ
)−1

(γ > 2)

c (γ−2)−1

(γ > 2)

d
∫ d

0
α(t)dt = 1− ε

{
(1− ε)T d ≤ T
0 d > T

c log( 1
ε

) ∼ c ( 1
ε

)
1
γ
−1 c

(
( 1

ε
)

1
γ−1 −1

)

δ0.5
α(δ0.5)

α(0)
= 0.5 / c log2 c c

(
2

1
γ −1

)
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Introduction

Definition
The N×N sample weighted covariance matrix of returns:

Σij =
1
N

T

∑
k=0

wN(k)hikhjk ,

where hik = return of asset i at time k , wN(k)≥ 0 and 1
N ∑wN(k) = 1).

N = number of assets.

Σ embeds volatility and correlation risk.
Important forecaster in

risk assessment (e.g. volatility, value-at-risk),
optimization (e.g. portfolio allocation, trading algorithms),
product pricing (e.g. options, baskets).
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Dynamics of Σ

Σij seen as the conditional covariance at k +1 (k ∈ {0,1, . . . ,T}):

Σij(k +1) =
k

∑
`=0

wN(`)hi`hj`,

⇐⇒
Σ(0)=0

Σij(k +1) = wN(0)hikhjk +
wN(T −k +1)

wN(T −k)
Σij(k)

Any weighted covariance matrix can be uniquely decomposed as a
contemporaneous contribution from the returns plus a term of
conditional covariance.
Close to the famous GARCH(1,1) in econometrics (Bollerslev, 1986).
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Weighted volatility processes

We set N = 1 and define the following stochastic process

hk = σkεk , whereεk ∼ i.i.d., E (εk) = 0, E (ε
2) = 1.

The conditional volatility obeys

σ
2(k +1) = w(0)h2

k +
w(T −k +1)

w(T −k)
σ

2(k), k ∈ {0,1, . . . ,T}.

No need for the distribution of returns, only their unconditional
distribution.
In general the process is non-stationary and E (h2m

k ) may not exist.
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Example: IGARCH(1), EWMA

The linear IGARCH(1) (Engle and Bollerslev, 1986), or Exponentially
Weighted Moving Average (EWMA) (RiskMetrics ,1996) follows from
the choice w(k)∼ (1+ 1

c )k :

σ
2(k +1) =

1
c
h2
k +

(
1+

1
c

)
σ

2(k).

Interestingly, linear IGARCH(1) is strongly stationary but not weakly
stationary (even moments are not defined in the limit k → ∞) (Nelson,
1990).
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Weighted-volatility excess kurtosis

The covariance decomposition is very useful for working out statistical
properties of the process.
Taking εk ∼ N(0,1) and σ0 = cst., and assuming the existence of the
second and forth moment, the (non-stationary) kurtosis reads

Kurt(hk) =
E(h4

k)

E(h2
k)2 = 3

k−1

∏
i=0

(
1+

2w(0)2

(w(0) + f (i))2

)
> 3,

where f (i) = w(T − i +1)/w(T − i) is the ith weight increment.
Conclusion: weighted-volatility processes generate excess kurtosis for
all hk .
E.g.: Kurt(hEWMA

k ) = 3(1+ 2
c2 )k−1, which diverges exponentially fast

as k ,T → ∞.
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Weighted-volatility excess kurtosis: plots

Comparison of excess kurtosis across profiles
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The sample autocorrelation function

The two-point autocorrelation function of the squared returns can be
calculated in closed-form. The general form is complicated, but for
EWMA:

ρ(h2
k ,h

2
k−`) =

E(h2
k ,h

2
k−`)−E(h2

k)E(h2
k−`)√

Vh2
k

√
Vh2

k−`

∼ (1+2α
2)−`/2, k � `,

as previously found by Ding and Granger (1996).
When w(0)2� (w(0) + f (i))2 holds (consistent with GARCH(1,1)),
we have

ρ(h2
k ,h

2
k−`)∼

k−1

∏
i=k−`

(w(0) + f (i))2 ≥
k−1

∏
i=k−`

f (i)2 =

(
w(k + l +1)

w(k +1)

)2

.
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Weighted sample correlation matrices

The weighted sample correlation matrices is defined as

C =
1
N

Hdiag(wN)Ht ,

H ∈ RN×T is the matrix of centered (i.e. µi = 0) and standardized
(i.e. σi = 1) returns. Weights are normalized ( 1

N ∑wN = 1).
Goal: Find the spectral density p(λ ) and the edge spectrum
{λmin,λmax} of C for hik i.i.d. random variables with zero mean and
unit variance (null model).
Calculations are done in the two asymptotic limits T/N = c0 < ∞ and
T/N = ∞.
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Marčenko and Pastur approach

Rigorous, powerful (non-normal, non-i.i.d. returns).
Brought to finance in 1999 by Laloux, Cizeau, Bouchaud, and Potters
(other approaches: R-transform, Replica, ...).
Derives an equation for the Stieltjes transform g(z) of p(λ ) when
T/N → c0 < ∞.
The result extends to weighted estimators:

g(z) =

(∫ c0

0

α(t)

1+ α(t)g(z)
dt− z

)−1

,

where α(t) = limN→∞ wN(bNtc), ∀t ∈ [0,c0].
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The limit T/N→ ∞

The limit T/N → ∞ often leads to simpler calculations. Does MP
extend to this limit?

Theorem
If α : R+→ R+ is a continuous and decreasing function such that
α ∈ L2(R+), then

Gz(g) = g −
(∫

∞

0

α(t)

1+ α(t)g
dt− z

)−1

admits a unique zero g∗ that is the Stieltjes transform of a distribution.

Proof.
Show that Gz(g) is a contraction on C++ = {g ∈ C : Re g ≥ 0, Im g ≥ 0}
(M. de Lachapelle, Lévèque, 2009).
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Computing the spectral density: general method

Gz(g) admits a unique zero and is holomorphic. The Newton-Raphson
method is simple and efficient, but requires

lim
ε→0+

Gλ+iε (g) = Gλ (g),

which is garanteed by Silverstein and Choi, 1995.
Require: λ , kmax, tol

g0← random starter in C\R
for k = 1 to kmax do

gk ← gk−1−Gλ (gk−1)/G
′
λ

(gk−1)
if |gk −gk−1| ≤ tol then

g∗← gk
exit loop

end if
end for
p(λ )← 1

π
Im g∗
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Spectral density of POW1 estimators

Closed-form results outperform the purely numerical approach. For
α(t)∼ 1/(1+ ( t

c )γ ), calculations in the limit T/N = ∞ lead to

1+ zg(z) = g(z)(1+K g(z))
1
γ
−1

γ > 1.

Writing γ = q/p, with q > p ≥ 1 two integers yields

(1+Kg(z))q−p(1+ zg(z))q−g(z)q = 0.

POW1 spectral density has an explicit form only for γ = 2 and γ = 3/2.
Exact calculations sometimes possible when T/N = c0 < ∞.
E.g. γ = 1:

1+ zg(z) = cKg(z) log
(
1+

c0

c (1+Kg(z))

)
.

Expression for γ = 1/p, p ∈ N in (M. de Lachapelle, Lévèque, 2009).
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Spectral density of POW1 estimators

Closed-form results outperform the purely numerical approach. For
α(t)∼ 1/(1+ ( t

c )γ ), calculations in the limit T/N = ∞ lead to

1+ zg(z) = g(z)(1+K g(z))
1
γ
−1

γ > 1.

Writing γ = q/p, with q > p ≥ 1 two integers yields

(1+Kg(z))q−p(1+ zg(z))q−g(z)q = 0.
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Spectral density of POW1 estimators: plots

Spectral histogram of a 400×2000 correlation matrix of i.i.d Student
returns and asymptotic density in the limit T/N → ∞.
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Applications

In portfolio allocation, Random Matrix Theory (RMT) is used to
locate informative eigenpairs (λi ,vi ).

clipped or �ltered out used for clustering or regression

RMT can also be used to control the effects of the weighting on the
matrix conditioning λmax/λmin and “noise band” λmax−λmin.
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Edge spectrum of POW estimators

Marčenko and Pastur, 1967: The frontiers of the spectrum are
extrema of g−1. Convenient, since from the expression of the Stieltjes
transform, g−1 is always known explicitely. For POW1, it reads

g−1(y) = (1+Ky)
1
γ
−1− 1

y
.

The edge spectrum is defined as g−1(y±), where y± are the only
solutions to (g−1(y±))

′
= 0. For POW1:

λ1,N =

(
K ∓

√
K (K +4(γ−1)γλ1,N

2(γ−1)λ1,N
+1

)1
γ
−1

± 2(γ−1)λ1,N√
4(γ−1)γλ1,N

K
+1∓1

.

The critical regime is λN → 0+ (conditioning issues). Expanding to
first order in λN and solving leads to

λN ≈
λN→0+

cγ−1

D. Morton de Lachapelle, O. Lévèque () Old Friends and Power-Estimators EPF-UMLV, Paris, 2009 21 / 27



Edge spectrum of POW estimators

Marčenko and Pastur, 1967: The frontiers of the spectrum are
extrema of g−1. Convenient, since from the expression of the Stieltjes
transform, g−1 is always known explicitely. For POW1, it reads

g−1(y) = (1+Ky)
1
γ
−1− 1

y
.

The edge spectrum is defined as g−1(y±), where y± are the only
solutions to (g−1(y±))

′
= 0. For POW1:

λ1,N =

(
K ∓

√
K (K +4(γ−1)γλ1,N

2(γ−1)λ1,N
+1

)1
γ
−1

± 2(γ−1)λ1,N√
4(γ−1)γλ1,N

K
+1∓1

.

The critical regime is λN → 0+ (conditioning issues). Expanding to
first order in λN and solving leads to

λN ≈
λN→0+

cγ−1

D. Morton de Lachapelle, O. Lévèque () Old Friends and Power-Estimators EPF-UMLV, Paris, 2009 21 / 27



Edge spectrum of POW estimators: Plots

Edge spectrum of H ∈ R400×500, where 400 independent Student
returns with mean zero and degree of freedom chosen at random in
[2,5].
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Value-at-Risk (VaR) estimation

The VaR represents the maximum loss associated with this position
during the holding period for a given confidence level probability.
It is defined as

p = P(∆Vt,h ≤ VaRt,h(p)),

where ∆Vt,h = price(t +h)−price(t).
Here VaR is estimated historically with the three profiles.
The quality of the estimation is compared with realized VaR violations
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Value-at-Risk (VaR) estimation: results
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Value-at-Risk (VaR) estimation: results

EWMA-0.97 -> 33 mean nb of days. POW1 parameters are γ = 2 and
c so as to have 33 days. No optimization (not yet!).
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Conclusions

Weighted (co)variance matrices induce stochastic processes that can
be analysed by econometric techniques. Results show return excess
Kurtosis and volatility long-range autocorrelation (depending on
weighting).
Power-law decaying weights “spare” the edge spectrum of weighted
correlation matrices while still doing good at capturing volatility risks.
Bunch of applications in financial risk assessment and portfolio
allocation.
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