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: : The problem

Model

We consider sample covariance matrices:

MN(Σ) =
1
p

Σ1/2XX∗Σ1/2

where

• X is a N × p random matrix s.t. the entries Xij are i.i.d. complex (or real) random

variables with distribution µ,
∫
xdµ(x) = 0,

∫
|x|2dµ(x) = 1.

• p = p(N) with p/N → γ ∈ (0,∞) as N →∞;

• Σ is a N × N Hermitian deterministic (or random) matrix, Σ > 0 with bounded

spectral radius. Σ is independent of X.

What can be said about the spectrum (eigenvalues and eigenvectors)

as N →∞?
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: : The problem

Motivations I.

Statistics Knowing MN(Σ) what can be said about Σ?
-if N is fixed and p→∞ : MN(Σ) good estimator of Σ;

-in high dimension (genetics, finance, ...)?

Understand e.g. the behavior of PCA in such a setting.
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Density of the eigenvalues of MN(Σ) when Σ = Id.

Dispersion of the eigenvalues: MN(Σ) is NOT a good estimator of Σ (smallest and

largest eigenvalues e.g.)
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: : The problem

Motivations II.

Communication theory“CDMA”: received signal r =
∑K
k=1 bksk + w,

with K number of users, sk ∈ CN the signature

bk ∈ C, Ebk = 0, E|bk|2 = pk transmitted signal,

and w ∈ CN a Gaussian white noise with i.i.d. N (0, σ2) components.

One has to decode/estimate the signal bk. A measure of the performance of the

communication channel is the so-called “SIR” (Signal to Interference Ratio): linear

receiver x̂1 = c∗1r

SIR =
|C∗1s1|2p1

|c1|2σ2 +
∑
i≥2 |c∗1si|2pi

.

=⇒ as N,K →∞, K/N → γ, the SIR depends on the eigenvalues AND the eigenvectors

of SDS∗ where S = [s2, . . . , sK] is the signature matrix (random) and D =
diag(p2, . . . , pN).
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: :

Eigenvalues.
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: : Eigenvalues

The eigenvalues I
We denote by π1 ≥ π2 ≥ · · · ≥ πN the eigenvalues of Σ and suppose that

ρN(Σ) :=
1
N

N∑
i=1

δπi
a.s.→ H,

where H is a probability measure.

Let λ1 ≥ λ2 ≥ · · · ≥ λN be the eigenvalues of MN(Σ); µN =
1
N

N∑
i=1

δλi.

Theorem Marchenko-Pastur (67)

A.s. limN→∞ µN = ρMP , where the Stieltjes transform of ρMP given by

∀ z ∈ C,=(z) > 0, mρ(z) :=
∫

1
λ− z

dρMP (λ),

satisfies mρ(z) =
∫ +∞

−∞

{
τ
[
1− γ−1 − γ−1z mρ(z)

]
− z
}−1

dH(τ).
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: : Eigenvalues

The eigenvalues II

If Σ = Id, one knows explicitly the density of the Marchenko-Pastur distribution

γ ≥ 1,
dρMP

du
=

γ

2πu

√
(u+ − u)(u− u−)1[u−,u+](u),

with u± = (1± 1
√
γ

)2.

Valid for both complex and real random matrices.

For general H, the relationship between ρMP and H is not “simple”, determining H

from ρMP is not easy. El Karoui (2008) gives a consistent estimator (using convex

approximation).

Assume that H has been estimated, can we improve our knowledge of Σ?
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: : Eigenvalues

The “usual” behavior of largest eigenvalues

Assume that Σ = Id.

Theorem Johnstone (2001) Johansson (2000), El Karoui (2005): µ = N (0, 1)
Soshnikov (2001) Péché (2007) : µ non Gaussian symmetric distribution with sub-Gaussian

tails

∃C > 0, ∀k > 0,
∫
|x|2kdµ(x) ≤ (Ck)k.

λ1 largest value of MN(Id) = MN , uN+ = (1 + 1√
γN

)2.

lim
N→∞

P
( N2/3

γ
−1/2
N

(
uN+
)2/3 (λ1(MN(Σ))− uN+ ) ≤ x

)
= FTW2(1) (x), Tracy Widom distribution.
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: : Eigenvalues

A “slight” perturbation of the true covariance

Let Σ = diag(π1, π2, . . . , πr, 1, . . . , 1), πi ≥ πi+1 > 1, i ≤ r − 1, r independent of N .

Σ is a finite rank perturbation of the identity matrix: H = δ1.

What is the impact of the πi’s on the spectrum?

The global behavior of the spectrum is unchanged but the largest eigenvalues are impacted.

Studied by : Baik-Ben Arous-Péché (2005) µ complex N (0, 1); Bai-Yao (2008) and

Féral-Péché (2008) for more general ensembles.

Baik-Silverstein (2006): a.s. limit of the largest and smallest eigenvalues for very general

ensembles.

El Karoui (2007): X Gaussian Σ finite rank perturbation of a deterministic Σ0 6= IN .
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: : Eigenvalues

Phase Transition
We set

wc := 1 +
1
√
γ
, τ(π1) = π1

(
1 +

γ−1

π1 − 1

)
, σ(π1) = π1

√
1− γ−1/(π1 − 1)2.

• (F.-P.) If π1 < wc, and µ is symmetric with sub-gaussian tails

then lim
N,p→∞

P
( N2/3

γ
−1/2
N

(
uN+
)2/3 (λ1(MN(Σ))− uN+ ) ≤ x

)
= FTW

2(1) (x) Tracy-Widom

distribution (complex or real). Same as if Σ = IN .

• (Bai-Yao) If π1 = . . . = πk > wc and πk+1 < π1 and E|Xij|4 <∞ then

lim
N,p→∞

P
( √N
σ(π1)

(λ1(MN(Σ))− τ(π1)) ≤ x
)

= Gk(x),

where Gk is the distribution of the largest eigenvalue of the GUE H = (Hij)ki,j=1 with

i.i.d. complex N (0, σ(µ)) entries.
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: : Eigenvalues

Remarks
• “Spikes” in the true covariance can be detected if they are large enough.

• Actually the “true” conjecture assumes that first point should hold true provided that

E|Xij|4 <∞ only.

• If π1 = . . . = πk = wc and πk+1 < wc the limiting distribution of λ1(MN(Σ)) is also

determined (in particular λ1(MN(Σ))→ uN+ ).

• The asymptotic fluctuations of the smallest eigenvalues is expected to exhibit the same

behavior (Baik-Silverstein (2006)).

• The proof of these results relies on the explicit computation of the distribution of the

largest eigenvalues (Gaussian case). The extension to other ensembles is based on the

moment approach due to Soshnikov (Féral-Péché) and via the resolvent and Central

Limit Theorem (Bai-Yao, Baik-Silverstein).

• No result for non Gaussian µ if H 6= δ1.
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: :

Eigenvectors: the white case.

- 12 -



: : The white case

Gaussian sample

Suppose that Σ = Id and Xij i.i.d. N (0, 1) complex or real.

MN = MN(Id) is a so-called “white Wishart matrix”.

Let (U,D) be a diagonalization of MN : MN = UDU∗ with U ∈ U(N) and D a real

diagonal matrix.

U is Haar distributed.

Proof: Gram-Schmidt+ rotationnal invariance of the Gaussian distribution.

Conjecture: if Σ = Id and if X has non-Gaussian entries with E|Xij|4 < ∞, the matrix

of eigenvectors of MN shall “asymptotically be Haar distributed”.

Idea: neither direction is preferred.

Question: how to define “asymptotically Haar distributed”?
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: : The white case

Non Gaussian matrices I.

Silverstein’s idea (’95): U is asymptotically Haar distributed if, given an arbitrary vector

x ∈ SN−1 = {x ∈ RN , |x| = 1}, y = Ux is asymptotically uniformly distributed on the

unit sphere. Or setting

YN(t) :=

√
N

2

[Nt]∑
i=1

(|yi|2 − 1/N),

YN(t) shall converge in distribution to a Brownian bridge if y is uniformly distributed

(y = Z/|Z|2 with Z Gaussian).

Consider insteadXN(t) = YN(FN(t)) =
√

N
2

(
FN1 (t)− FN(t)

)
with FN(t) =

1
N

N∑
i=1

1λi≤t

cumulative distribution function (c.d.f.) of the spectral measure of MN(Σ) and

FN1 (t) =
1
N

N∑
i=1

|yi|21λi≤t, with y = U∗x

also a c.d.f. (but combining the eigenvectors).
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: : The white case

Non Gaussian matrices II.

Let

GN(t) =
√
N
(
FN1 (t)− FN∗ (t)

)
where FN∗ is the c.d.f. of ρMP when γ → p/N and H → ρN(Σ) spectral measure of Σ).

Here GN ' XN and should be close to B(F (t)) if B is a Brownian bridge.

Let also g be analytic on [u−, u+].

Theorem Bai-Miao-Pan (2007)

Assume also that E|Xij|4 = 2 and x∗(Σ− zI)−1x→
∫

1
λ−zdH(λ). Then as N →∞,

∫
g(x)dGN(x)→ a Gaussian random variable (centered and with known variance).

Remark: extension to non-white matrices but with the additionnal assumption on

x∗(Σ− zI)−1x.
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: : The white case

A few explanations

• the finiteness of E|Xij|4 “ensures” that the largest eigenvalues have the same

asymptotic behavior as for a Gaussian sample (conjecture). If this moment is not

finite, the eigenvectors associated to the largest eigenvalues are actually determined by

the largest entries of X (Biroli-Bouchaud-Potters (2007), Auffinger-Ben Arous-Péché

(2009)).

The fact that the fourth moment needs to equal that of a Gaussian random variable

was proved by Silverstein (’81).

One needs a certain proximity with the Gaussian distribution!

• the assumption on x ensures that the projection of x on the eigenvectors of MN(Σ)
does not see the lack of rotationnal invariance.

It also ensures that FN1 (t)→ F (t) if F is the c.d.f of the Marchenko-Pastur distribution

ρMP .
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: :

Eigenvectors: the non-white case.
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: : The non white case

Preliminary remarks

• Even for a Gaussian sample,the distribution of the eigenvectors is unknown if Σ 6= Id.

• It is NOT expected that the matrix of eigenvectors is Haar distributed.

• Only known result due to D. Paul (2006):

Σ = diag(π1, 1, . . . , 1) with π1 > 1 + 1/
√
γ.

Let u1 (resp. e1) be the normalized eigenvector of MN(Σ) (resp. of Σ) associated to

λ1 (resp. π1):

lim
N→∞

| < u1, e1 > | =

√
1− γ/(π1 − 1)2

1 + γ/(π1 − 1)
a.s .

Idea: perturbation of the eigenvector associated to π1 (the largest eigenvalue of Σ) by

a random matrix.
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: : The non white case

Another approach (Ledoit-Péché (2009))

The idea is to study functionals:

θN(g) :=
1
N

Tr
(
g(Σ)(MN(Σ)− zI)−1

)
,

with z ∈ C+ = {z ∈ C,=z > 0},
g is a regular function (bounded with a finite number of discontinuities or analytic),

g(Σ) = V diag(g(π1), . . . , g(πN))V ∗ if V is the matrix of eigenvectors of Σ.

Aim : understand how the eigenvectors of MN(Σ) project onto those of Σ.

Remarks:

-if g ≡ 1, then θ is just the Stieltjes transform of µN .

-If Σ ∝ Id useless. We thus concentrate on the case where H 6= δ1.
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: : The non white case

A theoretical result

Assume that the support of H is included in [a1, a2] with a1 > 0 and

E|Xij|12 <∞ independent of N and p.

Theorem: Ledoit-Péché (2009)

Let g be a bounded function with a finite number of discontinuities on [a1, a2]. Then

θN(g)→ θ(g) a.s. as N →∞ where

∀z ∈ C+, Θg(z) =
∫ +∞

−∞

{
τ
[
1− γ−1 − γ−1zmρ(z)

]
− z
}−1

g(τ)dH(τ).

Remark: the same kernel {
τ
[
1− γ−1 − γ−1zmρ(z)

]
− z
}−1

arises as in the Marchenko-Pastur theorem.
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: : The non white case

Corrolary 1.

Question: How much do the eigenvectors of MN(Σ) deviate from those of Σ?

We set g = 1(−∞,τ) and ΦN(λ, τ) =
1
N

N∑
i=1

N∑
j=1

|u∗i vj|2 1[λi,+∞)(λ)× 1[τj,+∞)(τ).

Let vj be the normalized eigenvector of Σ associated to πj. The average of N |u∗i vj|2
bearing on the eigenvectors associated to sample eigenvalues (resp. eigenvalues of the

true covariance) in the interval [λ, λ] (resp. [τ , τ ]) is:

ΦN(λ, τ)− ΦN(λ, τ)− ΦN(λ, τ) + ΦN(λ, τ)
[FN(λ)− FN(λ)]× [HN(τ)−HN(τ)]

,

if FN (resp. HN) is the c.d.f. of MN(Σ) (resp. Σ).

If one can choose λ, λ and τ , τ arbitrarily close, then one gets precise information!
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: : The non white case

Corrolary 1.

Theorem: ΦN(λ, τ) a.s.−→ Φ(λ, τ) at any point of continuity of Φ. And ∀(λ, τ) ∈
R2, Φ(λ, τ) =

∫ λ
−∞

∫ τ
−∞ϕ(l, t) dH(t) dρMP (l), where

ϕ(l, t) =



γ−1lt

(at− l)2 + b2t2
, 1− 1

γ
− l m̆ρ(l)

γ
=: a+ ib, if l > 0

1
(1− γ)[1 + m̆ρ(0) t]

if l = 0 and γ < 1

0 otherwise

Here m̆ρ(0) = limz→0mρ(z) and mρ is the limiting Stieltjes transform of X∗ΣX/N.

Thus in principle one can obtain precise information on the eigenvectors (but this assumes

that one knows the c.d.f. of HN).
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: : The non white case

Corrolary 2.

Question: how does MN(Σ) differ from Σ and how can we improve the initial estimator

of Σ given by MN(Σ)?

We get a better estimator by choosing g(x) = x.

One seeks an estimator of Σ of the kind UDNU
∗, DN diagonal i.e. an estimator which

has the same eigenvectors as MN(Σ).

The best estimator (Frobenius norm) is

D̃N = diag(d̃1, . . . , d̃N) where ∀i = 1, . . . , N d̃i = u∗i ΣN ui.

Can we say a few things on the d̃i’s:

yes asymptotically by choosing g(x) = x.
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: : The non white case

Corrolary 2.
We set

∀x ∈ R, ∆N(x) =
1
N

N∑
i=1

d̃i 1[λi,+∞)(x) =
1
N

N∑
i=1

u∗iΣNui × 1[λi,+∞)(x).

Then one has

∀i = 1, . . . , N d̃i = lim
ε→0+

∆N(λi + ε)−∆N(λi − ε)
FN(λi + ε)− FN(λi − ε)

.

Theorem: For all x 6= 0, ∆N(x)→ ∆(x). Moreover ∆(x) =
∫ x
−∞ δ(λ) dF (λ), with

∀λ ∈ R, δ(λ) =


λ

|1−γ−1−γ−1λ m̆ρ(λ)|2
if λ > 0

γ

(1− γ) m̆ρ(0)
if λ = 0 and γ < 1

0 otherwise.
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: : The non white case

An improved estimator

We consider the “improved” estimator S̃N := UD′U∗, where

D′i = λi/|1− γ−1 − γ−1λi m̆ρ(λi)|2.

We ran 10,000 simulations with ρN(Σ) = 0.2δ1 + 0.4δ3 + 0.4δ10, γ = 2 and increasing

the number of variables p from 5 to 100. For each simulation, we calculate the “Percentage

Relative Improvement in Average Loss” (PRIAL):

if M is an estimator of ΣN and if |A|2F = TrAA∗ (Frobenius norm),

PRIAL(M) = 100×

1−
E
∥∥∥M − UND̃NU

∗
N

∥∥∥2

F

E
∥∥∥MN(Σ)− UND̃NU∗N

∥∥∥2

F

.
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: : The non white case

Simulations
Even for small sizes, p = 40, the PRIAL is 95%.
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: : Conclusion

Remarks and conclusion

Eigenvalues

-Using the techniques introduced by Tao-Vu (2009), the universality results can surely be

improved for largest and smallest eigenvalues (condition number).

Eigenvectors

-θN(g) is a new tool that allows to study the average behavior of the eigenvectors: for

instance we cannot recover D. Paul’s result for the eigenvector associated to the largest

eigenvalue separating from the bulk.

-in general we cannot say anything on the eigenvectors associated to extreme eigenvalues:

average behavior of the eigenvectors.

-for the moment theoretical results only: one has to define first appropriate estimators for

m̆ρ, HN . . .
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