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un i v er s i ty of openhagenthe ost of informationWhat is the ost of information or, how muh are you willingto pay � or have to pay � in order to know that an event hashappened?Or, what is the e�ort you are willing to/have to alloate?Depends on the probability t, you believe the event has: κ(t).
κ is the individual e�ort (e�ort-funtion) or the desriptor.e�ort ←→ desription ?Requirements: κ(1) = 0, κ is smooth (and dereasing).Further, natural with normalization via the di�erential ost
ι = −κ′(1). If ι = 1, we obtain natural units , nats;if ι = ln 2, we measure in binary units , bits.Slide 2/1
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un i v er s i ty of openhagenaumulated e�ort (orresp. to negative sore)Consider distributions over a disrete alphabet A: x = (xi )i∈Arepresenting truth , y = (yi )i∈A representing belief .Aumulated e�ort (expeted per observation) is
Φ(x , y) =

∑i∈A

xiκ(yi ) .Theorem There is only one desriptor, the lassial desriptor,for whih the perfet math priniple holds, i.e. for whih
Φ(x , y) ≥ Φ(x , x)with equality only for y = x (or Φ(x , x) =∞), viz. (nats)

κ(t) = ln 1t .Slide 3/1
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∑ xiκ(yi ) is the right expression foraumulated e�ort as seen by someone, who knows thetruth ...... but is this how you pereive aumulated e�ort?What if the xi 's above are not what you pereive as truth?... perhaps this also depends on what you believe � and Φshould rather be something like ∑

π(xi , yi )κ(yi ).Let's go philosophial:
Slide 6/1



un i v er s i ty of openhagenthe beginnings of a philosophy of informationThe whole is the world , V

Slide 7/1



un i v er s i ty of openhagenthe beginnings of a philosophy of informationThe whole is the world , VSituations from the world involve Nature and you, Observer .

Slide 7/1



un i v er s i ty of openhagenthe beginnings of a philosophy of informationThe whole is the world , VSituations from the world involve Nature and you, Observer .Nature has no mind but holds the truth (x),

Slide 7/1



un i v er s i ty of openhagenthe beginnings of a philosophy of informationThe whole is the world , VSituations from the world involve Nature and you, Observer .Nature has no mind but holds the truth (x),Observer has a reative mind,
• seeks the truth (x)
• is on�ned to belief (y)
• aims at knowledge (z).

Slide 7/1



un i v er s i ty of openhagenthe beginnings of a philosophy of informationThe whole is the world , VSituations from the world involve Nature and you, Observer .Nature has no mind but holds the truth (x),Observer has a reative mind,
• seeks the truth (x)
• is on�ned to belief (y)
• aims at knowledge (z).Knowledge is
• the synthesis of extensive experiene
• an expression of how Observer pereives situations from V
• how truth manifests itself to Observer, to you.Slide 7/1
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un i v er s i ty of openhagendigression: what if Nature an ommuniate?Then we speak about an Expert .You ask Expert for advie.Expert's knowledge is x , advie given is y .Expert may be tempted to at in bad faith (y 6= x).Problem: How to keep the expert honest?A solution. If you know a proper Φ, you an avoid this and thuskeep the expert honest: Fix a suitable downpayment in order toreeive advie and then agree that Expert pays a penalty of
Φ(x , y) as soon as the truth is known....Slide 9/1
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un i v er s i ty of openhagenprobabilisti modelling (disrete)Truth-, belief- and knowledge instanes are x = (xi ), y = (yi )and z = (zi ) (i ranging over an alfabet A).x and y are probability distributions, z just a funtion on A.Interation, Π, ats via the loal interator π:
(

Π(x , y)
)i = π(xi , yi ). π is always assumed sound , i.e.

π(s, t) = s if t = s (perfet math).
π is weakly onsistent if ∀x∀y :

∑ zi = 1. Strong onsistenyrequires that z is always a probability distribution.Proposition: Only the πq's given by πq(s, t) = qs + (1 − q)tare weakly onsistent; strong onsisteny requires 0 ≤ q ≤ 1.Slide 11/1
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∂t and put χ(t) = π′2(t, t).Only one among the Φπ,κ's an be proper, viz. the solution totκ′(t) + χ(t)κ(t) = −1 , κ(1) = 0 . (*)If π is onsistent, hene one of the πq 's, then a proper Φπ,κexists i� q > 0 (q = 0 OK as a singular ase, though).If so, the unique desriptor onerned is the one depending line-arly on tq−1, i.e. κq(t) = lnq 1t (reall: lnq u = 11−q (u1−q−1)).Slide 12/1



un i v er s i ty of openhagengross e�ort, pointwise fundamental inequalityIntrodue gross (aumulated) e�ort and gross entropy byadding a term representing overhead ost (or e�ort):

Slide 13/1



un i v er s i ty of openhagengross e�ort, pointwise fundamental inequalityIntrodue gross (aumulated) e�ort and gross entropy byadding a term representing overhead ost (or e�ort):gross e�ort: Φ̃(x , y) =
∑i∈A

(

π(xi , yi )κ(yi ) + yi) = Φ(x , y) + 1 ,gross entropy: H̃(x) =
∑i∈A

(xiκ(xi ) + xi) = H(x) + 1 .

Slide 13/1



un i v er s i ty of openhagengross e�ort, pointwise fundamental inequalityIntrodue gross (aumulated) e�ort and gross entropy byadding a term representing overhead ost (or e�ort):gross e�ort: Φ̃(x , y) =
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(

π(xi , yi )κ(yi ) + yi) = Φ(x , y) + 1 ,gross entropy: H̃(x) =
∑i∈A

(xiκ(xi ) + xi) = H(x) + 1 .Clearly, �gross divergenee�=divergene and, de�ning thedivergene generator by
δ(s, t) =

(
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(

π(xi , yi )κ(yi ) + yi) = Φ(x , y) + 1 ,gross entropy: H̃(x) =
∑i∈A

(xiκ(xi ) + xi) = H(x) + 1 .Clearly, �gross divergenee�=divergene and, de�ning thedivergene generator by
δ(s, t) =

(

π(s, t)κ(t) + t)− (sκ(s) + s), one hasD(x , y) =
∑

δ(xi , yi ). We refer to the inequality δ ≥ 0 as thepointwise fundamental inequality (PFI). Clearly PFI =⇒ FI.Conjeture Converse also trueIn pratie, PMP and FI are always proved via PFI !Slide 13/1
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πξ(s, t) = ξ−1(π

(

ξ(s), ξ(t))) .Then the di�erential equation (*) is unhanged, hene you�nd the same desriptor κq . E.g. for ξ(u) = ln u,
πξ(s, t) = sqt1−q; by PFI, the assoiated e�ort is proper.Problem whih κ's are assoiated with (meaningful) π's?e.g. κ(t) = 12(t−2 − 1) ?Slide 14/1
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Ψ(x ,w) = Φ(x , y) with y ↔ w .

Slide 15/1



un i v er s i ty of openhagenwhat  a n we know?Setting: World Vπ with ideal desriptor and e�ort ft. Φ.I.J. Good (1952): Belief is a tendeny to at !To us, this is expressed via ontrols , w 's. There is a bijetiony ↔ w ( w = ŷ ; y = w̌) de�ned by wi = κ(yi ); i ∈ A.Expressed via ontrols, the e�ort funtion is denoted Ψ:
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un i v er s i ty of openhagenwhat  a n we know?Setting: World Vπ with ideal desriptor and e�ort ft. Φ.I.J. Good (1952): Belief is a tendeny to at !To us, this is expressed via ontrols , w 's. There is a bijetiony ↔ w ( w = ŷ ; y = w̌) de�ned by wi = κ(yi ); i ∈ A.Expressed via ontrols, the e�ort funtion is denoted Ψ:
Ψ(x ,w) = Φ(x , y) with y ↔ w .What an Observer do? Constrain the possible truth instanesvia ontrol ! Constraints are expressed by preparations whihare sets P of x 's.A feasible preparation is one whih Observer an realize.Slide 15/1
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P(w , h) = {x |Ψ(x ,w) = h}or variant P≤(w , h) = {x |Ψ(x ,w) ≤ h} .Finite non-empty intersetions of suh level sets(or sub-level sets ) onstitute the feasible preparations andshows what Observer an know !Slide 16/1
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∀x ∈ P : H(x) + D(x , x∗) ≤ Hmax(P)

∀w : R(w) ≥ Hmax(P) + D(x∗, w̌) .Slide 18/1



un i v er s i ty of openhagenExponential familiesWhy do the level sets play a entral role? Beause 1) theyallow robustness onsiderations, 2) beause sub-level sets do.maximal preparations Consider x∗ and w∗. Then equilibriumholds for some γ(P) with x∗ and w∗ as optimal strategies i�h∗ = Ψ(x∗,w∗) < ∞ and w∗ = x̂∗. If so, the largest suh setis the sublevel set de�ned from w∗ and h∗.Again, this follows by inspetion of Nash' saddle valueinequalities.
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un i v er s i ty of openhagenExponential families, ont.Let w be a ontrol, let Lw be the preparation family ofnon-empty sets of the form P(w , h). The assoiatedexponential family , denoted Êw is the set of ontrols ε whihare robust for all preparations in Lw .
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P(w , h).Slide 20/1



un i v er s i ty of openhagensketh of MaxEnt determination for VqConsider a Tsallis world V = Vq, or. to πq with q > 0.Fix y ←→ w . Then Lw onsists of all preparations P forwhih Ψ(x ,w) is onstant over P.
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P, hene Ψ(x ,w∗) is onstant over P, i.e. w∗ ∈ Êw and therobustness lemma applies.Then, given β, try to adjust α so that α + βw is a ontrol.Classially, α is the logarithm of the partition funtion. .Finally, adjust β (≈ inverse temperature) to desired level ...Slide 21/1



un i v er s i ty of openhagenwhat have we ahieved?
• found a reasonably transparent interpretation of Tsallisentropy
• developed a basis for an abstrat theory
• lari�ed role of FI via PMP; fous on PFI as the naturalbasis for establishing FI and hene PMP
• identi�ed the unit of entropy as an overhead
• answered the question �what an we know�
• found good (the right ?) de�nition of an exponential family
• indiated dual role of preparations and exponential families
• exploited games and wisdom of Nash, enabled MaxEntalulations without introduing Lagrange multipliers
• separated Nature from Observer in key expressionsSlide 22/1



un i v er s i ty of openhagenwhat needs being done?
• interation, how?
• desription, how?
• ontrol, how?
• expand, quantum setting ...
• link to information geometry
• ...
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• ... thank you !
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