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Discrete memoryless channel: notations

e W = (W;;): the m x n stochastic matrix (channel matrix).
— Wij: the probability of receiving the output j if the input is .
— Wi >0 and ), W; =1 for all i.
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Discrete memoryless channel: notations

e W = (W;;): the m x n stochastic matrix (channel matrix).
— Wij: the probability of receiving the output j if the input is .
— Wi >0 and ), W; =1 for all i.

¢ Information capacity:

sup I(p), - 1(p) = >_pD(Wi|lpW).

e O={p=(p1,.--,0m): Pi >0, Y p; =1}: the probability simplex.
o W;: the ith row of W.

e D(fl|lg) =), filog(fi/9:) for nonnegative vectors f and g.
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Information capacity

Information capacity:
supI(p), I(p) = > piD(W;||[pW).
p i

e the maximum mutual information between input and output
distributions
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Information capacity

Information capacity:
supI(p), I(p) = > piD(W;||[pW).
p i

e the maximum mutual information between input and output
distributions

e the highest rate per channel use at which information can be sent with
arbitrarily low probability of error

e the optimal prior in a certain “objective” sense in Bayesian statistics

e How to calculate this fundamental quantity?
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The Arimoto-Blahut Algorithm

e proposed independently by Arimoto (1972) and Blahut (1972)
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The Arimoto-Blahut Algorithm

e proposed independently by Arimoto (1972) and Blahut (1972)

e Advantages:
— simplicity
— ease of implementation
— monotonic convergence

— works for all discrete memoryless channels
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The Arimoto-Blahut Algorithm

e proposed independently by Arimoto (1972) and Blahut (1972)

e Advantages:
— simplicity
— ease of implementation
— monotonic convergence

— works for all discrete memoryless channels

e Disadvantages:

— can be slow (takes many iterations to converge)

Dec. 2009, Paris



The Arimoto-Blahut Algorithm

Algorithm O (Arimoto-Blahut):
e Starting value: p© € Q such that p{* > 0 for all i.

e Updating rule:

ptY = 20 = D (Wilp®W).

50 exp (4°)
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The Arimoto-Blahut Algorithm

Algorithm O (Arimoto-Blahut):
e Starting value: p© € Q such that p{* > 0 for all i.
e Updating rule:

®) (t)

b;

()

0" exp (47

e This is a multiplicative algorithm.

e Geometric interpretation: Csiszar and Tusnady (1984).

pi exp (zz )
(t+1) _ . SO _p (m I p(t)W).

e Extensions: Nagaoka (1998); Vontobel (2003); Dupuis et al. (2004);

Rezaeian and Grant (2004).
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Squeezing Strategies and New Algorithms

e strategies are based on reparameterization/algebraic manipulation;
e simplicity and monotonic convergence are preserved;

e speed is improved.
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Squeezing Strategies and New Algorithms

e strategies are based on reparameterization/algebraic manipulation;
e simplicity and monotonic convergence are preserved;
e speed is improved.

Algorithm | (Singly Squeezed Arimoto-Blahut): Choose A such that

1
1< A< .
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Squeezing Strategies and New Algorithms

e strategies are based on reparameterization/algebraic manipulation;
e simplicity and monotonic convergence are preserved;
e speed is improved.

Algorithm | (Singly Squeezed Arimoto-Blahut): Choose A such that

1
1< A< .

e Starting value: p(® € Q such that pgo) > 0 for all s.

e Updating rule:

pgt) exp (/\z-(t))
W = G ) o = D WlOw).
> D €xp ()\zl )

?
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Squeezing Strategies and New Algorithms

e Arimoto-Blahut corresponds to A\ = 1.

e Theorem (Monotonic Convergence): For a sequence p') generated by
Algorithm 1, I(p®)) / sup,cq I(p) as t / .

e Proposition: The rate of convergence of Algorithm | improves as A\
increases.
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Squeezing Strategies and New Algorithms

e Arimoto-Blahut corresponds to A = 1.

e Theorem (Monotonic Convergence): For a sequence p') generated by
Algorithm 1, I(p®)) / sup,cq I(p) as t / .

e Proposition: The rate of convergence of Algorithm | improves as A\
increases.

Algorithm | is just as simple, has nice properties, but converges faster.
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Squeezing Strategies and New Algorithms

Example 1.
e Channel matrix
0.7 0.2 0.1
W =
0.1 0.2 0.7
(also used by Matz and Duhamel (2004) as an illustration).

e Arimoto-Blahut vs. Algorithm | with A =5/3 (which attains the upper
bound).
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Figure 1: Iterations of pi” for Arimoto-Blahut (ABA) and Algorithm | with A = 5/3.
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New Algorithms

Let » be a nonnegative 1 X m vector such that W; > rW. (entrywise)

Let ) satisfy (ryp =) 1;)

<A< 1
1—ry = — 1—zjminil/[/’,;j'
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New Algorithms

Let » be a nonnegative 1 X m vector such that W; > rW. (entrywise)

Let ) satisfy (ryp =) 1;)

<A< 1
1—ry = — 1—zjminil/[/’,;j'

Algorithm Il (Doubly Squeezed Arimoto-Blahut)

e Starting value: p(® such that pz@ > (0 and p,,(;()) > r; for all 2.
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New Algorithms

Let » be a nonnegative 1 X m vector such that W; > rW. (entrywise)

Let ) satisfy (ryp =) 1;)

<A< 1
1—ry = — 1—zjmin,,;VV,;j'

Algorithm Il (Doubly Squeezed Arimoto-Blahut)
e Starting value: p(® such that p§°) > (0 and p,,(;()) > r; for all 2.

e Updating rule: p,(ftH) = max {T iy 5(t)p§t) €Xp ()‘z"gt))}

where
p(t) —

2D =D (Wil|lg®W), ¢® = - ,
_lr+

and 6® is such that 3, p{t" = 1.
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New Algorithms

Let » be a nonnegative 1 X m vector such that W; > rW. (entrywise)

Let ) satisfy (ryp =) 1;)

<A< 1
1—ry = — 1—zjmin,,;VV,;j'

Algorithm Il (Doubly Squeezed Arimoto-Blahut)
e Starting value: p(® such that p§°) > (0 and p,,(;()) > r; for all 2.

e Updating rule: p,(ftH) = max {T iy 5(t)p§t) €Xp ()\z,gt))}

where
p(t) —

2D =D (Wil|lg®W), ¢® = - ,
_lr_l_

and 6® is such that 3, p{t" = 1.

e Upon convergence, output p = (p(>) —r)/(1 —ry).
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Algorithm |l

e Convergence Criterion:

max z,gt) — Z q?) z,gt) <e
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Algorithm |l

e Convergence Criterion:

max z,gt) — Z q?) z,gt) <e

o Key requirement: W; > riW.

— Example: m = 2

i min Wi
= )
]. — T — 7Ty J: W1j>W2j le — l"{fz7
T . Wl :
< min J

— less clear if m > 2.
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Algorithm |l

e Convergence Criterion:

max z,gt) — Z qét) z,§t) <e

o Key requirement: W; > riW.

— Example: m = 2

n min Wo;
_, )
]. — T — 7Ty J: W1j>W2j le —_ I¢*’{f[2.7
T . Wl ;
< min J

1—1r1 —1ry = 4t Waj>Wyj sz — le .
— less clear if m > 2.

e Algorithm | corresponds to r = 0.
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Algorithm |l

e Algorithm | corresponds to r = 0.

e Slightly more complicated than Algorithm I.
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Algorithm |l

e Algorithm | corresponds to r = 0.

e Slightly more complicated than Algorithm I.

0.7 0.2 0.1
W =
(o1 02 or)

Consider Algorithm Il with

Example 1 (continued)

e A =5/3 (largest allowable)
e r=(1/8, 1/8) (largest allowable)
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Algorithm |l

e Algorithm | corresponds to r = 0.

e Slightly more complicated than Algorithm I.

0.7 0.2 0.1
W =
(o1 02 or)

Consider Algorithm Il with

Example 1 (continued)

e A =5/3 (largest allowable)
e r=(1/8, 1/8) (largest allowable)

Algorithm Il converges in one iteration regardless of the starting value!
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Algorithm Il: properties

e Theorem (Monotonic Convergence): For a sequence p® generated by
Algorithm 11, I((p® —r)/(1 —ry)) / sup,eq I(p) as t / oco.
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Algorithm Il: properties

e Theorem (Monotonic Convergence): For a sequence p® generated by
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e Rate comparisons: Algorithm Il is faster for larger A and r/(1 —r,).
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Algorithm Il: properties

e Theorem (Monotonic Convergence): For a sequence p® generated by
Algorithm 11, I((p® —r)/(1 —ry)) / sup,eq I(p) as t / oco.

e Rate comparisons: Algorithm Il is faster for larger A and r/(1 —r,).
— With the same A, Algorithm Il is no slower than Algorithm |I.
e Practical Guideline:

— set A at its upper bound, and

— let /(1 — ry) be as large as possible, subject to restriction W; > rW.
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Simulation

Example 2. Matrix W with m =2 and n = 8 is generated according to
Wi = wij/ D _; uir where u;; are independent uniform(0,1) variates.

e Arimoto-Blahut: A =1 and r = 0.
e Algorithm I: )\ at its upper bound.

e Algorithm Il: )\ at its upper bound, and /(1 — r,) at its upper bound.

Convergence criterion:
maxz Zq(t) ®) <1078

100 replications.
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Algorithm |

Figure 2:
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Comparing the numbers of iterations for three algorithms in Example 2.
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Figure 3: log, acceleration ratios in Example 2.
(Acceleration ratio = num. iter. Arimoto-Blahut/num. iter.)
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Theory

e Why monotonic convergence?

e Why faster?
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Theory

Let » (1 x m) and f (1 X n) be nonnegative vectors that satisfy

T Im_]-m
W=(1+f,) "W —-1,,f>0, r,=rl, <1,
].—’7"_|_
and f, = f1,,. Set
oy 1+ [y :
ci=H(If’[/',;)—1 TH(W;), 1<i<m.
— T4

Define I(p|V, f,c) = >, pi(D(Vi|| f + V) + ;) + D(f|| f +pV).
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Theory

Let » (1 x m) and f (1 X n) be nonnegative vectors that satisfy

T Im_]-m
W=(1+f,) "W —-1,,f>0, r,=rl, <1,
].—’7"_|_
and f, = f1,,. Set
oy 1+ [y :
ci=H(If’[/',;)—1 TH(W;), 1<i<m.
— T4

Define I(p|V, f,c) = >, pi(D(Vi|| f + V) + ;) + D(f|| f +pV).

e Key observation: maximizing I(p|W,0,0) = I(p) is the same as
maximizing I(p|W, £, ¢).
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Theory

Let » (1 x m) and f (1 X n) be nonnegative vectors that satisfy

T Im_]-m
W=(1+f,) "W —-1,,f>0, r,=rl, <1,
].—’7"_|_
and f, = f1,,. Set
oy 1+ [y :
ci=H(If’[/',;)—1 TH(W}), 1<i<m.
— T4

Define I(p|V, f,c) = >, pi(D(Vi|| f + V) + ;) + D(f|| f +pV).
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Theory

Let » (1 x m) and f (1 X n) be nonnegative vectors that satisfy

—1,.r

. I,
WE(1+f+) 1_r+ W—lmfZO, 'T‘.,.E’rlm<1,
and f, = f1,,. Set

1+ fy
].—T.|_

Define I(p|V, f,c) = >, pi(D(Vi|| f + V) + ;) + D(f|| f +pV).

e Key observation: maximizing I(p|W,0,0) = I(p) is the same as
maximizing I(p|W, £, ¢).

¢ = HW;) —

HW;), 1<i<m.

e Key observation: Arimoto-Blahut applies to maximizing I(p|W, f,c).

e Key observation: Arimoto-Blahut converges faster for W since its rows
have less overlap.
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Equivalent Form of Algorithm I

Arimoto-Blahut applies to maximizing I(p|W, f,c).
Algorithm IliI

e Starting value: p(® such that p ( ) > 0 and pgo) > r; for all 2.
e Updating rule:
L
et _ P Wi ) oy {nt o®e
! fi +lel(t)W

where a® is such that 3, i) = 1.

cf+§:j‘@2jh¥§¢§§)},’

e Upon convergence, output p = (p(>) —r)/(1 —r,).

Algorithm |1l is equivalent to Algorithm Il upon setting

1‘|‘f+
1-— qu

A=
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Equivalent Form of Algorithm I

Arimoto-Blahut applies to maximizing I(p|W, f,c).
Algorithm IliI
e Starting value: p(® such that ngo) > 0 and pgo) > r; for all 2.

e Updating rule:

vy
p; Wij t+1 LS W log &)
i ij . (t+1) = max {r;, a:(t)ec’*za Wijlog @3; :

T+ pOW

where a® is such that 3, i) = 1.

e Upon convergence, output p = (p(>) —r)/(1 —r,).

It fits the alternating minimization scheme of Csiszar and Tusnady (1984)

— Monotonic convergence!
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Why faster?

e Fixed point algorithm: pt+D) = M (p®)
e Matrix rate of convergence: R(p*) = OM(p*)/0p for a fixed point p*

o pttD) — p* ~ (p® — p*)R(p*)

e Global rate of convergence: the spectral radius of R(p*).
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Why faster?

e Fixed point algorithm: pt+D) = M (p®)

e Matrix rate of convergence: R(p*) = OM(p*)/0p for a fixed point p*

o p*) —p* = (p¥ — p*)R(p*)
e Global rate of convergence: the spectral radius of R(p*).
Theorem (Convergence rate of Algorithm I1/111):
R(p*) =1, — WV,
where ¥ = (¥;;) is given by
Uji = ®i(p*) + P ®j(p*), 1<j<m, 1<i<m,

and 3
piMj
fi + 2 oW

®;i(p) =
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Why faster?

e For Arimoto-Blahut
R(p*) = I, — W®(p*)
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Why faster?

e For Arimoto-Blahut
R(p*) = I, — W®(p*)

e This can be interpreted as measuring how noisy the channel is.

— If m =n and W approaches I,,,, then so does ®(p*), and R(p*)
approaches zero (fast convergence).

— If rows of W overlap almost entirely, then W®(p*) is nearly singular,
leading to a large spectral radius of R(p*) (slow convergence).
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Rate comparisons

e Theorem: If d is an eigenvalue of R(p*), then d is real and 0 < d < 1.

e Global rates for Algorithm I1/11l with different “squeezing parameters”:
Larger f and larger /(1 — r) are better.

e Proof is algebraic — a more intuitive explanation?
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Summary

e Simple improvements of Arimoto-Blahut on its own terms.

e Formula for the convergence rate
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Summary

e Simple improvements of Arimoto-Blahut on its own terms.
e Formula for the convergence rate

e Extensions?

e Optimal squeezing parameters?

e Some channel matrices are not so squeezable ... What then?

Dec. 2009, Paris



