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Abstract—A short proof of the Central Limit Theorem is given
using a lemma about continuity of differential entropy.
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|. INTRODUCTION

The first paper relating the Central Limit Theorem and in-
formation theory was [1]. Later [2] and [3] used Fisher infor-
mation to prove an information theoretic version of the Central
Limit Theorem. These proofs involve technical bounds on the
tails of the distributions. Results on the rate of convergence can
befoundin[3], [4], [5] and [6]. Some recent references are[7]
and [8].

Let X be arandom varigble with £ (X) = 0, o (X) =
1 and density f The differential entropy is h(X) =
- f f Ylog (f (z)) d:c The information divergence is

= [f(x)log(f(z)/¢(z)) dz where ¢ is the nor-
mal densuy The Fisher information of X is I(X) =
[ (f'(x))*/f (x) dz. When X and Y are independent they
satisfy Stam's Inequality

I"X)+ I YV)<I ' (X +Y)

with equality if and only if X and Y are normal [9]. The
normalized Fisher information J (X) = o2 (X)I(X) — 1
is non-negative according to the Cramér-Rao Inequality. If
X' = e 'X + (1 —e?)% N with N normal and indepen-
dent of X then, accordingto [7],

D(X) = /OOOJ(Xt) dt.

Il. THE CENTRAL LIMIT THEOREM

Lemma 1. For any sequence X, X, ... of random variables
with E(X;) = 0, o(X;) = 1 and densities f; uniformly
bounded and pointwise converging to f, h(f,) — h(f) and
D (f,) — D(f)forn — oc.

Proof: First h(f) = h(¢) — D(f) implies that
limsup h (fn) > h(f) by lower semi continuity of information
divergence. Put C = sup,, , f (z) so that — {22 Jog L2tz >

0. Then
h(fn) C’/( fn () fn( )>dxlogC’
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andliminf h (f,,) > h (f) by Fatou's Lemma |

Theorem 2 Let X1, Xo, ... be independent identically dis-
tributed random varigbles with £ (X;) = 0 and o (X;) = 1.
Put S, => ", X;/n'/2. Then D (S,) — 0forn — ooif and
only if D (.S,,) isfinite eventualy.

Proof: Assumethat D (.S,,) < co. Forany ¢ € |0; oo[ the
sequence J (S!)) isdecreasing according to [ 7], and thus .J (S?)
converges to some function t ~ g (¢). Using dominated con-
vergence we only have to prove that g (¢) = 0 fordl ¢t > 0.

Now,
D(SY) = / ) di — /

S0 it sufficesto provethat D (S?) — 0 for n — oo.

Theset {P | D (P) < K} is compact so there exists a sub-
sequence S, whose distribution converges to the distribution
of some random variable Y. Then for v > 0 the density of S¥
converges to the dengity of Y. Further, the density of S5, |

converges to the density of (Y 4+ Y ) /2'/2 whereY and Y
are independent and identically distributed. Asm — oo

) dtforn — oo

) . i} YV 4+ Y
D(S2 )= D(Y") and D (S35, ) — D <721/2 ) :

which implies that D (Y?) = D (Y21+/§) In particular,
J(Y®) = J(ng/fw) for w > v which implies that Y

isanormal random variableand that g (w) = J (Y*) =0. W
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1The result that J (S,) is decreasing is not really needed because one can
use Stam’s Inequality to prove subadditivity of J (Sf,) [2]. Thisimplies con-
vergence of J (S?) and decrease of the sequence J (Szn) )



