ADAPTIVE TRAINING OF FEEDBACK NEURAL
NETWORKS FOR NON-LINEAR FILTERING

G. Dreyfus*, O. Macchi**, S. Marcos**, O. Nerrand*, L. Personnaz*,
P. Roussel-Ragot*, D. Urbani*, C. Vignat**

*Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris
10, rue Vauquelin
75005 PARIS - FRANCE

**Laboratoire des Signaux et Systemes
Ecole Supérieure d'Electricité, Plateau de Moulon
91192 GIF SUR YVETTE - FRANCE

Abstract. The paper proposes a general framework which
encompasses the training of neural networks and the
adaptation of filters. It is shown that neural networks can be
considered as gemeral non-linear filters which can be trained
adaptively, i.e. which can undergo continual training. A
unified view of gradient-based training algorithms for feedback
networks is proposed, which gives rise to mnew algorithms.
The use of some of these algorithms is illustrated by
examples of non-linear adaptive filtering and process
identification.

INTRODUCTION

In recent papers [1, 2], a general framework, which encompasses algorithms
used for the training of neural networks and algorithms used for the adaptation
of filters, has been proposed. Specifically, it was shown that neural networks
can be used adaptively, i.e. can undergo continual training with a possibly
infinite number of time-ordered examples - in contradistinction to the
traditional training of neural networks with a finite number of examples
presented in an arbitrary order; therefore, neural networks can be regarded as a
class of non-linear adaptive filters, either transversal or recursive, which are
quite general because of the ability of neural nets to approximate non-linear
functions. It was further shown that algorithms which can be used for the
adaptive training of feedback neural networks fall into three broad classes;
these classes include, as special instances, the methods which have been
proposed in the recent past for training neural networks adaptively, as well as
algorithms which have been in current use in linear adaptive filtering and
control. This framework will be summarized briefly in the first part of the
paper.

0-7803-0557-4/92$03.00 © 1992 550

In addition, this general approach leads to new algorithms. The second part of
the paper shows illustrative examples of the application of the latter to
problems in adaptive filtering and identification.

ADAPTIVE TRAINING OF FEEDBACK NEURAL NETS FOR
NON-LINEAR FILTERING

Network

A neural network architecture of the type shown on Figure 1, featuring M
external inputs, N feedback inputs and one output, can implement a fairly
large class of non-linear functions; the most general form for the feedforward
part is a fully-connected net. The basic building block of the network is a
"neuron”, which performs a weighted sum of its inputs and computes an
"activation function” f - usually non linear - of the weighted sum:

zi=fi[vi] withvi= 2 Cij x5

J

where z; denotes the output of neuron i, and Xj denotes the j-th input of
neuron i; X;j may be an external input, a state input, or the output of another
neuron.

Output y(n) State variables S(n+1)
at time n at time n+1
Feedforward network Unit
delays

External inputs U(n) State variables S(n)
attime n attimen

Figure 1.

If the external inputs consist of the values U(m={u(n),u(n-1),....,.u(n-M+1)}
of a signal u at successive instants of time, the network may be viewed as a
general non-linear recursive filter.

The task of the network is determined by a (possibly infinite) set of inputs
and corresponding desired outputs. At each sampling time n, an error e(n) is
defined as the difference between the desired output d(n) and the actual output
of the network y(n): e(n)=d(n)-y(n). The network adaptation algorithms aim at

finding the synaptic coefficients which minimize a given satisfaction criterion
involving, usually, the squared error e(n)2 [3].

Thus, it is clear that adaptive filters and neural networks are formally
equivalent, and that neural networks, which are potentially capable of
realizing non-linear input-output relations, are simple generalizations of linear
filters. In the next section, we put into perspective the training algorithms
developed for discrete-time feedback neural networks and the algorithms used
classically in adaptive filtering.

General presentation of the algorithms

The present paper focusses on gradient-based methods using a sliding window
of length N, whereby the updating of the synaptic coefficients is given, at
time n, by

.yl (L% 2
S g e,

i \2 ken-Newt
where | is the gradient step.
The choice of N depends on several factors, including the typical time scale
of the non-stationarity of the signals.
For the computation of the gradient to be meaningful, the coefficients must
be considered as being constant on a window of length Ni>N,.. Thus, for the
updating at time n, the N errors {e(k)} and their partial derivatives, appearing
in relation (1), must be computed from N computational blocks,
corresponding to the last N; sampling times; the values of the coefficients
used for all N blocks are the coefficients C(n-1) which were updated at time
n-1. We denote by S;,;™(n) the value of the state input of block m at time n
and by Sq,,{™(n) the state output.
The choice of the state inputs and of their partial derivatives, as inputs of each
block, gives rise to a variety of algorithms. These algorithms fall into three
categories depending on the choice of the state inputs:
(i) directed algorithms, in which the state inputs are taken equal to their
desired values, for all blocks;
(ii) semi-directed algorithms, in which the state inputs of the first block
attime n are taken equal to their desired values, and in which the state inputs
of the other blocks are taken equal to the state outputs of the previous block,
(iii) undirected algorithms, in which the state inputs of the first block at
time n are taken equal to the corresponding states computed at time n-1, and
in which the state inputs of the other blocks are taken equal to the state
outputs of the previous block.
Directed and semi-directed algorithms can be used only if all state variables
have desired values, as is the case for NARMAX models [4]. If some, but not
all, state inputs do not have desired values, hybrid versions of the above
algorithms can be used: those state inputs for which no desired values are
available are taken equal to the corresponding computed state variables (as in
an undirected algorithm), whereas the other state inputs may be taken equal to
their desired values (as in a directed or semi-directed algorithm).

552

In each category, three algorithms are defined, depending on the choice of the
partial derivatives of the state inputs. This is summarized in Table 1.

aS m
. 1 m D —=(n)
Algorithm Sin(n) Sin(n) P) acu
Directed (D) Des. val. | Des. val. ZE10 ZE1r0
D-SD Des. val. | Des. val. Zero IS —=-(n)
i
(ﬂll asmk
D-UD Des. val. | Des.val. | == (@-1) | —(n)
acu acj;
. . m-1 BSW:
Semi-Directed (SD) | Des. val. Sout (n) Ze10 3 (n)
Cij
SD-D Des. val. | s™l(n) Zer0 2e10
1
SD-UD Des. val. Sou(n) o (n-1) o —=(n)
ij i)
. 1 m-1 out asoul
Undirected (UD) | Sow(-1) | Sow(n) @-1) | L2 (@)
aCu acu
UD-D Slu(n-1) S™lm) Ze10 2610
1 m-1 aSom
UD-SD Sou(n-1) Sout () ze10 (n)
ij

Table 1.
Summary of algorithms.
Des. val. = desired value

Relations with known algorithms for neural nets and for
adaptive filtering

Some of the above algorithms have been proposed independently in the field
of neural nets and in the field of signal processing, under different names.
Two approaches have been used in order to adapt linear recursive filters: the
equation-error formulation and the output-error formulation. In the equation-
error formulation (also termed series-parallel in the control literature), the
recursive nature of the filter is not taken into account: thus, directed
algorithms generalize the equation-error approach; they generate stable
adaptation behaviours. The “Teacher Forcing” algorithm [5] is based on the
same idea. On the other hand, the output-error formulation takes into account
the recursive form of the filter during adaptation: thus, undirected algorithms
generalize the output-error approach. The stability of these algorithms is not
easy to predict.

553

For instance, the "Recursive Prediction Error (RPE)" algorithm [6], used in
linear adaptive filtering, is a UD algorithm with N;=N =1. The "Real-Time
Recurrent Learning Algorithm” [7] is the generalization of RPE to non-linear
filters. The "Truncated Backpropagation Through Time" algorithm [8] is a
UD-SD algorithm with N.=1 and Ny>1. The extended-LMS algorithm [9] is
identical to the UD-D algorithm with N;=N =1 and is used in linear adaptive
filtering for its autostabilization property. The "A Posteriori Error
Algorithm” is a UD-D algorithm with Ni=2, N.=1 [10]. The choice of
N{=N,=1 is economical in terms of computation time; it is justified if the
coefficients change slowly, i.e. if the gradient step p is small enough.

APPLICATION TO AN ADAPTIVE FILTERING PROBLEM

The use of the new algorithms introduced above is illustrated in the case of
the Adaptive Differential Pulse Code Modulation (ADPCM) system for bit
rate reduction in speech transmission [11] (Figure 2). We show the influence
of the training algorithm on the behaviour of the system, in the simple case
of a predictor with a single adaptive coefficient b, and a two-level quantizer
implemented as a neuron with transfer function f(x) = a tanh (px/a). The input
signal is constant.

QUANTIZER
Prediction (non linear)

Speech signal error signal
s(n) n
Quantized error

&(n)
s
PREDICTOR [*® [iicied
speg;(:% signal o)

FIGURE 2

We first analyze the behaviour of the fixed, i.e. non adaptive, encoder. Fig.3
shows the prediction error e(n) versus b: for b<0.55, the error is a fixed point
whose value decreases with b. For higher values of b, successive bifurcations
generate limit cycles of lengths 2, 4 and 8.

The dynamical behaviour of the adaptive system depends on the choice of the
adaptation algorithm, as illustrated on Figure 4. For example, the cycle P1
(of length 2) which is an attractive cycle for the non-adaptive system, remains

554

0.5
04t¢ -

P1
0.2

0.1+

-
\3/
L

0.1} 4

045 0.2 04 0.6 0.8 1 1.1

FIGURE 3

attractive when the system is adapted with the UD or UD-SD algorithms,
However, this cycle becomes a repeller when the system is adapted with the
UD-D algorithm. Conversely, point P2 on Fig. 2 was found to be a repeller
for the UD and UD-SD algorithms, while it is an attractor when the network
is trained with a UD-D algorithm. The reported results were obtained with
N=1 and N¢=5. The parameter Ny was found to have no influence on the
results in this case; this is a specific feature of the system under consideration
[12].

The mean square error for point P1 is smaller than for point P2.

09 4 . . x - . r . .
0.8 S~ UD-D

0.7 |
_-SD-SD

0.6 .

0.5 \ ~N UD-UD .
044! UD-sD |
0.3 i
0.2 Nc=1,N[=S

0.1+ i

n

0 200 400 600 800 1000 1200 1400 1600 1800 2000
FIGURE 4

0

We focus now on the SD or D algorithms. Since the system to be adapted is
trained by these algorithms as if it were a feedforward net consisting of N¢

555

identical blocks and initialized with the desired outputs, the curves of Fig. 3
are irrelevant. Fig. 4 shows that the system adapted with the SD algorithm
converges towards b=0.63, which corresponds to a very small mean square
error: this indicates that the feedforward structure consisting of 5 blocks,
adapted with the SD algorithm, is appropriate for the problem under
consideration. Conversely, when the feedback nature of the system must be
preserved, SD- or D-type algorithms are inappropriate.

APPLICATION TO IDENTIFICATION PROBLEMS

We show on the following example that semi-directed algorithms bridge the
gap between the output-error approach (UD algorithms) and the equation-error
approach (D algorithms).

We first consider the process identification example described in [13], which
illustrates the fact that, in the presence of additive noise, the equation-error
formulation may lead to biased estimates of the coefficients, in contrast to the
output-error formulation.

The process to be modelled is simulated by the linear recursive equation

y*(@) = ot y*(n-1) + B x(n)

and d(n) = y*(n) + v(n) with a=$=0.5,

where x is the input, d the measured output and v an additive noise.

The model used in the adaptive filter is described by y(n) = a y(n-1) + & x(n),
and the desired value is d(n).

If the input x(n) and the noise v(n) are uncorrelated, white sequences with zero
mean value and a signal-to-noise ratio § = 0'x2/0v2, the equation-error (D
algorithm) estimate a of the coefficient o is biased:

(a-0) / o = (02-1) / (1-02+p2S).

The equation-error estimate of b is unbiased (b = B).

Conversely, both output-error estimates (UD algorithms) are unbiased.

We computed analytically the expectation value of the squared error (Nc=1) in
the case of a semi-directed algorithm, and determined the values of @ and b
which minimize it. Figure 5 shows the biases with respect to Ny for S = 10;
the bias of a decreases from the above value (for Ni=1) to zero (N{ —),
which is consistent with the fact that a SD algorithm with Ni=1 is a D
algorithm, and that it is a UD algorithm if Ny — oo . Furthermore, it is
shown that the bias of b is zero in the two limiting cases (D and UD), and
that it is small, but non-zero for N;>1.

To summarize, the use of SD algorithms provides, in this example, a tradeoff
between the stability of D algorithms and the unbiased estimates which result
from the use of a UD algorithm.

Similarly, we consider the second process identification example described in
[13] which illustrates the fact that, if the order of the model is smaller than
the order of the process, the output-error formulation generates an error surface
(MSOE) which may have local minima, whereas the equation-error

556

formulation generates an error surface (MSEE) which has only a global
minimum,

The process to be modelled is simulated by:

d(n) = o1 d(n-1) + a2 d(n-2) + Bo x(n) + B1 x(n-1) ,

where x is the input and d the output of the process.

The model used in the adaptive filter is described by:

y(n) = a y(n-1) + b x(n), and the desired value is d(n).

The MSE surface is a paraboloid when using the equation-error formulation
(MSEE). In the case of the output-error formulation, the MSE surface
(MSOE) exhibits one local minimum (which corresponds to a damped
oscillatory behaviour, -1<a<0), and one global minimum (0<a<1) . We have
computed analytically the MSE in the case of a semi-directed algorithm with
Nc=1 . As for the first example, the MSE surface changes from the MSEE
surface to the MSOE surface when Ny increases from 1 to eo: for Ni=2, a
second minimum appears, with -1<a<0, which shifts to the location of the
local minimum of the MSOE surface when N; grows; meanwhile, the other
minimum shifts from the location of the minimum of the MSEE surface to
the location of the global minimum of the MSOE surface.

:lu 2
207% O bias of a (%)
, W = bias of b (%)
8 PR S
R I =
,8 "'; ¢‘ la
élO' a' v ._ -é
[. <
.o,
1] . 1‘
: "". =
' o..
’ e, -
3 "Q._, .. -
0 v y — iy » &
1 2 3 4 5 6 17 8§ 9 10
N
FIGURE 5
CONCLUSION

We have shown that a large variety of algorithms are available for training
recurrent neural networks to perform adaptive filtering, and that the
algorithms used thus far are but a small fraction of the available possibilities.
We have illustrated some features of the new algorithms on three examples.
Neural networks, viewed as adaptive non-linear filters, have a considerable
potential which needs be explored, and basic issues, such as the stability of
the algorithms, are still open.

557

Acknowledgements
The authors wish to thank L. CAPELY and D. MARSAN for computer
simulations.

References

(1]

(2]

B3]

(4]

(5]

)

gl

(8]

9]

[10]

[11]

O. Nerrand , P. Roussel-Ragot, L. Personnaz, G. Dreyfus, S. Marcos,
"Neural Networks and Non-linear Adaptive Filtering: Unifying
Concepts and New Algorithms", Neural Computation, to be published.

S. Marcos, P. Roussel-Ragot, L. Personnaz, O. Nerrand, G. Dreyfus,
C. Vignat, "Réseaux de Neurones pour le Filtrage Non Linéaire

Adaptatif”, Traitement du Signal, in press (1992).

B. Widrow, S.D. Stearns, Adaptive Signal Processing (Prentice-Hall,
1985).

S. Chen, S.A. Billings, "Representations of Non-Linear Systems: the
NARMAX Model", Int, J. Control, vol. 49, pp. 1013-1032, 1989.

M.L Jordan, "Attractor Dynamics and Parallelism in a Connectionist
Sequential Machine", in Pr ings of the Eighth Annual Conferen
of the Cognitive Science Society, 1986, pp. 531-546.

L. Ljung, T. Soderstréom, Theory and Practice of Recursive
Identification, M.L.T. Press, 1983.

R.J. Williams, D. Zipser, "A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks", Neural Computation, vol.
1, pp. 270-280, 1989.

R.J. Williams, J. Peng, "An Efficient Gradient-based Algorithm for
On-Line Training of Recurrent Network Trajectories”, Neural
Computation, vol. 2, pp. 490-501, 1990.

P.L. Feintuch, "An Adaptive Recursive LMS Filter", Proc, IEEE, pp.
1622-1624, 1976

C.R. Johnson, 1.D. Landau, "On Adaptive IIR Filters and Parallel
Adaptive Identifiers with Adaptive Error Filtering”, Proc. ICASSP, pp.
5387, 1981.

N.S. Jayant, P. Noll, Digital i Waveforms. Principl

Applications to Speech and Video, Signal Processing Series, A.
Oppenheim, ed., Prentice-Hall, 1984,

558

{12] C. Vignat, C. Uhl, S. Marcos, "Analysis of gradient-based adaptation
algorithms for linear and nonlinear recursive filters”, Proceedings of
ICASSP-92, Vol. 1V, pp. IV 189-1V 192, March 23-26, 1992, San
Francisco.

[13] J.J. Shynk, "Adaptive IIR Filtering", IEEE ASSP Magazine, pp. 4-21,
1989.

559

