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ABSTRACT

In this paper, we present in a unified framework the gradient algorithms employed in the
adaptation of linear time filters (TF) and the supervised training of (non linear) neural networks (NN).
The optimality criteria used to optimize the parameters H of the filter or network are the least squares
(LS) and least mean squares (LMS) in both contexts. They respectively minimize the total or the mean
squares of the error e(k) between an (output) reference sequence d(k) and the actual system output
y(k) corresponding to the input X (k). Minimization is performed iteratively by a gradient algorithm.
The index k, in (TF), is time; it runs indefinitely. Thus iterations start as soon as reception of X(k)
begins. The recursive algorithm for the adaptation H(k — 1) — H(k) of the parameters is implemented
each time a new input X(k) is observed. When training a (NN) with a finite number of examples, the
index k denotes the example : it is upperbounded. Iterative (block) algorithms wait until all the K
examples are received to begin the network updating. However, K being frequently very large,
recursive algorithms are also often preferred in (NN) training. But they raise the question of ordering
the examples X(k).

Except in the specific case of a transversal filter, there is no general recursive technique for
optimizing the LS criterion. However, X(k) is normally a random stationary sequence; thus LS and
LMS are equivalent when k gets large. Moreover the LMS criterion can always be minimized
recursively with the help of the stochastic LMS gradient algorithm, which has low computational
complexity.

In (TF), X(k) is a sliding window of (time) samples, whereas in the supervised training of
(NN) with arbitrarily ordered examples, X(k — 1) and X(k) have nothing to do with each other. When
this (major) difference is rubbed out by plugging a time signal at the network input, the recursive
algorithms recently developped for (NN) training become similar to those of adaptive filtering. In this
context, the present paper displays the similarities between adaptive cascaded linear filters and trained
multilayer networks. It is also shown that there is a close similarity between adaptive recursive filters
and neural networks including feedback loops.

The classical filtering approach is to evaluate the gradient by "forward propagation" whereas
the most popular (NN) training method uses a gradient backward propagation method. We show that

when a linear (TF) problem is implemented by a (NN), the two approaches are equivalent. Yet, the



backward method can be used for more general (non linear) filtering problems. Conversely, new
insights can be drawn in the (NN) context by the use of a gradient forward computation.

The advantage of the (NN) framework, and in particular of the gradient backward propagation
approach, is evidently to have a much larger spectrum of applications than (TF), since (i) the inputs

are arbitrary, and (ii) the (NN) can perform nonlinear (TF).



INTRODUCTION

The problem of optimizing the set H of parameters of a system h is raised in a great many
areas of Sciences. For instance, the system h can be a time filter (TF) that is a linear application from
the space of time functions into itself, or a formal neural network (NN) that is a highly connected set
of elementary non linear neural cells. (TF) and (NN) can be investigated in continuous time or in
discrete time. In the former case, the evolution of the system is governed by a differential equation, in
the latter case, it is governed by difference equations. This paper is only concerned with the second
approach of discrete samples.

In 1960, Widrow published his ADALINE [1] and gave rise to the development of many
optimization algorithms that can match the parameters H of the system to its environnment, even if
time-varying. Such is the case of the Widrow-Hoff rule for self learning automata and of the LMS
algorithm for adaptive linear filtering. These algorithms have a common purpose which is to
minimize, by a gradient technique, a cost function based on the quadratic output errors, either through
their total squares (the least squares (LS) criterion) or through their average squares (the least mean
squares (LMS) criterion).

However, these algorithms were developed with unequal success in the various scientific
areas. On the one hand, linear adaptive filters enjoyed a wide and fast stride with numerous
applications in communications, sonar, radar etc... On the other hand, the networks of neurons or
automata did not really spread out at the beginning. A reason for this difference is the greater
conceptual simplicity of (TF). They are linear and have few parameters. Consequently, the theoretical
analysis and hardware implementation are relatively straightforward. Conversely, (NN) are nonlinear,
have a larger number of elementary cells which, besides, are interconnected with one another.
Therefore analysis is much more intricate and implementation is a lot more costly.

The recent tremendous burst in technology, especially with digital signal processors, is one
fact which spurred the research on (NN) [2]. It is recognized that their high degree of parallelism,
their interconnectivity and their learning ability allow them to perform recognition and classification
tasks, and make them robust and flexible. Among the important advances is a supervised training
algorithm, called the gradient backpropagation rule [3]-[S] which generalizes the Widrow-Hoff

algorithm for multilayer networks.



Recently, some contributions have appeared to show that (NN) are able to solve in a novel
way certain ancient problems. It appears that (NN) can also be used as an efficient tool for new
problems for instance in nonlinear time-filtering. A classical example of non linear filter called the
adaptive differential pulse code modulation (ADPCM) sytem, is given in fig. 0; it is used in digital
transmission of speech at a reduced bit rate. The purpose of the present paper is to establish a
common framework to compare the criteria and algorithms used in the adaptation of (TF) and in the
supervised training of (NN). We are not concerned here with specific applications.

In both contexts, optimization through iterative techniques are especially appreciated, the

vector H of optimum parameters being reached by the sequence of iterations

Hp)=H@p-1)+A@p-1) (M

where A is an increment which is related to the gradient of the cost function to be minimized.

Our objective is to compare the two approaches of iterative gradient optimization
that have been set up in both fields. In particular we shall put into perspective the (LMS) algorithms
[6]-[10] (also known as stochastic gradient) used in (TF), with the gradient algorithms involving
backpropagation used in the supervised training of (NN). Their spirit is the same, but they are applied
to contexts with important basic differences.

At first glance, it could appear that the structure of a (TF) is but a particular case of (NN)
and that the theory of adaptive filtering should be completely imbedded in the one of learning (NN).
But this is not true because certain important specific features of (TF) do not hold, in general, for
(NN). In particular (TF) deals with time signals X(k), and the index k, being time, is naturally
ordered and usually unbounded. In contrast, (NN) do not always take into account the role of time.
For instance in the context of classification, the index k refers to a collection of inputs X(k) which are
given to the networks as typical examples. The facts that the ordering of examples is arbitrary and that
their number is finite are important differences between both contexts. An interesting specificity of
(TF) is to adapt the filter H at the very moment k when it is being used. In other words, the iteration

index is p = k in the gradient algorithm (1). The resulting filter H(k) is called "adaptive" and is able to



deal with evolutive inputs X(k) and even with non stationary sequences. On the other hand, the usual
concept of training for (NN) is the following : a fixed (non evolutive) collection of examples X(k),
called "training set", is given to the net for optimizing H. There is a preliminary training period during
which the network H is optimized. During this period the optimizing iterations H(p) do not
necessarily correspond to the arrivals of examples, which means that p and k can be different. After
optimization, the network keeps being used in its (fixed) final state. In this spirit, static (non ordered)
as well as dynamic (ordered) [2, 11, 13] patterns can be learnt. This does not correspond to the
common concept of adaptivity. It can be shown, however, that (NN) can be used in a truly adaptive

fashion, whereby the network undergoes continual training while it is being used [12, 14, 15].

The present work is made of five parts. In the first section, we describe in detail the
differences between the specific contexts of time filters and of neural networks. The LS and LMS
optimization criteria are recalled in Section II, with their respective features in the two contexts.
Section III is devoted to the derivation of the major gradient algorithms which permit optimization. An
important distinction is made between iterative and recursive algorithms. In the latter the parameters
are updated each time a new time sample arrives.

Sections IV and V constitute the core of this paper. In these sections, we study the gradient
algorithms for some important examples of (TF) and (NN), respectively. In order to emphasize the
similarity between both fields, these sections are built up in the same way, with three parallel
subsections.

The first kind of systems is concerned with modular structures. In the context of (TF), we can
take the example of a global filter b which is a cascade of sub-filters h,, (cf subsection IV.2). The
corresponding example, in (NN) is a network h which is made of successive layers hj, (cf subsection
V.2). The problem of adapting (or training) these compound systems h is very similar in both fields.
In particular, the standard (LMS) algorithm of (TF) coincides for linear filters with the (NN) approach
in which the gradient is backpropagated from the last layer until the first one (if the neurons have a
linear activation function).

The second example deals with systems whose structures involve some kind of feedback loop.

In (TF), we can take the example of an infinite impulse response (IIR) filter (cf subsection IV.3). The
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corresponding concept in (NN) is the feedback network which also includes a loop. If the input X(k)
is a time signal, the network becomes quite similar to an IIR filter. The corresponding comparison
again concludes that, for linear filters, the standard (LMS) algorithm of (TF) coincides with the (NN)
gradient backpropagation approach, if the neurons have a linear activation function.

Conclusive remarks are given in Section VI. Throughout this paper, N denotes the total

number of parameters of the system, grouped in the vector H ; p denotes an iteration index.
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Fig. 0 : An example of non linear filter : the ADPCM system

I. DIFFERENCES BETWEEN (NN) AND (TF)

I.1.The context of trained (NN) (finite training set)

In the context of supervised training with a finite set of unordered examples, a (NN) is
depicted in fig.la. Supervised learning is a classical method to bring the network parameters H
towards optimality. A (finite) collection of K examples is presented at the network input, together
with the associated references. The examples can be images, speech segments, patterns, etc... The

example # k consists of a collection of 7 real values x;(k), xo(k), ... x;(k), which may have different



physical meanings. For instance, x; is the size of a visual object, x, its light intensity, x3 its
orientation etc... This is why different inputs are represented by different marks in fig.1a.

The network executes certain (linear and nonlinear) calculations using the vectors

X(k) & (1K), 22K, .., xi(K) T, (1.1)

HEM, hyy o ) T, (12)

where the second vector is built up with the N internal parameters of the network. The calculations

use some nonlinear functions fsuch as the sigmoidal function

f(z) =Atanh p z, p >0. (1.3)

In this way, for each example, the network produces a set y(k), ..., yq(k) of o  outputs
which constitute the output vector Y(k) = (y1(k), ..., yo(k))T. Like for the input the variables inside
Y(k) may have different meanings. They are represented by different marks in fig. 1a. In this figure,
the arrows indicate that the example presented at step k is removed before presentation of the next
example.

It is clear that, in general, the input items x;(k — 1) and x,(k) have nothing to do with each
other; similarly y;(k — 1) and y,(k) are not related. This is in contrast with the filtering problem (see
below).

To train the network and bring its parameters H close to the optimal vector H , a finite

collection D(k),k=1, ..., K, of reference output vectors is available and the collection of errors

E(ky=D(k)-Y(k) , k=K , (1.4)

is used to compute the increments A (p — 1) in order to control the iterative search for H in the

algorithm (1).

I.2. The context of adaptive (TF)



The (TF) context is depicted in fig.1b. Then the iterative label k represents time. The situation
is very similar to that of fig.1a, but with two additional properties :
(1) k increases indefinitely (no upperbound such as K in (1.4))

(ii) the input sequence is ordered and has the shifting property that
xi(k) =x;_1(k = 1) . (1.5)

The new input vector presented at time &k shares its I — 1 last components

xp(k ), ..., x7 (k) with the old input vector presented at time k — 1. Thus the new information is fully

contained in the first component
A
x(k) = x1(k) . (1.6)

Therefore all the coordinates of X(k) have the same physical meaning. They are represented by
identical marks in fig.1b. In this figure, the arrows indicate that the new data presented at time & is

shifted one slot before the next time.

The filter executes certain linear calculations using the vector

X(k) = (x(k), x(k — 1), ..., x(k — T + 1))T - (1.7)

At time k, it delivers a single (new) output y;(k ) a y(k) . The computation of y(k) involves
the filter internal parameters described by the H vector and may also involve past output values y(k —
1), y(k — 2), .... Note that the input and output marks are different in fig. 1b because the x and y
variables have different physical meanings.

Fig.1b evidences the fact that all the information processing realized by the filter from time 1
until time & is summarized in the two input and output time sequences x(1), x(2), ... , x(k) and y(1),

¥(2), ... , y(k) respectively.
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The adaptation of the filter is intended to match the output sequence y(k) onto a reference

sequence d(k) and the indefinite sequence of (scalar) errors

e(ky=d(k)—y(k) k=1,2, ... (1.8)

is used in the iterative increment A(p — 1) in order to enforce the iterations (1) to approach the optimal

parameter H

A more general filtering situation occurs when there are several input sequences, say x!(k),
x2(k) etc... and several output sequences as well, say y1(k), y2(k) etc... Conceptually this does not,
however, bring a lot of new insights. This is why this paper is restricted to a single input-single
output (TF). For the sake of similarity, it will also be assumed that the (NN) has only one

output

Yk 2 yik) . (1.9)

In other words @ =1 in (1.3). Correspondingly the reference outputs D(k) are not vectors but scalar
(say d(k)) and there is a collection of scalar errors e(k) defined according to (1.8) as in the filtering
case. Generalization to (NN) with several outputs is found in suitable papers [2]-[5]. In this paper,
the emphasis is on similarities and dissimilarities between the supervised training of (NN) on one
hand and the adaptation of (TF) on the other hand. Therefore, the restriction to a single output is not a

loss of generality.
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II. OPTIMIZATION CRITERIA

I1.1. The LS criteria

For the time being, the system h under investigation is not specified. It can be a (TF) or a
(NN). It can be linear or non-linear. It has N fixed parameters grouped in the vector H. At step k (k -

th example or k-th time instant), the (single) output of h is

y(k) = F(H, X(k)) (2.1)

where the vector X(k) of inputs is given in (1.1) for (NN) and in (1.7) for (TF) ; the function F is
linear or not versus the components or X(k), depending whether the net or the filter is linear or not. In
order to emphasize the dependency of y(k) with respect to (w.r.t.) H, it is denoted yg(k). As noted

below eq. (1.7), the computation of y(k) may involve past outputs (or even past intermediate results).

Ideally each application should use a specific criterion to adequatly optimize the parameters H
of h (error rate for pattern classification, bit error rate for digital transmission, signal to noise ratio
for detection, listening test for speech transmission and recognition, etc...). Nevertheless, most of

these criteria turn out to be mathematically intractable, except the criteria based on the errors
en(k) & d(k) - yu(l) (2.2)
between the reference and the system output.
The most popular criteria of that kind are known as "least squares" (LS). They consist in

minimizing a cost J that is quadratic w.r.t. all the errors like (2.2) [16] .

We shall use the concept of "running cost", namely
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Jk(fn=lr1§ PO (2.3)

nO=01

In (2.3), the pairs (X(n), d(n)) of inputs and references n =1, 2, ..., k are fixed. In this way, JK(H)
depends only on the parameters H of the system. Eventually the running cost is also a function of the
index k. This cost is running like time or examples, hence the name "running cost".

The running cost (2.3) is lowerbounded. Thus, under reasonably general assumptions of
continuity for the function F in (2.1), it presents a minimum which, of course, depends on the index
k . Let H(k) be that minimum. We call it "running LS parameter". It will cancel the running cost

gradient according to

VJKH) = 0 (2.4)

H= H(k)

where the gradient V is calculated w.r.t. the parameter vector H.
Note the normalizing factor k! in (2.3). Evidently, the normalized running cost (2.3) and the

unnormalized running cost

JE(H) =§ atn) . 2.5)

nC=01

are simultaneously minimized by the parameter fl(k) . But J,’f(H) grows unbounded if k is allowed
to increase indefinitely. Therefore JX(H) is more meaningful than JKH) especially in the filtering
context where the time k increases indefinitely.

Note also that the cost takes into consideration all the examples between 1 and k£ with the same
importance.

In the context of adaptive (TF) where k has no upperbound, the usual concept is the

running cost function JK(H) "' . The latter can be evaluated from the very first step (k = 1). But then a

M1t is implicit in the Signal Processing field that time is running. So the common terminology is simply "LS
criterion" for Jk(H) and "LS filter" for H(k) . But in the present comparison with (NN), we are obliged to make

explicit the "running" idea in our terminology.
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new question is raised : how does fI(k) varies with the step k ? There should indeed be some
relationship between fl(k —1) and ﬁ(k) , and a procedure in order to derive IZI(k) from H k-1) .

Finally, we note that the LS criterion has been generalized in a number of ways in order
to accommodate for nonstationarities in the sequences {X(k)} and d{(k)}. In particular the

"exponentially weighted LS" criterion used in (TF) has cost function [9]

JECH) =§: (1=v) k-1 ) | (2.6)

nO=01

where v is a small positive quantity called forgetting rate. At the present time k, the weight associated
to the past error eg(n) decreases as the delay (k — n) increases. This permits to forget the influence of
old errors and to track nonstationarities. Another way of achieving the same purpose is to use the

"windowed LS" criterion which has cost function

k
1 2
Jk M(H) = i H(nE” . (2.7)
2

OxkO0-O0MO+01

This criterion has exact memory M and forgets completely the old errors eg(k — M), ey(kOO-M — 1),
and so on.

In the context of trained (NN), for instance in classification, the typical situation is to
have a fixed collection of K examples X(k),k =1, 2, ... , K (the training set) with their associated
references. Therefore, the usual cost function is the final or overall cost JK(H). The latter can be
evaluated only after all examples have been presented to the network. We call "overall LS parameter"
the corresponding (final) value H(K) of the parameter. If all the examples do not play the same role,
the most important ones can be suitably repeated. In this way, the importance of the various errors
eg(n), n =1, ... , k, is naturally weighted inside the cost function (2.3). Therefore, in order to
provide a proper comparison between (TF) and (NN), we can retain only the unweighted LS criterion
associated to (2.3) or its windowed version (2.7). Like for (TF), it can be of interest to evaluate
H(K) for k< K, in order to prepare the calculation of the desired (final) parameter H(K) . This is

done in Section III-5 below.
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Evaluating H (k) . Since the gradient commutes with a sum, it follows from ( 2.3) that

VIHH) =T D en(n) Vi yutn) | 2.8)
nO=01

and similarly with the cost (2.7). In the right hand side (RHS) of (2.8), the quantities yy(n) are
dependent on H and on X(n). Thus, to avoid any ambiguity, the gradient has been written V.

For a known function F characteristic of the system (2.1), it is possible, at least in principle, to
evaluate the gradients Vg yg(n). Therefore, one possibility to calculate the optimum parameter H (k)
is the direct least squares procedure which follows:
first phase : for each possible candidate parameter H, we apply the system h to all the examples (or
time samples) X(n) so as to provide the 2k quantities yy(n), Vyyg(n),for n =1, ... , k. Hence the
RHS of (2.8) as a function of H.
second phase : we search for the root(s) of the resulting function as required by (2.4). Note that
uniqueness of the root is not guaranteed.

It is self evident that in the general case, the above procedure to derive the running LS
parameter Hk) is very heavy. In the filtering context (except in a very particular example, see the
further subsection I1.4) it cannot be implemented in real time, i.e., the computations do not stand
within the delay between two time samples x(k) and x(k + 1). The above procedure is not either used
in the network context because of the excessive amount of required computational power. This
explains why iterative procedures have gained so much favour in both fields. They solve phase 1 and

phase 2 at the same time.
I1.2. The LMS criterion

For any system h, a prerequisite for the search of optimality of H to be meaningful is the
existence of a statistical distribution for the pair (X(k), d(k)). In fact, if there were no statistical rule
controlling the pairs (X(k), d(k)), there would be no advantage in learning H on the basis of a set of

reference outputs.
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In the (TF) context, and more generally in Signal Processing, this property corresponds to the
assumption that the time sequence (X(k), d(k)) is stationary in the sense that the joint statistical
properties of several pairs are invariant under an arbitrary time-shift. In the (NN) context, e.g., when
the network is used for classification purposes, the very idea of training relies on the property that the
training set items are representative of the items that the network will have to classify after training is

completed. All these items have a common probability distribution.

This is why in the rest of this paper, it is assumed that (X (k), d(k)) constitutes

a stationary random sequence.

Then, the very popular "least mean square" (LMS) criterion can be used to optimize the

parameters H of system h [13]. It consists in searching for the minimum of the mean square cost

J(H) = E(efi(k) ) . (2.9)

The expectation symbol in (2.9) shows that the LMS criterion implements a statistical averaging over
random trials, instead of the averaging over examples (or times) performed by the LS criterion as
given in (2.3). Like JK(H), J(H) is lowerbounded. Thus, it does present a minimum, denoted H

Wecall H the "LMS parameter". Thanks to the stationary character of the random sequence (X(k),
d(k)), this cost is a function of H which is independent of the step k. This is an advantage, over the
LS cost. The corresponding optimum system does not depend on the running step k. It will cancel the

cost gradient according to

VIEH)=0 |y_ & . (2.10)

Evaluating H . Since the gradient commutes with an expectation, it follows from (2.9) that

V J(H) = -2 E[ eg(k) Vi yu(k)] . (2.11)
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Like for the LS optimum system, it is possible, in principle, to evaluate H in two distinct phases. In
the first phase, for each candidate parameter H, we apply the system h to a large number of
(randomly sampled) input vectors X(k) in order to produce the quantities yg(k) and Vg yg(k) and to
perform the averaging of these random trials. This phase will provide an estimate of the RHS of
(2.11) as function of H. The second phase consists in finding the root (or the roots) of the resulting
function as required by (2.10).

Again the above procedure is too heavy because of the huge amount of computations. Iterative
algorithms are a good alternative because they have lower computational requirements. Moreover,

they jointly solve phase 1 and phase 2.
I1.3. Asymptotic equivalence between the LS and LMS criteria.

Consider the case of random inputs, when the pairs (X(k), d(k)) are strictly stationary and
ergodic. Ergodism is the fact that the sampling realized by the index k is asymptotically equivalent to a
sampling governed by the probability distribution of the random variable (X, d). Therefore, the
averaging over k of a (deterministic) function G of the random variable (X, d) is asymptotically

equivalent to the expectation of this G function, that is

T § G (X(k), d(k)) = E[G(X(k), d(k))] , k—o0 . (2.12)

Applying this property to the function F of the system h, it follows from definitions (2.3) and
(2.9) that the running LS cost tends towards the MS cost if k is actually allowed to

tend to infinity :
JKH) — J(H), k — o . (2.13)

The infinite increase of £ does happen in the filtering context (k = time). It could also happen in the

training of (NN), in particular when the number K of examples in the training set is very large.



18

Then the LS and LMS criteria become equivalent and the corresponding optimum parameters

satisfy
HGk)k) —H , k—>o. (2.14)

The above discussion also means that the LMS and LS criteria are significantly different only during a
transient initial period (k small). Otherwise (k large) we can choose indifferently any of the two

criteria.
I1.4 The transversal linear time filter cased

In subsection II.1, the difficulty involved in the evaluation of the running LS optimum
parameter H (k) was emphasized. There is, however, a case where it is possible to write it down

with a relatively simple iterative formula similar to (1), 1.e.
Hk) = H(k-1) +Ak-1) , (2.15)

the computational complexity involved in the increment Ak - 1) being acceptable. This case is
concerned with time filters when the output is jointly linear versus the input vector X (k)
and versus the parameter vector H. The corresponding linear filter, depicted in fig. 2, is called

"transversal" or "finite impulse response" (FIR) ; it calculates the output
yu(k) = X(k)TH . (2.16)

Based on this equation, and on the shifting property (1.7) that is specific of (TF), very interesting
results can be derived. In particular, it can be shown for the optimum LS parameter H ,that the exact

increment in (2.15) is given by

Ak-1) =AWX®) en® | g - 1) (2.17)
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where there is a recursive formula for the N x N matrix A(k) :

A(kO-O010)0OX (k)OOX (k) TOA (kO-0O1)

A = Ak =1 o Ax () T0A (OO OX (k)

(2.18)

These formulae are the so-called "recursive least squares" (RLS) [9]. Indeed, algorithm (2.15) is

recursive in the sense of the following definition :

Definition : An iterative algorithm such as (1) is called recursive if there is a one-to-one
correspondence between the occurrence of a new time input (or new example) k and the operation of a

new iteration p. In other words p = k .

®) "o

Y

-1 M
o

'
?
e 24

hn_»
xk—N+2)

|

Fig. 2 : A Transversal time - filter
The RLS approach in (2.18) involves a number of multiplications proportional to N2 at each

iteration. This is a very small computational load as compared with the direct approach of subsection
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II.1. In fact, the amount of computations can be further reduced, using the so-called "fast RLS"
approach which avoids calculating the matrix A(k) and directly evaluates the so-called said "Kalman-

Gain", i.e., the N-coordinate vector

G(k) = A(k) X(k) . (2.19)

Based on an elaborate theory of prediction, G(k) itself can be computed recursively at the price of
approximately 8 N multiplications per iteration k. See e.g. [9] for details.The RLS and fast RLS
approaches can also take into account the weighting factor (1—v) when the LS criterion is generalized

according to (2.6). The same thing can be done for the window of length M in the cost (2.7).

The RLS algorithm is an important specificity of adaptive (TF) as compared to trained (NN).
In the latter case, successive examples do not exhibit the shifting property (1.7). Moreover, the
system equation (2.1) always involves some nonlinearity, such as the sigmoid function (1.3).
Therefore, the RLS approach is not applicable. A fortiori, the associated fast RLS algorithms cannot
be used. This means that there is no hope to exactly evaluate the LS optimum parameter H (k) , at
least with a reasonable amount of computations. Therefore, the goal of any algorithm must be limited
to an approximate evaluation. For instance, the iterative procedure (1) could be aimed at generating an
approximately optimum parameter H(k) such that (when all the examples have been presented to the

net)

| HK)-HKK) | <¢ , (2.20)

or (when enough examples have been presented)

| H(ky— H(k) | =e fork =ko . (2.21)

The first property is concerned with the case of a finite training set in (NN). The second property is

useful in both contexts of (NN) and of (TF).
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The present subsection was a way of introduction to the next section about iterative

procedures.

III. ITERATIVE AND RECURSIVE GRADIENT ALGORITHMS
II1.1. The objective
In the rest of this paper, it is assumed that the exact minimum H(k) of the LS criterion cannot

be calculated. One is satisfied with an approximate vector H(k) satisfying (2.20) or (2.21) or having

asymptotic optimality in the sense that

| H(k)y—Hk) | =0, k = . (3.1)

Similarly, minimization of the LMS cost (2.9) is seeked for, but only in an asymptotic way, either

|H(K)-H |<¢' , (3.2)
or

|H(k)-H |<¢' fork =ko (3.3)
or

|Hk)-H | =0 , k = . (3.4)

It follows from the asymptotic property (2.14) that the requirements (2.20), (2.21) or (3.1) about the
LS criterion are respectively equivalent to the above requirements (3.2), (3.3) or (3.4) about the LMS
criterion.

Gradient iterative procedures, also named steepest descent methods [6]-[8], are among the

major and simplest means to achieve such properties.

II1.2. The steepest descent method
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If a known cost function e(H) presents a minimum i , the gradient algorithm permits to
approach A as illustrated on fig.3 with a 2-D vector. In this figure, H is plotted in the horizontal
plane and &(H) is measured on the vertical axis. This gives a "bowl" surface of points M = (H, e(H)
) in the 3-D space, whose minimum is located at H = & . The vertical half-plane that includes M and

the horizontal vector — V e(H) intersects the bowl along a steepest descent line. Hence the point
H=H - uVe(H), u>0 (3.5)

is closer than H to the minimum # , provided p is not too large (to avoid an overshoot where H'

climbs up on the opposite side of the bowl). This is the basis for the well-known iterative gradient

algorithm

Hp) =Hp-1)-wVe®B |- po- 1 (3.6)

Notice the label p for the iteration index. If p — o, the vector H(p) converges towards B
provided the function &(H) is well-behaved and if H(0) stands in the domain of attraction of the
minimum j-\l O.

II1.3. The iterative block-LS gradient algorithm
Let us return to the problem of minimizing some LS cost function. In this subsection, we

consider particularly the supervised training of a (NN), when the training set is arbitrarily ordered and

the total number K of examples is finite. The relevant cost function is the overall cost

a(H) & JK@H) . (3.7)
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i }J'V\S(H)\

Fig. 3. The steepest descent method

Its gradient is given by (2.8) with £ = K. The associated iterative algorithm is thus
K

HEp) =HKp- D+ gy en®Viyn ® | g_gkp_1y . ()
KCEO1

Subject to initialization in a suitable neighbourhood, it is intended to reach the overall LS optimum

parameter

ﬁ[ =ITI(K) ) (3.9)



24

In (3.8) the constant u =2 ' is called the step-size. It is positive. The upper index K indicates the

(limited) total number of examples. As for the iteration index p, it should tend to infinity, in principle.

Equation (3.8) shows the necessity of calculating at each iteration the outputs which

correspond to all the K examples :

() H=qu4)é F(HK (p-1),X(k), k=1, ..,K (3.10)

and their associated gradients. In other words, the iterative algorithm (3.8) is not recursive.
We call it the "block LS gradient algorithm", abbreviated as (BLS). Yet it is simpler than the direct
procedure in two phases detailed in subsection II.1 because the 200Kquantities yg(k), Vgy g(k), k =
1, ..., K do not have to be calculated for any possible candidate vector H, but only for the sequence
HX(p — 1) of parameters. Note that the algorithm (3.8) remains unchanged if the K examples are

presented to the system in a different order : examples need not be ordered.
II1.4. The recursive block-LS gradient algorithms

The block iterative algorithm (3.8) remains a heavy procedure by its computional aspects. The
first level of simplification is to design a gradient algorithm that is recursive. The iterations (p) run at

the same time as the examples (k) :

p=k . (3.11)

Because the iterations are naturally ordered, the one-to-one correspondence between the examples
and the iterations will then put an order in the collection of examples. In this way, the (NN) training
context becomes very close to the (TF) adaptation context — where the input vectors X(k) are
naturally labelled by the time k and run accordingly. The last difference between the two contexts lies

in the shifting property of the vector X(k) that is valid in the (TF) context and not in the (NN) context.



25

But this property is not relevant to the steepest descent context we are investigating in this Section.
Thus, in the rest of Section III, there will be no distinction between (NN) and (TF).

In brief, in order to simplify the block-LS gradient algorithm, we must treat the supervised
(NN) training problem like a (TF) adaptation problem where the examples k are ordered. The
iterations are now labelled by k, a new one being performed each time a new example k arrives.
Under the generic expression "step k", we thus designate indifferently "time k",
"example k", "iteration k". In (NN) with a finite training set, the total number of steps is limited

by
k <K'=MK |, (3.12)

where Mis the number of presentations of the training set.

The recursive algorithm associated with the block algorithm (3.8) [10] is obtained when the

information available at step k is the sequence (X(n), d(n)) with n < k, according to

Hk) = Hl= 1) + £ D entn) Vayu(n
n3=001

H=Hk-1) (3.13)
where we have omitted the superscript K which is irrelevant provided (3.12) is satisfied. In the
following, (3.13) is called the "causal block-LS gradient algorithm" and it is abbreviated (CLS).
Compared with (3.8) it has indeed the causality property that future examples (n > k) are not used in
the increment of iteration k.

It is important to emphasize that in (NN) training, the ordering of examples is arbitrary, for
instance for a classification task. Then, it must be proved that convergence properties of recursive
algorithms in (NN) are unaffected when the ordering is switched. This result is related to the

stationarity of the (random) sequence (X(k), d(k)).

II1.5. Interpretation of the causal block-LS gradient algorithm
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In this subsection, it is shown that the causal block-LS gradient algorithm is an intelligent

attempt to use a recursive algorithm in order to reach the minimum of the running LS cost function
e(H) = JKH) (3.14)
at each step k of the algorithm. The corresponding minimum
A ~
H =H(k) (3.15)

could be reached if we had an iterative gradient sub-algorithm implemented between each step k£ and
the next step (k + 1) in order to reach the minimum of (3.14). But now the bowl in which the steepest
descent is performed changes at each step k. Similarly, the bottom of the bowl is changing with k.
We denote H,(k) the corresponding gradient subsequence with k being fixed.

Obviously, it is impossible to perform an infinite number of iterations p at each step k. A first
level of simplification is to assume that a finite number Py of iterations is performed at each step k.
When all the steps k are chained, which results in a compound iterative algorithm. The initial value
Hy(k) at step k must be the final value Hp,_,(k—1) of the previous step k — 1. The estimates H(k)
of H (k) are the ends of each iterative sub-algorithm. Hence the compound algorithm (which

depends on the a priori choice of the sequence of lengths Py) :
Hy(k)=Hp, | (k- l)é HkO-1) , (3.16)

Hy(k) = Hy_ 1(k) — @' V JKH) HeH, @) (3.17)

One can choose the same length P for the sub-algorithms. It is also possible to allow a greater length

Py, to initial steps (k small) in order to speed up initial convergence of the compound algorithm.

A second level of simplification is to implement a single iteration per sub-algorithm (P = 1).

Then it is easy to check that both formulae (3.16), (3.17) combine into
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H(k)=H(k—1)—u' V JKH) H = Hl— 1) . (3.18)

With the value (2.8) of the gradient, this formula is identical to the recursive algorithm (3.13). In
other words, the causal block-LS gradient algorithm can be viewed as the chaining over k of (short)
iterative sub-algorithms, each one intended to find the running LS parameter H (k) . The
corresponding procedure is depicted in fig. 4 in the case of a scalar parameter H (N = 1). The dark
broken line jumping from one curve J¥(H) to the next curve J&+1(H) illustrates the way in which the

sequence H(k) attempts to track the changing minimum H (k) .

WAL

~ ~ I ~
H(k+1): :H(k) :H(k—l)
; —
H(k+1)  H(k) H(k-1) H(k-2) H

Fig. 4. Interpretation of the causal block-LS gradient algorithm (3.13)

The simplified algorithm (3.18) (or equivalently (3.13)) is not yet the familiar gradient
algorithm because the cost function JXH) changes at each iteration (step) k. However, the success of

the (second level of) simplification relies on the fact that one iteration per step is enough to cover the

(time) variation H (k— 1) — H (k) .This means that



28

) H (k) varies slowly

(i) H(k) is close to H (k) .

In the stationary case where J¥(H) has a limit for k large (see § I1.3), property (i) is valid. Then

property (ii) is valid when the algorithm (3.13) has reached a steady-state.

II1.6. The sliding window LS gradient algorithm

Recursive implementation of the above detailed CLS gradient algorithm is possible. But it is
awkward, especially in the (TF) context where k grows unbounded. Indeed, at step k where the

system is in state H(k — 1), implementation of (3.13) involves the computation of all the quantities

yu(n) H=Hk-1) =FH(k-1),X(n)), n<k , (3.19)

together with their gradients. When k increases, this requires an indefinitely growing memory in
order to store all the past inputs X(1), X(20),.... X(n) and past references d(1), d(2), ... d(n). In
practice, this is feasible neither in (TF) adaptation nor in (NN) training when there is a large number
K of examples.

Obviously a further simplification is to truncate the memory of the algorithm. If M is that

memory, the increment in (3.13) will involve only the quantities

n , k—-M+1=<n <k 3.20
yu(n) H = H(k— 1) (3.20)

and their associated gradients. The calculation requires only the knowledge of the arguments

H(k=1), X(k), ... , X(k =M + 1), d(k), ... ,d(k - M +1) . (3.21)

Hence the algorithm (3.13) is replaced by
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u
Hk)=Hk-1) + i mma eg(n) V gyg(n) 3.22)
nEI:EleD—EMEH H=Hk - 18

In the following, (3.22) is called the "sliding window LS gradient algorithm" and it is abbreviated
(SLS). When £ is replaced by (k + 1), the time window used in the variables (3.21) will slide of one
step ahead. This sliding effect is familiar in the (TF) context.

Note that algorithm (3.22) is intended to minimize the windowed LS criterion (2.7) in the same
way and through the same approximations as algorithms (3.13) do for the basic LS criterion (2.3). It

is always a feasible algorithm but its complexity remains high when M is large.

II1.7. The stochastic LMS gradient algorithm

The final level of simplification is to set M = 1 in the recursive windowed algorithm (3.22),

which yields

Hk)=Hk-1)O+w epytk) V gyy (k) (3.23)

H=Hk-1)"

where u is the (positive) step-size. This algorithm is widely known under the denomination of "LMS
algorithm" [6]. In the following, we prefer the more precise name "stochastic LMS gradient
algorithm" abbreviated in (STLMS). As appears below, (3.23) is a stochastic version of the iterative

gradient algorithm associated with the least mean square criterion J(H) namely

Hp)=Hp-1) - . 3.24
O =Hp-D-WVaIE | (3.24)
According to (2.9), (2.11), this iterative algorithm reads
H(p)=H(p - 1) + u E(ep(k) V pyn (k) - (3.25)

H=Hp-1)

Note that the k in the expectation is a dummy index.
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The algorithm (3.23) generates a random vector H (k) because the input X(k) is
random, and so is the output yg (k), as well as the associated quantities ey (k), V g yg (k) included
in the increment. On the other hand, the increment of (3.25) is just the expectation of the former
increment. This expectation depends on the (higher order) statistics of the sequences X(k), d(k), but
not on their sample values X(k ), d(k). Thus, algorithm (3.25) generates a deterministic
vector H(p). Apart from that difference, (3.23) is very close to (3.25), and it is easy to understand
that the two algorithms will essentially reach the same limit, as evidenced by the following heuristic

arguments. Let us iterate (3.23) P times :

H(k)=H(k- P)+ um@ en(n) Vg yg (n)
nE=OO-OPCH1

.(3.26
H= H(n-1) (3.26)

If n is small enough, H(k) is slowly varying, so that the parameter H = H(n — 1) does not change

significantly when n scans the summation which is in the increment. Thus,
H(k)=~ H(k - P)+w P A(H(k—P)), (3.27)

where the increment

k
1
A(H(k - P)) = 5 O eg(n) V gyn(n) (3.28)
d nD:DZ—DPD+D1 H= H(k—P)

uses the fixed parameter value H = H(k — P). Ergodism of the sequence (X(k), d(k)) implies that

A(H(k - P)) =~ E(ep(n) V gym (n)) He= H(k—P) (3.29)

(provided P is large enough). The combination of (3.27) and (3.28) yields

H(k) = Hk~P)+w P Elen) Viyn ) | . _ Hemp) (3.30)
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This last algorithm is iterative and deterministic. It is identical to (3.25) except for a relabelling of the
steps and a multiplication of the step size by P. We conclude that (3.23) and (3.25) have the same
limit (up to the approximations made in (3.27) and (3.29)).

Provided the initial value is suitable, the iterative algorithm (3.25), or equivalently (3.24),
reaches the minimum H  of the MS cost for which it was designed. As for the stochastic LMS
gradient (3.23), it also converges towards H , but with some random fluctuations due to the
randomness of H(k ).

The statistics of the fluctuations of H(k) in the vicinity of H when kis large, have been
mathematically investigated in the (TF) context, for the case of transversal filters. It has been proved

[6] [17] that

E(HKk) - H P2)—e@d) , k— o (3.31)
where the function €(u) is on the order of u in the sense that

ew=au if uws=<uy. (3.32)

In other cases, e.g. for IIR adaptive filters, results do not yet form such a well established
theory and are sometimes heuristic. However, it is our conjecture that under suitable regularity

assumptions, the results (3.31), (3.32) are extremely general in both contexts of (TF) adaptation and

(NN) training.
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IT1.8. Discussion/Comparison of algorithms

We have presented four major iterative algorithms

(BLS) : the block LS gradient algorithm (3.8)
(CLS) : the causal block LS gradient algorithm (3.13)
(SLS) : the sliding window LS gradient algorithm (3.22)
(STLMS) :  the stochastic LMS gradient algorithm (3.23)

They are all intended to optimize iteratively the system h ((NN) or (TF)), i.e., to generate the
vector H of parameters for which the outputs yy(k) of h are closest to the corresponding references
d(k). More precisely, all of them fulfill one or several among the objectives (2.20), (2.21), (3.1),
(3.2), (3.3) or (3.4). Therefore, if stationarity and ergodism are assumed for the sequence (X(k),
d(k)), the four algorithms are essentially equivalent in the sense that they asymptotically provide a
good estimate of H (provided initialization is good, in case of multiple minima) . But the accuracy of
the result decreases as we switch the algorithm (BLS) into (CLS) then into (SLS) and finally into
(STLMS). As a counterpart, implementation involves less and less computations. A more detailed

comparison between these algorithms is given below.

(BLS) : for this iterative (non recursive) algorithm, a single finite but large collection of K items
(X(k), d(k)) is repeatedly processed, say P times. If P is large enough, the initial objective (2.20) is
fulfilled according to

|OHK(P)-HK) |<e, P=P;. (3.33)

Because K is large, it follows from (2.14) that the objective (3.2) is fulfilled as well :
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|OHK(P)-H |<e, P=P;. (3.34)

The major drawback of (BLS) is to require a number of memory proportional to K, that is very

high.

(CLS) : this algorithm is recursive, using one additional item (X(k), d(k)) at each step. The

interpretation given in subsection II1.5 shows that the asymptotic objective
H(k) —H (3.4)
is fulfilled. WhenCHKk) is slowly varying, this algorithm also reaches the objective

|OH(k) - Hk) |<e  fork= k. (2.21)
This means that for intermediate indices k, when the LS optimum parameter H (k) 1is no longer in its
fast initial phase, but has not yet reached its asymptotic value H , the algorithm produces a vector

H(k) close to H (k) . This property is stronger than an asymptotic property.

The major drawback with (CLS) is the growing size of the required memory. Algorithms with

infinite memory cannot deal with non strictly stationary sequences.

(STLMS) : this algorithm is recursive, using only the new data (X(k), d(k)) at each step k. This is

an important advantage, limiting the size of memories. As a result of (3.31), it achieves the objective
|H(k)-H | =sm , Ok =k, (3.3)'

where 1 is small. It is essentially proportional to ‘\/; . This achievement is very close to (3.3).
The drawback with (STLMS) is that m cannot be chosen arbitrarily small since H(k) is
randomly fluctuating with a non zero asymptotic standard deviation. Thus, it does not achieve the

objective (3.4).
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(SLS) : this algorithm is intermediate between (CLS) and (STLMS). Although the objective (3.4) is

not yet reached, the result (3.3)' is improved according to [9]

|Hk)-H | =<m /M , k =ky (3.3)"

the memory included in a window of length M improves the accuracy by a factor M . Unfortunately,
this improvement over (STLMS) has a counterpart in the increased memory size and increased

computational amount.

Undoubtedly, the most widely used among these gradient algorithms is the (STLMS) one,
because of its lower computational cost. This is true in the (NN) context [18] although the block-LS
algorithm (3.8) is also in favour. This is equally true in (TF) although the sliding window LS one

(3.22) is also implemented.

It is our feeling that in a number of applications — either in (TF) or in (NN) — the best
possible benefit has not yet been obtained from the large available variety of gradient algorithms. This
is left open for future research. In particular, the compound algorithm (3.16), (3.17) with a varying

number Pj of iterations per step has not yet been sufficiently investigated under the aspect of its

tracking capability when the LS optimum H (k) has fast time variations.

In the rest of this paper, we restrict our investigations to the standard LMS algorithm

(STLMS), given by eq. (3.23). Clearly, the first problem will be to evaluate the gradient

g(H,X(K) & Vyyp () . (3.35)

It depends heavily on the structure of system h, whether cascaded, layered, with a feedback
loop, and on the presence of nonlinear elements. Taking certain important specific examples, we shall
calculate this gradient in further sections of this paper and point out the similarities between (TF)

adaptation and (NN) training in these cases.

The second question is the theoretical investigation of convergence for the (STLMS) algorithm

associated with each example. In each case, the conjecture that (3.31), (3.32) hold is very difficult to
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prove. Moreover, this result remains subject to a good initial value H(0) for the algorithm, because of
the possible local (non global) minima of the MS cost J(H). Convergence is also subject to the fact
that the step-size pu is small. This condition is expressed by the upperbound pg which appears in
(3.32). In practice, there is however no explicit expression for pg. Thus, the meaning of the
expression "u is small" is quite vague. Usually this question is solved by trial and error, and the step-

size is kept "very small" in a cautious manner.

IV. THE STOCHSTIC LMS ALGORITHM FOR ADAPTIVE FILTERING

Throughout this section, the index & is time and H is the parameter vector of a time-filter h.
This means that the output samples y(k) are linear and time-invariant versus the input samples x(k).

When the parameter H = H(k) obeys a recursive algorithm controlled by the output error ey (k)

Hk—1) the problem belongs to the generic category of "adaptive filtering". The entire Section
IV is thus devoted to adaptive filtering, taking certain structures for the linear filter h and taking the

particular STLMS algorithm to control the filter.

IV.1. The transversal filter

The simplest case corresponds to transversal filtering, depicted in Fig. 2 of Section 11.4,

where the output of system h is

yuk) =X(k)TH . 4.1)

the vector X(k) being a sliding window as in (1.7). In this case, as mentioned in subsection 11.4, the
running LS optimum parameter H (k) canbe exactly evaluated by the fast recursive algorithm which
has 8 N multiplications per step. Unfortunately, this algorithm accumulates the numerical inaccuracies
as the steps run indefinitely and it grows unbounded. The standard (non fast) recursive algorithms

(2.17), (2.18) has no such drawback but involves more computations (o(N2)).
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The LMS algorithm is thus a useful alternative to the LS approach. In a stationary and ergodic
context, it will asymptotically provide the LMS optimum parameter H minimizing the MS cost in

(2.9). According to (4.1), this cost is

J(H) = P; —2 HT Ry, + HRH (4.2)

where P; is the power of the reference signal and

Rxa = E(X(k) d(k)) (4.3)

is the input/reference cross-correlation vector and

R = E(X(k) X(k)T) (4.4)

is the input covariance matrix. The cost (4.2) is quadratic w.r.t. H. This is an important feature
because it precludes the possibility of local minima for J(H) : all the minima are global in the sense
that they reach the minimum minimorum. The corresponding (iterative) gradient algorithm is thus

insensitive to initial conditions. The minimum H satisfies

RH =Ry (4.5)

and it is unique when R is invertible. According to (4.1), the corresponding stochastic gradient is

Vi yu(k) = X(k) . (4.6)
Note that it is independent of the parameter state H. The STLMS algorithm is written with the very

classical updating formula of adaptive filtering

H(k)=H(k-1) +wen(h) X®) | = mk-1). (4.7)
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The performance of this algorithm is expressed through formulae (3.31), (3.32) of the above
subsection II1.7. They show that (4.7) results in an estimation of H having an arbitrary preassigned
accuracy provided the step-size w is small enough. We call this property "quasi-mean square
convergence". However, this is at the price of a reduced convergence speed. Hence the well-known
trade-off between speed and accurracy.

In a number of cases, the result (3.32) can be refined. Specifically, the residual function e(w)
and the upperbound pg on the step-size can be evaluated when (X(k), d(k)) is a zero-mean Gaussian

variable [7]. Another case is when the random amplitude | X(k) | is approximately constant. Then it is

found that [19]
uwONCP, 2
W =——-—"-""_: W=vep 4.8
W= 00 opovos, ™ - NP, 48
where
P,=E(x(k) ) . (4.9)

In Section III, the importance of the computational complexity associated to a recursive

algorithm has been emphasized. Taking only the multiplications into account, it follows from (4.1)

and (4.7) that for the adaptive FIR filter this complexity is reduced. The number of multiplications per

step is

C(FIRF)=2 N + 1. (4.10)

Let us now consider the cascaded implementation of such transversal filters.

IV.2. The cascade of transversal filters

When the number N of parameters of a transversal filter is high, it may be more convenient to

implement the filtering in an indirect (but equivalent) cascaded mode as illustrated in fig. 5. Examples
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of adaptive cascaded filters are found in Signal Processing for such applications as communications

[20] and noise cancellation [21].

1 y Y(k) > yL-Yk) 3 L
y O(k)_ h h o h yHk
= x(k) ) h?) L) = y(k

Fig.5: A cascade of transversal filters

Let L be the number of cascaded transversal (sub) filters h!, and M; be the number of

parameters of the /-th cell. Then the global system

h = hLo..o h!o..0 h20 h! (4.11)

is a linear filter in the sense that the final output

y(k) = yL(k) (4.12)

is linear and time invariant w .r.t. the input signal

x(k) = YO(k) . (4.13)

Direct (transversal) structures and cascaded structures are known to be equivalent in the sense

that the final output y(k) can be written in the direct form (4.1)

y(k) = X(k)T R (4.14)

with a parameter vector

R=r(H,H2, .. HL, (4.15)
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that depends on the (sub) filters parameters. Conversely a transversal filter h can be split into a
cascade of transversal (sub)-filters. The cascaded form has the implementation advantage of
modularity. Moreover for the sake of adaptivity, it is easier to control several small (sub) filters h!
Tthan a single large filter h. This is particularly important when stability of the inverse filter h—1 is
required.

The cost of these improvements is that the output y(k) is no longer linear w.r.t. the set

H=(H!,H?, ... ,HL) (4.16)

of all the parameters. The function r in (4.15) involves cross-products. Therefore the RLS and fast
RLS approaches to derive the running LS parameters are no longer valid. Hence a renewed interest in
the LMS gradient approach. Here the gradient is taken w.r.t. the vector H in (4.16). For the /-th filter

let

H =[h} .nl . ki, T (4.17)
be the impulse response and

Yi-Y(k)= [y~ Uk), y'- Wk - 10), ... , y' - Wk -M;+ 1) T, (4.18)

be the input vector, where M; denotes the number of parameters of filter # /. Applying formula (4.1)

L times, the final output is
M;0O-0O1 M 01 MOl

y(k):E E E he kb hk xk—iy =i — . i) . (4.19)

irFO0 00 10

Given the reference sequence d(k) for the final output y(k), implementation of the stochastic LMS

gradient according to (3.23), (3.35) requires evaluation of the L sub-gradients

U2 vy (4.20)
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(note that this quantity depends on all the parameters in H, and not only on HY). It follows from
(4.19) that the i;-th coordinate of (4.20) is

MO-0O1 M wg1-01 Mo-o1-01 Miz0O1
ayk) Wk ==}
oh! - i ... Moot
' iroEO0 imwO1o=00 imoio=00 1= 0
o-01 . . )
x hiZ Bk xk—ip i — e —iy) (4.21)

Comparing (4.21) with (4.19), it appears that the sub-gradient w.r.t. the parameters of the /-th filter is

Ul(k) = [ul(k), ..., ul(k — i), ... ,ul(k— M ;+ D]T . (4.22a)

It is built up with the successive outputs

wl(k — i) = gl(x(k — i)) (4.22b)
of the filter
12 hLg..ohi+1o hi-lo..0 hl, (4.23)
q

when the input is x(k). This filter involves all the cascaded sub-filters except h!, i.e., the one w.r.t.
which the sub-gradient is calculated. Denoting successive samples by a capital letter as in (1.7), the

stochastic LMS algorithm (3.23) reads

H' (k)= Hl (k=D +we® UK | —pg—1y- @29

The corresponding adaptive (TF) is depicted in fig.6. In the further subsection V.2. it is shown that
this algorithm can be viewed as the stochastic LMS gradient algorithm for a multilayer network of

linear neurons (using the standard back-propagation approach).
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Although the MS cost J(H) is non quadratic w.r.t. H (because y(k) is non linear w.r.t. H) it
can be shown that J(H) has no local minimum [22] : all minima are global. They are all equivalent in
the sense that they correspond to identical sets of values H !, H 2, ... , H L except for an arbitrary
permutation. This is because in a cascade of filters, the ordering does not influence the value of the
output. As a result, the gradient algorithm (4.24) has a certain sensitivity w.r.t. initial conditions : all
the vectors H1(0), H%(0), ...O,HL(0)must be different, otherwise the algorithms cannot assign a
specific objective HLltoa specific cell HL(k). Apart from this (minor) drawback, adaptive cascaded

(TF) raise no major difficulty.

k)
LYk Ik i
(k) 11 yH lf y (k) Z 2otk i)
>h!'— — — — —|hlr— — — — —h ~(+)s
( / £ e(k)
>h2__ hl_ ____)hLQ(ﬁKH
|
|
|
_)hl__ - _»hl—l ,hl+l - — —> hL‘)é(r
u'(k)
_)hl__ ___)hl_l\hl }hl+1_)hL—la&
ul(k)
Fig. 6. Adaptation of a cascade of filters
Computational complexity. We denote
L
N=§ M, (4.25)
IG=O1

An evaluation of the r function in (4.15) shows that the equivalent filter h has not N parameters but

N'= N — L + 1 parameters. Implementing the filter H! requires M; multiplications per step and per
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output. Theoretically, it is required to evaluate (M; + 1) values of y! to feed in the next filter A/ +1.

However, assuming that h(k) changes slowly, it is allowed to take the approximation

YE=D |h =hx=1)=Y'*=D |h =hk —j-1) (4.26)

which requires at step k only the computation of the new value y!(k) The complexity

h =hk -1)
associated with the filtering part of the algorithm is thus

Cf=N. (4.27)

On the other hand, the additional complexity due to adaptation can be reduced by noting that

the filter present in the /-th channel of adaptation is
g’ = (h)-'oh (4.28)

(this follows from (4.11) and (4.23)). Hence the adaptation signal u!(k) obeys the recursion

Mo o1
B Wk - i) = yk) . (4.29)
iCFOo

Its calculation involves M; multiplications. Using for u'(k — j) the same approximation as in (4.26),

the vector U!(k) includes a sliding window. Thus, at each step k, only the new sample u'(k ) must be

calculated. Therefore, to implement the adaptation (4.24) in channel # [, the required number of

multiplications is
Cf =2M ;+1 . (4.30)
In view of (4.27) and (4.30), the total number of multiplications per step is thus

C(CASCADE)=3 N+ 1, (4.31)
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C(CASCADE)=3N'+3L-2 . (4.32)

This complexity is slightly higher than the one of the direct FIR filter (see (4.10)).
In the next forthcoming example of (TF), the output y(k) is again nonlinear w.r.t. the set H of

parameters.

IV.3. The recursive filters

IV.3.1. The contextd

When the number of parameters of a transversal filter is too high, another convenient method

is to replace the non recursive equation (4.1) by the recursive input-output filtering equation (the

index H appearing in (4.1) is omitted in the following)

y(0), y(1), ... ,y(m — 1) fixed, (4.33a)
m a-o1o
y(k) = § bj y(k - j) +EIE a; x(k—1i), k=m . (4.33b)
OOl iCEO0

The corresponding filter h is depicted in fig. 7 with the help of two transversal filters A and B, both
obeying the structure depicted in fig. 2. The filter B is included in a feedback loop and, for obvious
causality reason, it presents a time delay of one step at the input (the box z- ! in fig. 7 denotes the

delay).
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x(k) (k1)

(k)

Fig. 7. A recursive time filter hO

Examples of adaptive recursive filters are the control [23] of an unknown process, the prediction of a

random signal [24], and the transmission of digital speech at a reduced bit rate (see fig.0) [25].

Equations (4.33) are equivalent to the transversal form (4.14) but with an infinite number of
parameters in R. Hence the alternate name of infinite impulse response (IIR) filter. The advantage of
(4.33) is the saving of a great many parameters. Moreover, when the input x(k ) is a random
independent identically distributed (i.i.d.) sequence, formulae (4.33) generate the so-called very well-
known ARMA model where the signal y(k) is a correlated sequence.

The cost for having saved a large number of parameters is that y(k) is no longer w.r.t. the set

H = (AT, BT)T (4.34)
of all the parameters a; and b; involved in (4.33) where

TA . grA
A _(a(),al, ---sal—l) ’ B _(bla b23 wee 7bm) . (4'35)

Writing (4.33b) under the equivalent form

y(k) = AT X(k) + BT Y(k-1) , (4.36)
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it is indeed evident that changing B affects the vector Y(k — 1) in the RHS of (4.36) whose second
term becomes non linear in B. Again a straightforward application of the RLS and fast RLS
approaches is not possible. Hence the interest for the LMS gradient approach in order to optimize the

filter h.

IV.3.2. The exact stochastic LMS gradient algorithm

In order to compute the gradient necessary for the recursive adaptation, let us introduce the

auxiliary signals

O
w4 S i=0,1,..,01 -1, (4.37a)
6|:|a,'
A 00y(k) .
vik) &  j=1,2, 0, m . (4.37b)
’ o0b;, 7

Differentiating (4.33) yields the two sets of equations

w0 = oz um —1)=0 , i=0,..,I—-1, (4.382)

viO)=...=vim-1)=0, j=1,..., m, (4.39a)

ui(k) = § bouik —n) + xk—i) k=m | (4.38b)
nE=0O1

vi(k) = Q by vi (k—n)+y(k—j) k=m . (4.39b)
nE=01

These equations can be simplified into

wik) = uplk—i) & w(k—i),i=0,...,01-1, k=m, (4.40)
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viky=vik—j+1) & vk-j),j=1,...m k=m , (4.41)
where the signals u(k) and v(k) are respectively derived from the input sequence x(k) and from the

output sequence y(k) through a purely recursive filter associated with the same recursive part B as the

initial filter h namely

u(k) = Q biuk—j) + x(k), k=m, (4.42b)
Faxu)l

(k) = § bivk—j) + yk), k=m. (4.43b)
JjOEO1

It follows easily from (4.38a), (4.39a) that initial conditions are
u@®=..=um-1=0 , (4.42a)
v0O)=..=vim-1)=0 . (4.43a)

Using vector notations for sliding windows of samples (as in eq. (1.7)) the two sub-gradient vectors

then are
[] Vay(k) = Uk) (I coordinates) , (4.44)
Vg y(k) = V(k—1) (m coordinates) . (4.45)

Although these formulae look very similar to the formula (4.6) for the gradient of a FIR filter, there

are two major differences :
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(1) the sliding vectors U(k) and V(k — 1) cannot be evaluated knowing only the input x(k) and output
y(k) of h at time k. The additional knowledge of the recursive parameter B is required to implement
(4.42) and (4.43).

(ii) the three recurrences (4.33), (4.42) and (4.43) are initialized at times O, 1, ... , m — 1. Hence to
implement them at the running time k, we need a memory of size k, which is growing indefinitely .
Points (i) and (ii) are important drawbacks directly related to the recursive nature of filter h.
It follows from (3.23) (4.44) and (4 .45) that the stochastic LMS algorithm reads

AR =AG=D+ue® UK | 40 g gty (4.46)

B(k) =Bk - 1) + w e(k) V(k - 1) |A=A(k—1) :B=Bk-1) . (4.47)

In these equations, the signal y(k) (in the error e(k)) and the auxiliary signals u(k), w(kO-C01),.. ,
v(k — 1), vO(k- 2) ... must be evaluated according to the full recurrences (4.33), (4.42), (4.43),
always taking the parameter (A, B) in the state (A(k - 1), B(k - 1)). For instance,

y(k) must be computed along the set of equations

Y(O0) , yk(1) , .., yK(m — 1) fixed , (4.482)
m O-O0100
Y(n) = § bi(k—1) yk(n—j) + I:IE ak - 1) x(n - i)
fa=all iCEO0

form=n < k. (4.48b)

y(k) =ykk) 5 e(k) = d(k) - y(k). (4.48c)

In yk(n), the upper index k emphasizes the dependency of the output at time n < k on the future

filters parameters A(k — 1) and B(k — 1). Similarly with the calculation of the vector U(k) taking the
parameters A(k — 1), B(k — 1) and the initial conditions in (4.42a). And similarly with the calculation
of the vector V(k —1).
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The set of equations (4.48) clearly displays the difficulty (ii), that is the requirement for an
indefinitely growing memory size. Thus it must be concluded that the above (STLMS) algorithm is
not feasible. It will have to be simplified.

A third difficulty follows from the nonlinear character of y(k) w.r.t. H. It is the fact that the
MS cost J(H) is non quadratic w.r.t. H. Unlike in the case of a cascade of transversal filters, this fact
will often induce the presence of local minima [26], [27]. As a result the stochastic algorithm (4.46),
(4.47) may have an undesirable sensitivity w.r.t. initial conditions : H(k) may converge towards a
local minimum H . This difficulty remains in the simplified version of the (STLSM) to be described

in the following subsection.

IV.3.3. The finite-memory recursive LMS algorithm

A simplification required to make the above described algorithm feasible is to truncate the
memory of the recurrence (4.48). This means that initial conditions fixed at times 0,1, ..., m — 1 as
in (4.48a) will be replaced by initial conditions fixed at times k-M-m + 1,k -~ M-m + 2, ... ,
k — M. In other words, there is a fixed number M of steps between the running step k and the late end

k — M of the window for the y initial values. In this way, at step k, algorithm (4.48) becomes

yik—M-m+1), ydk —M —m +2) , ... , yk(k — M) fixed, (4.49a)
m Oo-go10aag
() = § bi(k— 1) yk(n - j) + I:IE aik — 1) x(n—i) ,
JeEO1 =00

k—M +1<n < k. (4.49b)

Similarly with a fixed number M' (resp.M") of steps between the running step k and the late end k —

M (resp. k — M") of the window for the u (resp. v) initial values :

uk(k—M'—m + 1), uk(k—M'—m +2), ..., uk(k — M") fixed , (4.50a)

VEk-M" —m) ,vk(k—M" —-m+ 1), ... vk(k — M" - 1) fixed, (4.51a)
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uk(n) = § bj(k— 1) uk(n —j) + x(n), k-M+1 <n =< k, (4.50b)
f==uil

vk(n) = § bj(k-1) vk(n—j) +y(n), k—-M" <n < k—1. (4.51b)
ez}l

The last problem to implement the algorithm is to fix the initializing values in (4.49a, 4.50a, 4.51a).
Because the step-size w is small, A(k), B(k) should not be very far from A(k — 1), B(k — 1). Thus,
the only meaningful choice when k is incremented to k + 1 is to slide one step ahead the initializing
windows and add the latest sample thanks to the recurrences (4.49b, 4.50b, 4.51b). This is illustrated

for the y's on the diagram of Table[d1.

e . . recurrence
initial window (4 . 49 a) (4 .49 b)
time k—1 | ykyk-Mm), yth-M-m+1), ... ,ykYkM-1) yk-1(k-M)
o "4 ¥ /4
© y K=M=m+1), .. ,yk(=M-1),y Kk-M) y Hl-M+1)

Table 1. The initializing procedure for the (M-RLMS) algorithm

This table shows that the initial window at time & is given by the values

k=m(k— M —m + 1), ... yi=2k =M — 1), yk=1(k — M)] , (4.49a")

i.e. the first samples respectively generated by (4.49b) at the previous steps (k—m), (k—m + 1),

... , (k= I). A similar procedure holds for the auxiliary signals u and v.
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It is now possible to implement the updating equations (4.46) and (4.47) by plugging into the

increments of A and B the values

e(k) = yk(k)— d(k) , (4.52)
Uk) = [wk(k ), uk(k — 1), ... , uk(k — I + 1OD)]T, (4.53)
V(k — 1) = [vk(k — 1), vk — 2), ..., vi(k — m)]T, (4.54)

that have been forwarded by the recurrences (4.49), (4.50), (4.51).

Hereafter, the corresponding update algorithm is called "(finite) memory recursive LMS", and
abbreviated (M-RLMS). In this name, the word recursive is used to recall the recursive character of
the filter, the recursive character of the algorithm being taken for granted and kept implicit. Note that it
has been written using the same kind of approach as in subsection II1.6 where the causal block-LS

gradient algorithm was simplified into the sliding window LS gradient one.

The (M-RLMS) algorithm is always feasible, but its computational complexity and memory
requirements are high when M, M' or M" are large. Hence a further level of simplifications in the

next subsection.

Computation complexity.] By inspectingformulae (4.46), (4.47), (4.49b), (4.50b), (4.51b), it

is easily shown that the total number of multiplications per step is

CMM-RIMS) =M+ 1)N +M'+M'"Ym +2 (4.55)

where N = m + I is the total number of parameters, and m the length of the recursive part of the filter.

For instance, for a purely recursive filter (/ = 100) and for the same memory M orthe y's, the u's and

the v's, the complexity is
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CI(M-RLMS) = M(BN-2)+ (N +2) . (4.56.a)

For a recursive filter of order 1 (m = 100), the complexity is

CIM-REMS)=(M+1)(N+2) . (4.56.b)

In brief, introduction of the memory M in the algorithm is responsible for an increased computational

burden, as well as for the requirement of additional hardware (RAM).

IV.3.4. The standard recursive LMS algorithm

The next level of simplification of the exact (STLMS) algorithmistoset M=M'=M"=1 in

the above finite memory recursive LMS. Hence the so-called standard "recursive LMS" abbreviated in

(RLMS) [28] whose formulae are given below

m na-gai1
(k) = § b (k 1) y(k - j) +|:|E aitk = 1) x(k — i), (4.57)
faxu)l iCE00
u(k) = § bj (k — 1) ulk - j) + x(k), (4.58)
JjOEO1
vk —1) = Q bj(k — 1) v(k —j — 1) + y(k — 1), (4.59)
EO1
A = Atk — 1) + w e(k) Uk), (4.60)
B(k) = Blk—1) + w e(k) V(k - 1). (4.61)

The associated computational complexity is

CRLMS) =2(N+m+1). (4.62)
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IV.3.5. The extended LMS algorithm

There is a final level of simplification which consists in calculating the gradient Vg y(k) as if
the filter h were non recursive. In the RHS of (4.33c), the vector Y(k — 1) is viewed as independent

of the parameter values A and B. This approach is usual in Signal Processing [29] e.g. in the classical

ADPCM system [25]. This approximation is valid at the end of convergence (H(k) = H ) if the LMS

optimum filter H is good enough to restore the reference signal perfectly. Then
Y(k—1)=D(k-1),

which indeed does not depend on the parameters A and B of h. This "extended LMS" (ELMS)

algorithm reads
m m-o1
y(k) = bj(k—1) y(k—j+ O aik—1) x(k—1i) , (4.63)
sz iEI:EI:l 0
A(k) =A(k—-1) + wne(k) X(k) , (4.64)
B(k)=Btk—1)+ne(k) Y(k—1) . (4.65)

For obvious reasons, the word recursive does not appear in the name of this algorithm. Its

computational complexity is

C(ELMS) =2(N+1) . (4.66)
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IV.3.6. Discussion/Comparison of algorithms

We have presented three major LMS algorithms for updating recursive filters

(M-RLMS) : the finite memory recursive LMS algorithm ;
(RLMS) : the standard recursive LMS algorithm ;
(ELMS) : the extended LMS algorithm.

The three of them are intended to approach the exact stochastic LMS gradient algorithm, whose
objective is to asymptotically reach the vector H minimizing the MS cost J(H). All of them may
reach a local minimum if the initial values A(0), B(0) are not suitable. There are several view points
under which they can be compared to one another
(1) accurracy of convergence;

(ii) speed of convergence ;

(iii) computational complexity ;

(iv) stability. This last question is raised because the output y(k ) of a (fixed) recursive filter can grow
unbounded depending on the value of vector B in (4.36). Evidently y(k) can also diverge with an
adaptive recursive filter in which B(k) is changing.

When the algorithm is made simpler by switching from (M-RLMS) to (RLMS) and then to
(ELMS), the complexity is reduced whereas the accuracy of convergence gets poorer. But it is not
proved that stability gets poorer at the same time. For instance examples are known where (ELMS) is
more stable than (RLMS) [30]. However, it is conjectured that introduction of the memory improves
stability and that (M-RLMS) has better stability than (RLMS). For instance, in the context of Adaptive
Control, Landau [23] has introduced a refinement of the (RLMS) algorithm which is more stable,
under the name "hyperstable adaptive recursive filter" (HARF). It turns out that the HARF algorithm

[31] is intermediate between (M-RLMS) with M = 2 and (ELLMS) as shown below.

The HARF algorithm [32]. This algorithm uses an auxiliary signal y (k) according to
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m 0O-01
Yk —1) = Q btk - Ly (ej—1) + § ak— ) xtk—i—1), (4.67)
JjOEO1 =00
m 0-01
y(k) = §: bk — Dy (la-j) + Q ak 1) xk—1) , (4.68)
Fa=u)l =00
aitk) =aik-1) +u (d(k) — y(k)) x(k - i) , (4.69)
bi(k ) = bj(k — 1) + n (d(k) — y(k)) yetk—j) . (4.70)

Now with M = 2, the formulae (4.49a") and (4.49b) of the (M-RLMS) algorithm read

m 40-01
y(k— 1) = bj(k —1) yk=i(k—j— 1) +0O aik— VD) xtk—i—1), (4.71)
2 2

(this is (4.49b) with n =k — 1)

m Q-1
yi(k ) = bi(k —1) yk=i+1(k-j) + 0O aitk — 1) x(k — i) (4.72)
zﬂl iD:EDO

(this is (4.49b) with n = k).
Clearly (4.71) and (4.72) coincide with (4.67) and (4.68) respectively through the identification

ik —1)= yk—1) , (4.73)

yk(k ) = y(k). (4.74)

Concerning the update equations (4.69), (4.70) of the (HARF) algorithm, they are very similar
to the corresponding equations (4.64), (4.65) of the (ELMS) algorithm.
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In fact, (HARF) is a kind of (M-RLMS) algorithm with M=2. However, like (ELMYS) it
presents no recursive filtering in the updating equations. This (HARF) algorithm is thus intermediate
between (M-RLMS) and (ELMS) and it presents a better stability than the standard (RLMS)

algorithm. Its stability can be further improved by some suitable filtering of the error e(k) (cf [32]).

Let us now illustrate the standard (STLMS) algorithm taking some important examples of

(NN).

V. THE STOCHASTIC LMS ALGORITHM FOR THE TRAINING OF NEURAL
NETWORKS

In this section, we consider the supervised training of (NN) with a finite collection of
arbitrarily ordered examples. Throughout the section, the index k corresponds to the example
presented to the (NN). As opposed to the problems of filtering considered in the previous Section, in
the (NN) context the output y (k[J)is nonlinear versus the inputs x{(k), ... , xny(k) of the
net (except in Section V.2.3). Through the recursive (STLMS) algorithms, the network parameter H
is updated each time a new pair (X(k), d(k)) is observed. In this way, the network training procedure

can be called adaptive. Section V is devoted to certain structures for the network h.

V.1. The elementary neural cellC]

In the context of (NN), the simplest system h is the elementary neural cell depicted in fig. 8 [

2],

where the output is

ya(k) = (X()TH) , (5.1)

the input vector X(k) associated to the k-th example being as in (1.1). In (5.1), fis a time independent

nonlinear function, called the activation function of the neuron. It is often a monotonically increasing,
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differentiable, bounded function. It may be a sigmoid function such as the example (1.3) given in the

introduction. When

p=o0 (5.2)
then

fx)=A sgn(x). (5.3)

y(k)

Fig. 8. The elementary neural cell

The corresponding cell is referred to as a linear threshold separator, or as a binary state neuron, in the

(NN) literature [33], [34]. Note that in this case, the f function is neither continuous nor derivable.
Hereafter, derivability of f is of utmost importance to write explicitly the STLMS-based

algorithm for the net. Boundedness of f is also a crucial point. Comparison of fig. 8 with fig. 2

shows that the elementary neural cell generalizes the notion of transversal filtering in two respects :

(i) the inputs x;,i = 1, ... , N are not necessarily related to one another by time delays ;

(ii) the output y involves a nonlinearity.

For the elementary cell, the standard stochastic LMS gradient algorithm (3.23) clearly reads

Hk)=Hk-1)+uwenk) f'" uk) XK) | g _ gk - 1) (5.4)

where f '(x) is the derivative of f{x) and where
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(k) & X(k)T HO, (5.5)

zg (k) is termed the potential of the neuron. Algorithm (5.4) is intended to find the minimum H of

the MS cost function

J(H) = E [(d(k) - (X(K)T H))?] . (5.6)

If the factor f ' (z(k)) is omitted in algorithm (5.4), it results into the updating formula (4.7) which is
the standard LMS algorithm used to adapt transversal (TF) ( see § IV.1). In the (NN) context,
algorithm (4.7) has been referred to [3] as the delta rule. An important difference between the
(STLMS) algorithm (5.4) and the delta rule (4.7) is that the former is the gradient of the MS cost
criterion, whereas the latter is not a gradient for a general function f. Yet for the specific function f(x)
= sgn(x), algorithm (4.7) is shown in [35], [38] to be the stochastic gradient algorithm associated
with the cost function &(H) = E[e XTH]. This algorithm has been widely used for training fully
connected feedback (NN) designed to operate as associative memories.
Although the elementary neural cell is the simplest case of (NN), the nonlinearity of f
induces the possibility of multiple minima in certain instances and makes it difficult to establish a
general discussion of convergence for the corresponding (STLMS) algorithm. For gaussian inputs,
this point is treated in [35], [37]. Then, as far as we are only concerned with the output error e(k), the
true (STLMS) algorithm (5.4) and its simplified version (4.7) works approximately in the same way.
For non gaussian inputs, there is, to our knowledge, no general discussion available yet. Most papers
rely on computer simulations.
In the following, we focus on the (NN) training, using the (STLMS) gradient algorithm (5.4)
with a derivable sigmoid function f. If we do not take into account the computational complexity
for calculating f{x) and f '(x), but retain only the multiplications, this algorithm has a low complexity

(per step) namely

C(ELEMN) =2 N + 2. (5.7)
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In a (NN), a number of such cells are interconnected. Because our objective is to emphasize
similarities between (NN) and (TF), we restrict our presentation to layer feedforward networks and to
feedback networks, which are respectively similar to cascaded filters (§ IV.2) and to recursive filters
(§IV.3). However, it should be noticed that, for other applications, more general structures could be

considered.

V.2. Multi-layer feedforward networks

V.2.1. Definition

The cascaded way to interconnect neural cells is to form layers as depicted in fig. 9 [39]-[42]
with (L-1) layers of elementary cells. This structure has been refered to as a multilayer Perceptron
[2]. Each cell works as the one of fig. 8. The [-th layer has N, cells. The set x1, x3, ... , x; of inputs
is viewed as a layer with label / = 0. According to the agreement made in Section I, for the sake of
comparison with (TF), we consider the case of a single output, denoted y ; it is viewed as the L-th
layer. Although the inputs and the output are not made of standard neural cells, their inclusion as
layers makes notations more convenient because the whole network can be described in a systematic

way by a set of L interconnexion matrices

hi=(f ), I=1,2,..,L , (5.8)

where hl,-,q- is the influence of the j-th cell of layer # /— 1 onto the i-th cell of layer #/ . Because the
L-th layer has a single cell (which is the output y), the matrix hL is a row matrix. We will use the

notation hll. L to designate the set of matrices h!, h2, ... ,hL. The network is characterized by the set

of equations
i =f@) ,i=1,2,..,L, i=1,2,..N (5.9)
Ny
= z hly Y (5.10)

jOEon
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y = ¥{ (output) . (5.11)

*1
L
hi1
X .
J q hL 1
@D—lﬂ_» — Y=
L
h I’NLA
NL—l
’ &
Y,
layer #1 layer #2 layer #1-1

Fig. 9. A multilayer neural network

The quantities yb are the outputs of the elementary cells. Because of the existence of a non linear
function and because the neural cells are highly interconnected, in general, the overall cost function
e(H) in (3.7) can have local minima (this makes a difference with the case of cascaded filters studied
in Section II1.2). However, it is expected that e(H) is "well behaved" in the vicinity of these minima.
In addition, these minima can be found by gradient techniques. Hence the (STLMS) approach for

multilayer neural networks remains meaningful.

V.2.2. The standard LMS algorithm
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For the network (5.9) - (5.11), in order to implement the standard stochastic LMS gradient

algorithm (3.23), it is necessary to evaluate the L matrices of derivatives (I=1,..,L)

w=@l ) j=1,2,.., Ny _1;i=1,2,.., N,

(5.12)
;A 00y

U; v —.
"7 D0k

There are two ways to conduct the calculation of the collection of partial derivatives (5.12). We call
these two computational methods forward and backward propagation respectively. Both methods use
the fact that, in a layer structure, the output y depends on h,{;, only through the output yl of the i-th

cell of layer # [ .

Forward propagation. In this method, the u,-,lgj are calculated by direct differentiation of the net

oOy™
equations (5.9) - (5.11). It involves the partial derivatives ﬁ% . Because of the layer structure,
S
we successively have
oOy™
Y _ 0 m<l ; (5.13)
00 Oy
aEIé
=0 p=i, (5.14)
00 Oy
o0y’ Iy OO
=f'(z}) y™ : (5.15)
Dal:m:lj f'@)y j
and finally
2B i) hyThg ——4— m>I . (5.16a)
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Iterating this last formula from layer m =/ + 1 until layer m = L ("forward propagation") will
provide the desired quantity
oyt

l
wl = . (5.16b)
"I ook

This method has a high computational complexity because it requires a very large number of
. .. ayp .
intermediate quantities I . When the number of cells per layer is a constant N, the total

mEY o

complexity C(FPLN) for updating the layer network is bounded according to

(N.+2)N < CFPLN) = 5 N(N +4) (5.17)

where N is the total number of parameters in the net. The lower bound corresponds to L =13 (one

hidden layer) and the upper bound corresponds to N, (L — 3) >> 4. The value C(FPLN) includes all
the mutliplications required to calculate the output and the updating and does not take into account the
cost for calculating fand f'. This forward propagation way of computing the gradient is not usual in

(NN). It was introduced in [12], [14].

Backward propagation [3], [5], [38]. The favorite method in (NN) is based on the fact that the

network calculations are chained : all the dependency of y w.r.t. h,{:, is summarized in the output y

of the i-th cell of layer /. Hence

9 oy
1 y Yi
Uil = —=— ) (5.18)
T T oy 000y
Using the quantities
A O
g8 (5.19)
ay;

it thus follows from (5.9) - (5.11) that
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w =yl aEhs (5.20)

When the (NN) is implemented, the quantities Z and yllj:-" U are necessarily calculated. Hence
to implement the (STLMS) algorithm, it only remains to evaluate the partial gradients gl in(5.19).

This can be done with a backward recurrence over the layer label / according to

Nig-o1 o O1
o0y’
g = gl =" (5.21)

l
=011 al:ly

This last formula is an expression of the chained derivation rule [5]. It means that y depends
on yjl- only through the outputs yEHHlof the elementary cells to which y} is connected, that are all

the cells of the next layer (/ + 10). It follows from (5.10) that

NiwO1
g = A R R I G e = R (5.22)
iM=C111

Starting with the last partial gradient

ay

L

g =" =1, (5.23)
oyt

the rule (5.22) permits to calculate by backpropagation all the previous partial gradients g]l- involved

in (5.20). Hence the evaluation of the L matrices u’ in (5.12).

The "backward propagation layer network" algorithm (BPLN) Once the gradient matrices
u’ have been evaluated using the backward propagation method (5.20) (5.22) (5.23), the network can
be made adaptive according to the updating (5.24) which implements the (STLMS) algorithm (3.23).
We call (BPLN) the corresponding procedure. Clearly all the quantities, u; o , y'™= 5! 2/, gf

appearing in these equations also depend on the label k of the example presented to the network. The

[-th layer will then be updated along
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hi(k) = hi(k — 1) + u e(k) ul(k) (5.24)
hilLl= h WL (k- 1),

The "forward propagation layer network" algorithm (FPLN). The increment of the
(STLMS) algorithm (5.24) can also be evaluated through the forward propagation method (5.16 a,b).

The corresponding procedure is called (FPLN)

Computational complexity. The computation of the partial gradients gjl- through (5.22) requires
a m
less arithmetical operations than the computation of the derivatives —g{% necessary for the
i

forward propagation method. The total number of multiplications, including the computation of the

output and the updating of the net, is
C(BPLN) =004 N (5.25)

where N is the total number of parameters. Comparing C(BPLN) to C(FPLN) shows why the
(BPLN) algorithm is so attractive in (NN). The complexity (5.25) is very low, in the same kind of

range as the complexity found for transversal filters and cascaded filters (cf. 4.10) and (4.31)).

Remark Although a cascade of filters is indeed a multilayer network (see below), formulae (4.31)
and (5.25) are not exactly the same because all the corresponding layers do not have an equal number
N, of cells.

Formula (5.20) is interesting. It shows that, for the subgradients u/, the dependency on the
various layer matrices h™ is distributed in three steps :
(i.N) the quantities yl'j;L I are the outputs of the (/ — 1)-th layer. They depend on the input X and on
the (I — 1) first matrices hl, ... ,h/= 1, but they do not depend on h!,h/+1 .  hi,
(ii.N) according to (5.22), the quantities gf depend on the (L — I) last matrices h! +1, ... | hL.
They also depend on previous matrices but only through the derivative values FEF5,p > 0.

(iii.N) the quantities f (B depend on the outputs of the [-th layer and on the /-th matrix h!.
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It is interesting to notice that provided f has a derivative, the specific kind of nonlinearity has
no influence on the structure of the (STLMS) algorithm for multilayer networks, even in the particular
form of the (BPLN) algorithm. In particular, the algorithm structure would not be simpler in the case
of a linear function f. Nevertheless, the presence of a non linear function is essential in the analysis of

the algorithm performances (stationary points, speed and accuracy of convergence).

V.2.3. Comparison between cascaded filters and linear multilayer nets

To perform this comparison [43] [44], a linear layer network is assumed so that

Fi =1, (5.26)

Then the above paragraphs disclose the similarities between cascaded filters and layer nets. In fact,
for the cascade of filters in fig.5, according to (4.22) and (4.23), the subgradient used at time k in the
updating of the coefficient hr_l;, of the /-th filter is

ul(k —p)= kigko1 0 1= (k- p)) (5.27.2)

where y {-1(k) is the output of the first (! — 1) filters when the input is x(k) and where

kgkor =hlo ..oh!+1 (5.27.b)

represents the subcascade of the last L — [ filters. Thus the dependency of u! (k — p) on the various

cascaded filters h™ is distributed in two steps :

(i.F) the quantity y !~ 1(k — p ) is the output of the (/ — 1)-th filter. It depends on the input x(k) and
on the first (I - 1) filters h!, ... h!=1; but it does not depend on h! , ... hL. This step is completely

similar to the step (i.N) for a layer network ;

(ii.F) according to (5.27), the calculation of k lgfm in the secondstep requires the (L- /) last filters
hi+1, .. hL but not the other filters. Thanks to (5.26), in the network step (ii.N), f ' is irrelevant.

Again (ii.F) and (ii.N) are found completely similar.
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Finally (5.26) makes step (iii.N) idle.

At first glance, one could think that the similarities end up here because passing yl-
I(k —p) through the filter k;digi(cf (5.27)) is not similar to the multiplication yET' 5 =
involved in the network formula (5.20). In fact, the similarities can be pushed further as shown
below

It is indeed possible to represent (see fig.10) any cascade of filter by a particular multilayer

network, provided certain constraints are fulfilled, namely

hiﬁ% (network representation) = h i,m(filter representation) V@G, j) / j - i = p.
(5.28)
The other special constraints are that
xdk)=xtk— i+1) , (5.29)

and that the number of coefficients per layer is decreasing according to
Niy1=N—-M;+1 (5.30)
Under these conditions the network formulae (5.20) (5.26) written at time k , namely
Oyntw,(k) = Ba5n, k) ¢ (5.31)

will provide the same value as the filtering formula (5.27a) for the gradient signal used to update the

coefficient (5.28).
In the filtering representation (step (ii.F)) it can be recognized that the impulse response  g{=,

g8 .., g]l-':', .. of the filter ki = kfiq; oh!*! obeys

ng|:|= E glc,mmlﬂfgfgf (5.32a)
i
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where hlEEJ'D} hlEFl'“:!l... hl:{]‘ll:E;I-:Eélis the impulse response of h’*!. Formula (5.32a) is

clearly a backward propagation one.
In the network representation (step (ii.N)) the partial gradients obey the backward propagation

formula

E glEEl+E|1hEEI+E|1 (5.32b)

Clearly the constraint (5.28) ensures that the (TF) formula (5.32.a) coincides with the (NN) formula

(5.32b).

hL—l

x(k) & — — — — @—> @—)@—)@—)
=x(k)
xz(k)n————@ 5 @ S = y(k)
=x(k-1) W7 W % /hg
' L;1/
- @A DA @

/hL L

@u»@

=x(k-i+1)

- Q4O
/ 7
an————C)/m
=x(k-H+1)
Layer #0 Layer #1-3 Layer #1-2 Layer #[-1 Layer #L

Fig. 10. The layer network representation of a cascade of filters (case M; = 3 V1)

Finally it is shown in Appendix that under the constraints (5.26), (5.28), (5.29), (5.30), the

filtering formula (5.27.a) coincides with the network formula (5.20). This means that the very steps
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implemented in a layer network by the (BPLN) algorithm are the same steps as those taken in a
cascade of linear filters by the standard (LMS) algorithm. This is in spite of the fact that in the
cascaded filters, the gradient was not evaluated through a backward approach but through a direct

(forward) approach.

In other words the concept of backward propagation does not provide any new algorithm for a

cascade of linear filters. On the contrary, it could bring new insights for the adaptation of a non-linear

filter.

V.3. Feedback networks

V.3.1. The context

In a single layer or multilayer feedforward network, the (single) output y(k ) is computed from
the input vector X(k) after a (fixed) finite number of arithmetical operations (additions,
multiplications, f(.)). The idea behind feedback networks is to implement some iterative mechanism
rather than an expanded (explicit) formula by introducing a loop. Thus they are conceptually similar to
recursive filters.

When introduced, feedback nets (also termed recurrent or dynamical nets), they were designed

to operate as associative memories [45]. In such a framework, the network equations are of the

kind
yo(k), y1(k), ... , ym — 1(k) fixed , (5.33a)
ypk) = F(H, X(k), yp_1(k) , ... , Yp_m(k)) ,p=zm , (5.33b)
where H is the fixed vector of network parameters. When F'is non linear w.r.t. y,_1, yp-2, ..., ¥p

_m- for a fixed example X(k) presented to the net, the repeated iterations over p generally lead to limit

point y»(k). Moreover, when X(k) changes, the point y«(k) scans a finite collection of limit points.

Therefore, there are a number of different (distorted) input patterns X (k) which are associated to the
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same limit point y.. Training consists in imposing the finite collection of attractor limit points. In this
way, the network works as an associative memory.

In such a framework, for a single input X(k), (5.33) is repeatedly implemented until
convergence of the output y,(k). If P iterations ensure this convergence, the reference output d(k) is
compared to yp(k) in order to yield the error e(k ). To compute the gradient Vyyp(k) necessary for
updating the network, the net is unfolded in the way depicted in fig. 11 [3], [15] . In this figure, all

the subnets are copies of the network h.

X(k) X(k)

——] > ———— - — —
yo(k),"" ym_l (k) yl(k)""’ .},)n(k)
X(k)
- +

d(k)

> ye(k)
Ypa (k),..., yP_m(k)

e(k)

Fig. 11. The unfolding method for updating a feedback (NN)

This network is viewed as a non recursive (static) multilayer network, for which the intermediate
gradients Vg y,(k), p=1, ... , P, are evaluated by the backward propagation method. Knowing
that all the layers have the same parameter H, the final gradient is the sum of the P corresponding

gradients Vg y,(k) . Other methods exist to evaluate the final gradient [45] - [48] in this framework.

In the present framework, as done in [11] [12], we consider a different context where a
novel external information is presented to the net at each iteration (p) where the feedback loop is
implemented. This means a one-to-one correspondence between the occurrence of a new example k&
and the operation of a new iteration p. In other words, k = p . Therefore, the network equations are,

according to (5.33)
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y(0)9 y(l)a 9y(m -1 ) fixed ’ (5343)

y(k) = F(H , X(k), y(k — 1), .., y(k — m)). (5.34b)

But to allow the output y(k) to retain some kind of convergence when k (= p) increases, X(k) is not
entirely renewed and there are some permanent features shared between = X(k — 1) and X(k). The
easiest and most natural link between X(k — 1) and X(k) is the time shifting property typical of the

filtering context where

X(k) = (x(k), x(k — 1), ..., x(k — I + 1)T. (5.35)

Thus, the label k represents equivalently the time or the example. For notational convenience, let us

group the delayed output samples into the sliding vector

Y(k—1) =Gk =1), yk —2), ..., y(k — m))T . (5.36)

Like X(k), this vector has the shifting property. Then the network equations read

Y(m —1) fixed , (5.37a)

yk)y=FH,X(k),Y(k-1)) , k=m. (5.37b)

We are now faced with a system whose input (x(k)) and output (y(k)) are time signals. As a
result of the recursive character of eq. (5.37), there is a strong resemblance with recursive (linear)
filters, characterized by eq. (4.33). Thus, the problem of optimizing the net parameters H is similar to
the optimization of recursive (linear) filters, detailed in subsection IV.3. The analysis below will thus

closely follow the one of § TV.3.
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For the sake of simplicity, we shall restrict our investigations to the case of a "semi-linear"
recursive network including a single neural cell; the neuron potential z(k) is linear w.r.t.

the inputs and non linear in the delayed potentials z(k — j)' s according to

y(), ..., y(m — 1) fixed (5.38a)
m m-o1
(k) = bjy(k —j) +O a; x(k—1), k=m, (5.38b)
gnl iI:lZI:lO
y(k) = fz(k)) , (5.38¢)

the parameters of the network being

HT=(AT, BT) (5.39)

as in (4.34). The similarity between these nonlinear equations and the filtering equations (4.33) is
obvious. The system can also be viewed as a semi-linear recursive filter. The corresponding system is

depicted in fig. 12 where 4 and B are two transversal filters and z-! denotes the unit delay. It closely

resembles the recursive filter of fig.7.

x(k) y(k-1)
z(k)
f(.)
> Z—l
y(k)

Fig. 12. A semi-linear recursive neural cell
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In order to recursively optimize this system, the standard procedure is the (STLMS) algorithm,

with equation (3.23). We are now going to derive it in two different ways.

V.3.2. The filtering approach

The steps taken to write the (STLMS) algorithm for a linear recursive filter (§ IV.3.2.) can be

identically reproduced in the semi-linear case. The notations (4.37) are retained for partial derivatives.

Differentiating (5.38) yields the two sets of equations

u0) = ufl)=..=um-1y=0, i=0,...,I-1 ; (5.40a)

Vi) =vi()=..=v(m-1)=0, j=1,..,m; (5.41a)

ui(k) = f '(z(k)) [Qm by uitk—n) +xtk=i)], k=m ; (5.40b)
Faal

vilk) = f '(z(k)) [§m by vik—n) +ytk-H] ., k=zm . (5.41b)
gzl

The simplification found in the linear filtering case (ui(k) = ug(k — i) ; vj(k) = vo(k — j)) is no
longer valid in the present case, as a result of the inclusion of f ' (z(k)) in the recurrence equations
(5.40) and (5.41). Therefore, the sub-gradient vectors U(k) and V(k) defined in (4.44) and (4.45) are
no longer sliding windows of the functions ug(k) and vo(k). This means that each one of the 7 (resp.
m) coordinates of U(k) (resp. V(k)) is calculated by a specific nonlinear recurrence (5.40) (resp.
(5.41)). Nevertheless, the computational structure of the algorithm remains unchanged.

The (STLMS) algorithm follows, once U(k) and V(k) are known. It is written in (4.46),
(4.47). In these equations, the signal y(k) (in the error e(k)) and the derivative signals ug(k), ... , uy_

1(k), vi(k), ... , viy(k) must be evaluated according to the full recurrences (5.38), (5.40), (5.41)
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always taking the parameters (A, B) in the state (A(k — 1), B(k — 1)). For instance y(k)

must be computed along

¥¥(0), ..., ykm — 1) fixed ; (5.42a)
m m-ot
K(n) = bi(k — 1) yk(n — j) + aik —1)x(n—1i), m sn <k(5.42b)
]EIZEII lDZDO
y¥(n) = fizk(n)) , msnsk ; (5.42¢)
y(k) = ykk) ; e(k) = d(k) — y(k) . (5.42d)

The upper index k emphasizes that at times n < k the output depends on the future system parameters
(A(k — 1), B(k — 1)). Similarly with the calculations of u;(k), vj(k). Again we are faced with the
requirement of a memory with indefinitely growing size. This problem is typical of gradient

calculations for a system involving a loop.

It is clear that the MS cost J(H) is non quadratic w.r.t. H and can have local minima. The

(STLMS) algorithm will join a specific minimum depending on initial values for A, B and Y.

V.3.3. The network approach

The network approach uses two steps [5] : (i) the chained derivation rule ; (ii) the gradient
backward propagation.
Step(i) : the chained derivation rule. This rule is characteristic of recurrences where the

calculation of the successive values y(n), n < k, is chained as in the system (5.38). The rule is written

0Oy (kO-0Or)0O 00a;

o0y(k) _ .,
ui(k) & L2880 = 1 (7))
dUa; PraSa))

a;
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This can also be expressed by putting the last term of the RHS of (5.43) into the summation so that

90z (k) 900y (kO-On)

k
wi(k) =£' (z(k) Q

) (5.44)
nD:DOaEIy(kEI—EIn) o0a ;g
The first comment is that the summation bound is k — m, since the m first values y(0), ...,y(m- 1)
oOy((kO-0O
are fixed. The second comment is that each derivative ;II(ZI— oF n (5.44), is evaluated
a;o

considering the other variables y(k — ), [ = n, as quantities independent of a;; the dependency on a;

being already taken into account via the summation (5.44). It thus follows that

OEY KD o1k — )y xk—n— i) (5.45)
o0a;
Therefore (5.44) reads
a0z(k) .
wilk) = ' (zk § (k- ) xtk—n—i) . 5.46
(k) =f"' (z(k)) I:ly(kuun)é(( ) x( ) (5.46)
The partial derivatives v{(k) = A ICy(k) are evaluated similarly :
jo
s Oz(k
0 .
vl = ' @0 By ﬁj £ (alle—m) yk—n—j) . (5.47)
n=00 ( )
. . . .. o0z(k)
Step (ii) : the gradient backward propagation. The derivative —————  appearing in

000y (kO-Ony 0
o0y (kO-OnCkO1)

(5.46) and (5.47) can be evaluated on the basis of the quantities

00z(k) , and of the successive outputs of the neural cell. Indeed,
00y (kO-OnCm+02)

n

oOz(k) _Q oOz(k) oOy(kO- EInEI+EI])
0Oy (kO-0On) I:laI:Iy(kl:l—l:lnI:I+I:Ij§)I:Iy(kl:l—l:ln)

Vn=1;

(5.48)
fim=ta}l
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This relation expresses that the only variables y(k — /) depending on y(k — n) are those such that [ < n.

Now from (5.38), it follows that the partial derivatives

f'@k—n+j)bj ;1<jsm
90y(kO-OnO+0)) {

Vn=1l (5.49)
o0y (kO-0On)
0 ;j>m
Clearly, (5.48) becomes
P Inf(n,Cin)
Vnsi, —2k) b if —n+)) Ok) _ (550a)
a0y (kO-0n) =i 00Oy (kO-0Or0O+0j)
a0y(k) 1
= , 5.50b
oDz TOG) (5-205)
. . o o0Oz(k)
Inf(n, m) denoting the smallest value of n and m. This formula computes the derivatives El) b
y

successive decreases of the index [. Thus the recurrence (5.50) appears as a gradient backward
propagation technique. Explicit formulae giving u;(k), vi(k) in terms of the network inputs x's, and
network outputs y's , z's can be obtained by inserting the results of the backward recurrence (5.50)
into the expressions (5.46), (547).

In a (NN) approach, the recursive cell can be unfolded in a way similar to that of fig. 11,
where h is taken as the elementary semi-linear neural cell. The inputs of cell n° p are the values y(k —
p+ 1), .. , y(k —p + m). Then the recurrence (5.50) computes the intermediate derivatives
%ﬂlg)a backward propagation technique, in the unfolded (static) multilayer network.

It can be checked that the resulting expressions for u;(k) and v;(k) coincide respectively with

the recursive expressions (5.40), (5.41), which were obtained in the filtering approach of § V.3.2.

This fact is not surprising.

For the sake of implementing the (STLMS) algorithm, the (NN) approach has the advantage
over the filtering one to provide the explicit values (rather than recursive expressions) for the

subgradients U(k) and V(k) used in the updating algorithm



75

AR = Al- D +ne® UO | 5o g1y » (5.51a)

BO) =Blk-D+ue® VO |- pga_1y - (5.51b)

V.3.4. The finite memory recursive LMS algorithm

As already explained for recursive linear filters in subsection IV .3, the calculations of y(k) and
of its associated subgradient vectors U(k), V(k) appearing in (5.46) (5.47) requires that the memory
has indefinitely growing size. This is a result of the recursive character of the system. To make the
(STLMS) algorithm feasible, the memory will be truncated at a finite value M, in such a way that
initial conditions will be given on the sliding time window (k— M —m+ 1), ... , (k — m), rather than
on the very ancient window O, ... ,m — 1. The ideas and procedures being essentially the same as in
subsection 1V.3, we keep for the update algorithm, the same denomination, i.e., "finite memory
recursive LMS" abbreviated in (M-RLMYS).

The (M-RLMS) equations turn out to be

yi(k — M) = ykT1(k — M) , (5.52a)
uk(k = M) =!I Rhk—Mmy ; i=0,..,1-1 , (5.52b)
vitk-M) =V Rk-My 5 j=1,...m , (5.520)
y¥(n) = fizk (n)) , (5.53a)
m ma-o1
ZK(n) = b (k1) yk(n — j) + aitk — 1) x(n — i) ., (5.53b)
ng D:EEIO
Wk(n) =f ') [ § bi(k—1) gh—1) +x(n-i) ] . (553¢)

O-=01
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e =f @) [ bitk=1)ph- +yn-] . (5.53d)
=01

aik) = aik - 1) + p (d(k) — y*(K)) ul(k) : (5.54)

bi(k) = bitk — 1) + n (d(k) - yk(k)) Vi) . (5.54b)

Note that equations (5.53) are written forn [ [k—M + 1, k] only.

Thus, it is clear that the (M-RLMS) algorithm for a recursive semi-linear neural cell is the same
as for the recursive linear filter with the same structure, except for the presence of the derivative factor
f'(.) in the gradient coordinates. Consequently, the complexity is the same (if we don't take into

account the computational load of the fand f' functions). It is given by eq. (4.55) and (4.56).

V.3.5. The standard recursive LMS algorithm.

The standard recursive LMS algorithm is denoted (R-LMS) as in subsection IV.3.4. It

corresponds to the shortest memory M = 1 in the previous formulae. Then the writing gets simpler :

m m40-a1
yiky =5 [ bitk— 1) ytk—j)+ Y aitk-1)xtk—1i) ] ; (5.55a)
Zﬂl ingo
uk) =f'zk) | § bitk—1) u; (k=) +xtk—i) | i=0,..,I1-1¢555b)
=01
vi(k) = f (z(k)) [§ bitk—1) vi(k=D+yk—j) | j=1,...,m ; (5.55¢)
301

a(k)= ajk— D +we®u; k), i=0,..,1-1; (5.56a)
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bi(k) = bk —1) + u e(k) vi(k) , j=1,...,m. (5.56b)

The associated complexity is given by eq. (4.62).

V.3.6. Discussion

In the present subsection, we have investigated the recursive updating of the semi-linear
recursive neural cell which is the simplest example of neural network including a feedback loop. The
input (example) presented to the network was a sliding window drawn from a time signal. In this
context, the system would become similar to a feedback time filter, if it were not for the nonlinear
function f. Therefore, the (STLMS) updating algorithm has the same structure and features as in the
(TF) domain. In particular, feasibility requires to truncate the memory at a finite value M. With
another kind of non-linearity in the net than semi-linearity, for instance with several semi-linear
interconnected neural cells, the analysis would not be very different. However, a structure involving a
full network has a broader range of applications than a single neuron. It can approximate any
nonlinear function, with sufficient regularity. For instance, a (nonlinear) network with enough
neurons can model any system with unknown nonlinearity. Conversely, the use of a single neuron
requires that the nonlinearity in the modelled system be known in advance.

Because yg(k) is nonlinear w.r.t. the system parameters H, all the updating algorithms are
subject to possible convergence towards a local (non global) minimum of the MS cost J(H).

Furthermore, the feedback loops under investigation can generate unbounded signals, if the
parameter vector H escapes its stability domain. Unfortunately, very little is known about this domain
for two reasons :

(i) even for a linear recursive filter, the stability domain does not correspond to the classical criterion
that the transfer function has all its poles inside the unit cercle. Indeed the updating algorithms H(k —

1) — H(k) makes the filter non stationary and renders this criterion idle [30] ;
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(i1) for a recursive semi-linear neural cell with the nonlinearity f in the loop, even with a fixed
parameter H, the stability domain has not been investigated yet, except in a few specific cases [49].

In particular, an interesting open question is whether the memory M in the (M-RLMS)
algorithm improves stability. This question is currently being investigated by the authors.

Finally, the approach of backward propagation used in the (NN) context yields new insights in
the approach of adaptive recursive filtering, especially for non linear filtering. Similarly, the forward
propagation approach typical of the (TF) context can bring new insights for the supervised training of
(NN).

VI. CONCLUSION

The purpose of this paper was to set up a unified framework to deal with the gradient
adaptation of certain important time linear filters and with the supervised training of neural networks
using a finite number of arbitrarily ordered examples. In this framework, the similarities and
dissimilarities are clearly apparent.

The major similarities lie in the optimization criteria and in the updating algorithms.

The major differences are in the nature and in the number of inputs X(k ) to the system.

The optimization criteria are indeed the same in both fields. The objective is to find the LS
parameter H (corresponding to the least total squared output error at step k). In fact (even if it is
implicit) there is always a probability distribution for the input X(k). When the total number of inputs
is large, this LS objective becomes equivalent to finding the LMS parameters H (corresponding to the
least mean squared output error) in other words minimizing the MS cost J(H).

In both contexts, for a large number of inputs, this minimization can be performed recursively
using a variable filter H= H(k) which obeys the stochastic LMS gradient algorithm given by eq.
(3.23) in the text. Recursive updating algorithms are especially appreciated since they perform one
updating each time a new input X(k) occurs (with the associated reference output d(k)). Except in the
specific case of a transversal linear time filter, the (STLMS) algorithm has essentially no competitor
neither in (TF) nor in (NN). It is simple and yet ensures asymptotic optimality. It is known under the
two popular denominations of "gradient" or "LMS" algorithm.

One major difference between the adaptation of (TF) and the training of (NN) lies in the nature

of input samples. In the former case, X(k) is a sliding window of a time process. This means that all
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the coordinates of X(k) play the same role, that the successive vectors X(k) are naturally ordered, and
that X(k — 1) and X(k) have a great deal of similarities since they share all but one coordinates. In the
(NN) training case, in general, none of these feature holds. In particular, the order of successive
inputs X (k) is arbitrary and this might influence the convergence process of the recursive algorithm
H(k). Another major difference is that the number of inputs is normally infinite (like the time) in (TF)
but finite (like the collection of examples) in (NN) applications such as classification. This explains
why certain (NN) updating algorithms are iterative but non recursive. For such algorithms, called
"block" algorithms, implementation of all the parameter updatings (even the first one) requires the
knowledge of the whole collection K of inputs. From the point of view of distributing the computing
power, this can be viewed as inefficient. Therefore, in (NN) as well as in (TF), recursive algorithms

are often preferred to block algorithms.

With the objective of comparing the approaches used in (TF) and in (NN) in order to
implement the recursive (STLMS) algorithm, we have investigated in detail two categories of
systems,

- systems with a modular repetitive structure,

- systems with a recursive (feedback) structure.

For the first structure, typical examples are cascaded (TF) and multilayer (NN). In the former
case, the (STLMS) algorithm is easy to design and its computational complexity is low, namely (3N
+ 1) multiplications per step where N is the total number of parameters. In the latter case, the
(STLMS) algorithm can be written down following either a forward or a backward propagation
approach in order to evaluate the gradient. It is the backward propagation approach which is the most
similar to (TF) because it has a low complexity of approximately 4 N multiplications per step. In fact,
we have shown that cascaded filters constitute a specific case of linear multilayer networks, where the
input is a time signal. In this case, there is a complete equivalence between the classical adaptive
filtering approach, and the backward propagation approach used for training (NN).

For the structures which include a feedback loop, the similarities between (TF) and (NN) are
still stronger, at least in the context where a novel input information is presented to the network each

time the feedback loop of the net is implemented. In this context, the input is a time process and the
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problem is to train the network for it to learn the time evolution of X(k). For a single neural cell, if it
were not for the nonlinear function included in the loop, the problem would merely be a time filtering
problem. Again we find a complete equivalence between the classical adaptive filtering approach (for
recursive filters) and the approach used in (NN) which is backward propagation. One major difficulty
to exactly implement the (STLMS) is the indefinitely increasing size of the memory, the solution to
this problem being to truncate the memory to a finite value.

Let us notice that the STLMS algorithms presented in this paper for updating the (TF), either
transversal filters or recursive filters has been successfully generalized to certain non linear filters
[24],[25]. As shown in this paper, these algorithms typical of (TF) and referred here to as the
forward propagation approach can be applied for training (NN). Conversely, the backward
propagation approach typical of (NN) could yield new insights in the context of non-linear filters.

In brief, we have shown that each time a linear (TF) problem can be embedded into the (NN)
formalism, the gradient backward propagation approach is equivalent to the filtering methods. The
use of backward propagation is justified for solving non linear time filtering problems, only.

In the specific case of transversal filters, many theoretical results are known about
convergence of the (STLMS) algorithm. But in other cases, even with linear filters and a fortiori with
non linear networks, the theoretical convergence results about the (STLMS) algorithm are very scarce
in the literature. In particular, very little is known about the extra difficulty added by the non linearity.
Another problem is the possible benefit for stability to increase the memory of the recursive LMS

algorithm. This question and others constitute an open field of investigation.
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APPENDIX

Equivalence between the filtering formula (5.27) and the network formula (5.31) in
the case of cascaded linear filters.

This appendix proves that the simple product of y“:jH:' Tby g appearing in the network
gradient ui,b of (5.31) is the convolution product of (5.27), when the constraints (5.26).(5.28)
(5.29) hold.

In order to perform the cascaded filtering of fig. 5, the layered network must have the

particular structure of fig. 10, for which the actual constraint (5.28) is in fact

0 ifj—i =M,
hify = { (A1)
h, if0sp=j-—isM; -1

With (A.1), the relation (5.32) is rewritten
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M H o,0-01

I _ Ao+0O1 +O0100000
8i =[O hllD,.Dl -0ii+0O1 s (A2)

wO1o=00 O |

which, by an expansion until the last layer # L, gives

M DID_DM Dzl:l—l:ll M o-0O1
gll = I]III:IS Il:ﬂl:lg ........ DIE ]’lil|l:|D++[:|l:l1Il:":I ;%22 ........

w010=00 {wvo20=00 irg=00

hii gil:lf—l:lil_,_l—il_,_z—...— ir, - (A.3)

In the same way, the output on cell j of layer [ — 1, yl?ﬂlgiven by (5.9) (5.10) (5.11), is rewritten

in the linear case and by using constraint (A.1) :

MlD_E”El—Ell

y'7F oL moy h iS00 (S5 200 FEP (A4)

iI;-O10=00

Running recursion (A .4) from the input layer # O provides

MID—EllD_Dl MH g,0-01 M, 0O-01

yTP= my oo . OOy HZE BET -

iioD-010=00 o n20=00 imo=00

.yj%+,-l_1+,-l_2 + ..+ (A5)
Now it follows form (5.29) that for the example #k at the network input

y](l):|+il_1+il_2 + ...101 (k)=x(k_il—l_ [[-2 — = iln_j"' 1) . (A6)

Thus it is recognized on (A.5) that
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y=Btk) =h!-1 o hi-2 Oo..o hl(x(k-j))A.T)

The product (5.31) of gF'(k) by y'7*7tk) whose expressions are given by (A.3) and (A.5) (A.6),

respectively, yields

M;O0-01 g{0-0M o ,0-01  M,;0-01
! L mo+01
uir ooy (k) = EIE ...I]Iﬂl:lg I:IEIE ...I:IEIE hk . pEDED
iro=00 w010=00ig-01o=00 igo1g=00
m-o1 41 L : . .
hllD—Ell h -8M-ij41-ij42——i1 - xk—i_1—-ij_2—.~i1—i-p+1)

(A.8)

In addition, it should also be noticed, according to (5.23), the only term gJL which is non zero is g%

= 1. This implies that in the summation (A.8) the indeces i; satisfy the constraint
i—il+1—il+2—...—iL=1 . (A.9)

Finally, putting (5.23) and (A.9) into (A.8) gives

M,DO-0O1 M;q,00-00M ;5 5,0-010 M, O-0O1
O

uh i (k) = EIE o [EIZIEIE

irg=00 wOo10=00 o pg1o=00 i1g=00

ph o AT EY WEEEOR L e —p i iy = =0y~ (A.10)

which is nothing but (5.27).
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APPENDIX B

Derivation of the backpropagation rule for recurrent nets (eq. 5.47)

The purpose, here, is to evaluate recursively the derivatives __90z(k) on the basis of the
a0y (kO-0On)0O

001z(k) i:( =1, ...,m .Indeed, according to (5.38),
o0y (kO-0OrCH-Oj)

Inf(n,0m) Oy (kO] .
Vn a1 —0020  _ 2 o0z(k) ~_9Oy(kO-L4J) B.1)
o0y (kO-0Ox)O . oOy(kO-O/Xo0y(kO-0On)
jCEO1
) . o0Oz(k) )
The partial derivatives ————— , j=1, ... ,Inf(n, m), are direclty evaluated from (5.38) and
0Oy (kO-0j))
yield
_ 00z(k) =bj;j=1,..,Inf(n,m) . (B.2)
0Oy (kO-0O;)0O
In according, according to relation (5.38)
vk —j) =fz(k=))) , (B.3a)
m /o-o1
2k—j) = § bly(k—j—l)+2 aix(k—j—1y . (B.3b)
=)l iCELO
. Oy (kO-00 ~ 00z(kO-O
Visn ; SDYAELR oy _ ) SH2UELE) (B.4)
o0y (kO-0On) o0y (kO-0On)
Clearly, from (5.38) and (B.3), it appears that
aI:Iz(kI:I—I:jz)= o0z (kO) (B.5)

00y (kO-On) 00y(kO-OnCH0j))



89

It follows that
Inf(n,0m)
O O ] O O
Vn »1; 28208 _ 2 bif ' (alk - jy) — 2220 D) (B.6)
0Oy (kO-0On) Ao o0y (kO-0On0O+0j)

which is exactly (5.47) in the text.
Now, we check that the result (5.45), (B.6) is the same as in the filtering approach. By

replacing (B.6) into (5.43), we get

k m
. 00z(kO)
uik) = f'z(k) ) [ b ' (z(k - ) ,
ngl:ll ]EIZEII 0Oy (kO-0Ox0O+0j)

90y (MO-ThE)) 90y(DY) i

6|:|a,' 6|:|a,'
and by taking (B.5) (B .4) into account, it can be written
Inf(n,0m) k
o0y (kO-0O;0)0y(kO-Ck0O) o0
o0y (kO-On0O) o90a; o0a;

jO=01 nEO0
+ f'(z(k)) x(k —i) . (B.8)
Hence, from (5.43)
Inf(n,0Om)

ui(k) = k) | 2 bj ui(k—j) +f'(z(k) ) x(k - i) , (B.9)

jaEO1

which is the relation (5.40)



