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Model

We consider sample covariance matrices:

1
My(E) = =x2x x*51/2
p

where

e X is a N X p random matrix s.t. the entries X;; are i.i.d. complex (or real) random
variables with distribution p, [zdu(xz) =0, [ |z|*du(z) = 1.

e p=p(N) with p/N — ~v € (0,00) as N — o0;

e > is a N X N Hermitian deterministic (or random) matrix, > > 0 with bounded
spectral radius. X is independent of X.

What can be said about the spectrum (eigenvalues and eigenvectors)
as N — oo?




: : The problem

Motivations |.

Statistics Knowing My (3) what can be said about X7
-if N is fixed and p — oo : My(2) good estimator of ¥;
-in high dimension (genetics, finance, ...)?

Understand e.g. the behavior of PCA in such a setting.

Density of the eigenvalues of My (%) when ¥ = Id.
Dispersion of the eigenvalues: My (X) is NOT a good estimator of > (smallest and

largest eigenvalues e.g.)




: : The problem

Motivations |lI.

Communication theory “CDMA": received signal r = Zszl brsk + w,
with K number of users, s, € C" the signature

b € C, Eby, = 0, E|bg|? = pi, transmitted signal,

and w € C¥ a Gaussian white noise with i.i.d. A(0,0?) components.

One has to decode/estimate the signal by. A measure of the performance of the

communication channel is the so-called “SIR" (Signal to Interference Ratio): linear

receiver T1 = cir
2
[CTs1]"p

1202+ isq leisil?pi
—> as N, K — 0o, K/N — ~, the SIR depends on the eigenvalues AND the eigenvectors
of SDS* where S = [s3,...,S8k] is the signature matrix (random) and D =

diag(pz; - -, PN).

SIR =




Eigenvalues.




The eigenvalues |
We denote by m; > w5 > - -+ > @ the eigenvalues of > and suppose that

N
1 a.s.
pN(X) = N;@m — H,
where H is a probability measure.
Let Ay > Ao > --- > Ay be the eigenvalues of My (3 25,\

Theorem Marchenko-Pastur (67)
A.s. limy_.o tn = pap, Where the Stieltjes transform of pj;p given by

VzeC,3(z) >0, /—d,OMP A),

: : Eigenvalues

+0o0
satisfies m,(z) = / 1=y =y 2m,(2)] — z}_l dH (7).




: : Eigenvalues

The eigenvalues ||

If > = Id, one knows explicitly the density of the Marchenko-Pastur distribution

dpmp 8
> 1 e —
T du 2mTU

(ug —u)(u — u—)l[u_,u+](u)a

1
with uq = (1 +£ —)2.

ﬁ

Valid for both complex and real random matrices.

For general H, the relationship between pp;p and H is not “simple”, determining H
from pyrp is not easy. El Karoui (2008) gives a consistent estimator (using convex
approximation).

Assume that H has been estimated, can we improve our knowledge of X7




: : Eigenvalues

The “usual” behavior of largest eigenvalues

Assume that > = Id.

Theorem Johnstone (2001) Johansson (2000), El Karoui (2005): © = N(0,1)
Soshnikov (2001) Péché (2007) : p non Gaussian symmetric distribution with sub-Gaussian
tails

1C > 0, Vk > 0, /\x\%d,u(a:) < (Ck)*.

A1 largest value of My (Id) = My, uff = (1+ W)Q'

N2/3
~1/2 ( N)2/3 (M (Mn (%)) —uf) < :z:) = FQT(}A)/( ), Tracy Widom distribution.
Uy

TN

lim IP’(

N —oo




: : Eigenvalues

A “slight” perturbation of the true covariance
Let > = diag(my, mo, ..., 7m0, 1,y 1), mp > w01 > 1,4 <7 —1, r independent of N.

. is a finite rank perturbation of the identity matrix: H = d;.

What is the impact of the 7;'s on the spectrum?
The global behavior of the spectrum is unchanged but the largest eigenvalues are impacted.

Studied by : Baik-Ben Arous-Péché (2005) p complex A(0,1); Bai-Yao (2008) and
Féral-Péché (2008) for more general ensembles.

Baik-Silverstein (2006): a.s. limit of the largest and smallest eigenvalues for very general
ensembles.

El Karoui (2007): X Gaussian Y finite rank perturbation of a deterministic g # I .




: : Eigenvalues

Phase Transition
We set

= LTW:TF 7 o(m) =m — A~/ (m —1)2
wei= 142 vl (1) o) =my/T= - DR

e (F-P) If m < w., and p is symmetric with sub-gaussian tails

. N2/3 .
then N};I_I}OOP( 75 (M (D) — ) < :13) FW(z)  Tracy-Widom
v (ud)

distribution (complex or real). Same as if ¥ = Iy.

e (Bai-Yao) If 1 = ... = m, > w, and mg41 < m and E|X;;|* < oo then
vVIN
L JP( M (My(2)) — < ) — Gp().
N,;I—I}oo O(Wl)( 1(My(2)) = 7(m)) <2 k()

where G is the distribution of the largest eigenvalue of the GUE H = (Hm),’fj , with
i.i.d. complex A (0,0(u)) entries.
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: : Eigenvalues

Remarks

“Spikes” in the true covariance can be detected if they are large enough.

Actually the “true” conjecture assumes that first point should hold true provided that
E|X7;j‘4 < 0 onIy.

If 11 = ... =7 = w. and 7,11 < w, the limiting distribution of A{(Mpy(3)) is also
determined (in particular A\;(My(2)) — uf).

The asymptotic fluctuations of the smallest eigenvalues is expected to exhibit the same
behavior (Baik-Silverstein (2006)).

The proof of these results relies on the explicit computation of the distribution of the
largest eigenvalues (Gaussian case). The extension to other ensembles is based on the
moment approach due to Soshnikov (Féral-Péché) and via the resolvent and Central
Limit Theorem (Bai-Yao, Baik-Silverstein).

No result for non Gaussian p if H # 91.
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Eigenvectors: the white case.
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Gaussian sample

Suppose that ¥ = Id and X;; i.i.d. N(0,1) complex or real.
My = My(Id) is a so-called “white Wishart matrix”.
Let (U, D) be a diagonalization of My: My = UDU* with U € U(N) and D a real

diagonal matrix.

U i1s Haar distributed.

Proof: Gram-Schmidt+ rotationnal invariance of the Gaussian distribution.

Conjecture: if ¥ = Id and if X has non-Gaussian entries with E|X;;|* < oo, the matrix
of eigenvectors of M shall “asymptotically be Haar distributed”.
|dea: neither direction is preferred.

Question: how to define “asymptotically Haar distributed” ?

- 13-



Non Gaussian matrices |.

Silverstein's idea ('95): U is asymptotically Haar distributed if, given an arbitrary vector
r € SVl ={x c RV, |z| =1}, y = Uz is asymptotically uniformly distributed on the

\/72 yi|* — 1/N),

Yn(t) shall converge in distribution to a Brownlan bridge if y is uniformly distributed
(y = Z/|Z|* with Z Gaussian).

unit sphere. Or setting

Consider instead Xy (t) = Yy (EFN(t)) = \/g (FN(t) — Fy(t)) with FN(¢) Z 1y, <t

cumulative distribution function (c.d.f.) of the spectral measure of My(3) and

N
1 : %
FN(t) = N E i *1a,<¢, with y = U™
i=1

also a c.d.f. (but combining the eigenvectors).
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The white case

Non Gaussian matrices |Il.

Let

Gn(t) = VN (FN(t) — EN (1))
where FV is the c.d.f. of pyrp when v — p/N and H — py(X) spectral measure of X).
Here Gy ~ X and should be close to B(F'(t)) if B is a Brownian bridge.

Let also g be analytic on [u_,u,].

Theorem Bai-Miao-Pan (2007)
Assume also that E|X,;|* = 2 and 2*(2 — 2I) 'z — [ -dH()\). Then as N — oo,

/g(x)dGN(x) — a Gaussian random variable (centered and with known variance).

Remark: extension to non-white matrices but with the additionnal assumption on
(X — 2I) "t
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A few explanations

e the finiteness of E|X;;|* “ensures’ that the largest eigenvalues have the same
asymptotic behavior as for a Gaussian sample (conjecture). If this moment is not
finite, the eigenvectors associated to the largest eigenvalues are actually determined by
the largest entries of X (Biroli-Bouchaud-Potters (2007), Auffinger-Ben Arous-Péché
(2009)).

The fact that the fourth moment needs to equal that of a Gaussian random variable
was proved by Silverstein ('81).
One needs a certain proximity with the Gaussian distribution!

e the assumption on x ensures that the projection of x on the eigenvectors of My ()
does not see the lack of rotationnal invariance.
It also ensures that F¥(t) — F(t) if F'is the c.d.f of the Marchenko-Pastur distribution

PMP-
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Eigenvectors: the non-white case.
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: : The non white case

Preliminary remarks
e Even for a Gaussian sample,the distribution of the eigenvectors is unknown if > # Id.
e It is NOT expected that the matrix of eigenvectors is Haar distributed.
e Only known result due to D. Paul (2006):
¥ =diag(m, 1,...,1) with 1y > 1+1/,/7.

Let u; (resp. e1) be the normalized eigenvector of My (%) (resp. of X) associated to

A1 (resp. m):
1— —1)2
lim |<u1,e1>|:\/ 7/ ) a.s .

N —oo

ldea: perturbation of the eigenvector associated to 71 (the largest eigenvalue of 3) by
a random matrix.
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: : The non white case

Another approach (Ledoit-Péché (2009))

The idea is to study functionals:

On(g) i= 5T (9(2) (M (%) = 21)7),

with z € CT = {2z € C, 3z > 0},
g is a regular function (bounded with a finite number of discontinuities or analytic),
g(X) = Vdiag(g(m),...,g9(mn))V* if V is the matrix of eigenvectors of X.

Aim : understand how the eigenvectors of My (3) project onto those of X..

Remarks:
-if g = 1, then 6 is just the Stieltjes transform of .
-If X o< Id useless. We thus concentrate on the case where H # 4.

- 19 -



: : The non white case

A theoretical result

Assume that the support of H is included in |a1, as] with a; > 0 and

E| X;;]'? < oo independent of N and p.

Theorem: Ledoit-Péché (2009)
Let g be a bounded function with a finite number of discontinuities on [a1,as]. Then
On(g) — 0(g) a.s. as N — oo where

Vze CH, ©9(z) = / [T 1= =9 2m,(2)] — Z}_lg(T)dH(T).

— 00

Remark: the same kernel

{7‘ [1 — - 7_1zmp(z)} — z}_l

arises as in the Marchenko-Pastur theorem.

- 20 -



: : The non white case

Corrolary 1.

Question: How much do the eigenvectors of My (3) deviate from those of X7

Weset g = 1(_oo ) and O (A, 7) ZZ w517 1 400) (A) X Lz ooy (T)-

21]1

Let v; be the normalized eigenvector of ¥ associated to ;. The average of N|ujv;|?
bearing on the eigenvectors associated to sample eigenvalues (resp. eigenvalues of the
true covariance) in the interval [\, \] (resp. [z, 7]) is:

ONAT)—Py(N\, 1) — PN, T) + Pn(A, T)
[FNn(A) — Fn(A)] % [Hn(T) — Hn(z)]

if Fiy (resp. Hy) is the c.d.f. of My(X) (resp. X).

If one can choose )\, A and 7, 7 arbitrarily close, then one gets precise information!
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: : The non white case

Corrolary 1.

Theorem: @y (), 7) &5 ®(\,7) at any point of continuity of ®. And V(\,7) €
R2, o\ 7)= [ _ [T o, t)dH(t) dprp(l), where

=:a-+1b, ifl>0

o(l,t) = <

ifl=0and vy <1

otherwise

Here m,(0) = lim._,om,(2) and m,, is the limiting Stieltjes transform of X*3XX/N.

Thus in principle one can obtain precise information on the eigenvectors (but this assumes
that one knows the c.d.f. of Hy).

29



: : The non white case

Corrolary 2.

Question: how does My (3) differ from > and how can we improve the initial estimator
of 3 given by My (X)?

We get a better estimator by choosing g(z) = x.

One seeks an estimator of X of the kind UD U™, Dy diagonal i.e. an estimator which
has the same eigenvectors as My (X).
The best estimator (Frobenius norm) is

~

Dy =diag(dy,...,dy) where Yi=1,....N d;=u’Snu.

Can we say a few things on the d;’s:
yes asymptotically by choosing g(x) = .

- 23 -



: : The non white case

Corrolary 2.
We set

2—1

N
1
Ve e R, Apn(z :NZ Ay +o00) (T ZU YNt X x40y (T)-

Then one has

) 01 . AN()\z'—|_5) — AN()\z —8)
Vi=1,...,N d; = 1 .
! ’ ’ sir(gl*‘ FN()\'L —|—8) — FN()\z — 8)

Theorem: For all z # 0, Ax(z) — A(z). Moreover A(z) = [*__§(X) dF(X), with

VA € R, 5(A):<(1_v)7m(0) fA\=0and~ <1
P

\O otherwise.

_24



: : The non white case

An improved estimator

We consider the “improved” estimator §N = UD'U*, where
Di=XNi/[1 =" = (M)

We ran 10,000 simulations with pn(2) = 0.26; + 0.405 + 0.4619, v = 2 and increasing
the number of variables p from 5 to 100. For each simulation, we calculate the “Percentage
Relative Improvement in Average Loss” (PRIAL):

if M is an estimator of ¥y and if |A|% = TrAA* (Frobenius norm),

~ 2 7
e oo

PRIAL(M) =100 x |1 —

~ 2
E HMN(Z) — UnDyU%

jal
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: : The non white case

Simulations
Even for small sizes, p = 40, the PRIAL is 95%.

100%
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: . Conclusion

Remarks and conclusion

Eigenvalues
-Using the techniques introduced by Tao-Vu (2009), the universality results can surely be

improved for largest and smallest eigenvalues (condition number).

Eigenvectors
-On(g) is a new tool that allows to study the average behavior of the eigenvectors: for
instance we cannot recover D. Paul's result for the eigenvector associated to the largest

eigenvalue separating from the bulk.

-in general we cannot say anything on the eigenvectors associated to extreme eigenvalues:
average behavior of the eigenvectors.

-for the moment theoretical results only: one has to define first appropriate estimators for
mp, Hy . ..
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