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Abstract. Entropy has been widely employed as an optimization func-
tion for problems in computer vision and pattern recognition. To gain
insight into such methods it is important to characterize the behavior
of the maximum-entropy probability distributions that result from the
entropy optimization. The aim of this paper is to establish properties of
multivariate distributions maximizing entropy for a general class of en-
tropy functions, called Rényi’s α-entropy, under a covariance constraint.
First we show that these entropy-maximizing distributions exhibit in-
teresting properties, such as spherical invariance, and have a stochastic
Gaussian-Gamma mixture representation. We then turn to the question
of stability of the class of entropy-maximizing distributions under addi-
tion.

1 Introduction

Entropy has been widely employed as an optimization function for problems in
computer vision, communications, clustering, and pattern recognition; see [6,
7, 13, 11, 9, 8] for representative examples. In particular, entropy maximiza-
tion/minimization methods have found natural application in areas where an
entropy or information divergence can be used as a discriminant of the data.
These include: texture classification, feature clustering, image indexing or image
registration, which are all core problems in areas such as geographical infor-
mation systems, medical information processing, multi-sensor fusion and image
content based retrieval. For example, the mutual information method of image
registration (see [9] and references therein) searches through a set of coordi-
nate transformations to find the one that minimizes the α-entropy of the joint
feature distribution of the two images. In a similar way, a statistical image re-
trieval algorithm ([9]) searches trough a database of images to choose the image
whose feature distribution is the closest to the query image in a minimum infor-
mation divergence sense. Thus, studying the entropy maximizing distributions
is important for understanding the advantages and limitations of such entropy
maximization methods.

A. Rangarajan et al. (Eds.): EMMCVPR 2003, LNCS 2683, pp. 211–226, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



212 Jose Costa et al.

The Rényi α-entropy [16] is a generalization of the Shannon entropy and is
defined as follows:

Sα (f) =
1

1− α
log

∫
IRn

fα (x) dx , (1)

where f is the multivariate probability density of the n-dimensional random
variable X, and α is a real positive parameter. It can be easily shown that, as
α → 1, the α-entropy Sα converges to the well known Shannon entropy:

S1 (f)
∆= lim

α→1
Sα (f) = −

∫
IRn

f (x) log f (x) dx . (2)

It is well-known that among all multivariate continuous distributions, the
classical Gaussian distribution maximizes the Shannon entropy under a covari-
ance (power) constraint. The question addressed in this paper is the charac-
terization of the maximizing distribution of the Rényi entropy under the same
covariance constraint.

The remainder of this paper is organized as follows. In Section 2, we show that
the multivariate Student-t (α < 1) and Student-r (α > 1) densities are the max-
imum entropy distributions under a covariance constraint for different ranges
of the parameter α. We then show that these distributions are elliptically in-
variant, which will allow a representation in terms of Gaussian scale mixtures.
In addition, we give an alternative characterization for the maximum entropy
distributions in terms of the Shannon entropy and a logarithmic constraint. In
Section 3, we address the question of stability of the class of entropy-maximizing
distributions under addition.

2 The Multivariate α-Entropy Maximizing Distribution

Rényi-entropy maximizing distributions have been studied for the restricted case
of α > 1, by Moriguti in the scalar case [14] and by Kapur [10] in the multivariate
case. The case of α ∈ [0, 1] is of special interest since, in this region, the Rényi-
entropy generalizes easily to Rényi-divergence via measure transformation [9].

Throughout, X will denote an n−dimensional real random vector with co-
variance matrix K = E(X−µX)(X−µX)T . In what follows, we consider, without
loss of generality, the centered case µX = EX = 0. Define next the following
constants:

m =
{
n+ 2

α−1 if α > 1
2

1−α − n if α < 1 , Cα =
{
(m+ 2)K if α > 1
(m− 2)K if α < 1 ,

and

Aα =




1

|πCα| 12
Γ(m

2 +1)
Γ(m−n

2 +1) if α > 1

1

|πCα| 12
Γ(m+n

2 )
Γ(m

2 )
if n

n+2 < α < 1
,

and the following sets

Ωα =
{{

x ∈ IRn : xT C−1
α x ≤ 1

}
if α > 1

IRn if n
n+2 < α < 1 .
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Define the n−variate probability density fα as follows:

– if α > 1

fα (x) =

{
Aα

(
1− xT C−1

α x
) 1

α−1 if x ∈Ωα

0 otherwise
(3)

– if n
n+2 < α < 1

fα (x) = Aα

(
1 + xTC−1

α x
) 1

α−1 ∀x ∈ IRn (4)

The following theorem provides a general description of the α−entropy max-
imizing densities.

Theorem 1. For any probability density f with covariance matrix K and α >
n

n+2 ,
Sα (f) ≤ Sα (fα) ,

with equality if and only if f = fα almost everywhere.

Note that Theorem 1 implies that the entropy Sα (f) has a unique maximizer fα.
We also point out that, when 0 < α ≤ n

n+2 , fα has infinite covariance and so
the covariance constraint cannot be met.

We prove this theorem by introducing a new divergence measure and adopt-
ing an information theoretic approach similar to that used by [3, Theorem 6.9.5]
to prove that the Gaussian distribution maximizes Shannon entropy.

Consider the following non-symmetric directed divergence measure

Dα (f ||g) = sign (α− 1)
∫

IRn

(
fα

α
+
α− 1
α

gα − fgα−1

)
(5)

The general theory of directed divergence measures is discussed in [4] and [17].
Convexity of Dα gives the following positivity property: for any two probability
densities f and g, we have

Dα (f ||g) ≥ 0

with equality if and only if f = g a.e.

Lemma 1. For any n−variate probability density f with covariance matrix K,∫
IRn

ffα−1
α ≥

∫
IRn

fα , (6)

with equality iff supp(f) ⊆ Ωα.

Proof. Suppose for example α > 1. Then∫
IRn

ffα−1
α =

∫
Ωα

f(x)Aα−1
α

(
1− xT C−1

α x
)
dx

≥
∫

IRn

f(x)Aα−1
α

(
1− xTC−1

α x
)
dx ,
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with equality iff supp(f) ⊆ Ωα. But, as f and fα have the same covariance
matrix, ∫

IRn

xTC−1
α xf (x) dx =

∫
IRn

xT C−1
α xfα (x) dx ,

which implies∫
IRn

ffα−1
α ≥

∫
IRn

fαA
α−1
α

(
1− xTC−1

α x
)
dx =

∫
IRn

fα
α .

The proof is similar in the case α < 1. 	

We can now deduce the extremal property of the density fα.

Proof (of Theorem 1). Suppose, for example, α > 1. Then, by Lemma 1 and
positivity of Dα,

0 ≤ Dα (f ||fα) ≤
∫

IRn

(
fα

α
+
α− 1
α

fα
α − fα

α

)
=

1
α

∫
IRn

(fα − fα
α ) .

Theorem 1 now follows. The proof is similar for α < 1. 	

Although the case α = 1 was not explicitly addressed above, it can easily

be shown that fα converges pointwise to the density of N (0,K) when α → 1.
Likewise, the corresponding entropies also converge to the Shannon entropy, thus
extending, by continuity, Theorem 1 to the well known case of α = 1.

Definition 1. A distribution is called elliptically invariant if it has the form

pX (x) = φX

(
xT C−1x

)
(7)

for some function φX : IR+ → IR+ and some positive definite matrix C, called
the characteristic matrix.

It is easily seen that fα, defined by equations (3) and (4), is an elliptically
invariant density. A consequence of this elliptical invariance property is that if
X is a random vector with density fα, α < 1, then it can be represented as
a Gaussian scale mixture [5]: X = AN, where A is a Gamma random variable
with shape parameter m

2 = 1
1−α − n

2 and scale parameter 2, i.e., A ∼ Γ (m
2 , 2).

When m = 2
1−α − n is a positive integer, A can be represented as a Chi-square

random variable with m degrees of freedom. N is a n-variate Gaussian random
vector, independent of A, with covariance matrix Cα. For more details see [18].
Equivalently, X can be rewritten as

X =
C

1
2
αN0√∑m
i=1 N

2
i

, (8)

where N0 is a zero mean Gaussian random vector with identity covariance matrix
In. As

C
1
2
α√∑m

i=1 N
2
i

=
K

1
2√

1
m−2

∑m
i=1 N

2
i
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converges a.s. to the constant matrix K
1
2 when m → +∞ (i.e. α → 1), it is

evident that, by Slutzky’s theorem, X converges in distribution to a Gaussian
random vector.

Although the Gaussian scale mixture representation does not hold in the
case α > 1, we can extend the stochastic representation based on the existence
of a natural bijection between the cases α < 1 and α > 1. This gives the following
proposition:

Proposition 1. If X is an n−variate random vector distributed according to fα

with α > 1, and if m, defined as

α =
m+ n

m+ n− 2
, (9)

is an integer not equal to zero, then X has the representation

Xα = C
1
2
α

N√
‖N‖2

2 +N2
1 + · · ·+N2

m

, (10)

where {Ni}1≤i≤m are Gaussian N (0, 1) mutually independent, and independent
of N which is Gaussian N (0, In).

We remark here that the denominator in (10) is a chi random variable with
m+n degrees of freedom which, contrarily to the case α < 1, is not independent of
the numerator. Using these stochastic representations, random samples from fα

with integer degrees of freedom can be easily implemented with a Gaussian
random number generator and a squarer.

Characteristic Function The characteristic function ϕα of fα can be deduced
from the following formula [2]:

ϕα (u) = L [
w−2fW

(
w−1

)]
s=uT Cαu

,

where L denotes the Laplace transform.

(a) – Case α < 1. From [1],

L [
w−2fW

(
w−1

)]
=

21−m
2

Γ
(

m
2

)sm
2 Km

2
(s) .

The characteristic function of the Rényi distribution can then be written as

ϕα (u) =
21−m

2

Γ
(

m
2

) (
uT Cαu

)m
2 Km

2

(
uT Cαu

)
, (11)

where Km
2
denotes the modified Bessel function of the second kind.
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(b) – Case α > 1. Although the preceding technique does not apply in the case
α > 1, a direct computation yields the characteristic function in this case as

ϕα (u) = 2
m
2 Γ

(m
2

+ 1
) (

uTCαu
)−m

2 Jm
2

(
uT Cαu

)
, (12)

where Jm
2
denotes the Bessel function of the first kind.

We remark that both families of characteristic functions (11) and (12) are
normalized in such a way that

ϕα (u) = 1 +O
((

uTCαu
)2

)
.

Moreover, it can be checked that, as α → 1, these functions converge pointwise
to the classical Gaussian characteristic function.

2.1 An Alternative Entropic Characterization

The Rényi-entropy maximizing distribution can be characterized as a Shannon
entropy maximizer under a logarithmic constraint: this property was first derived
by Kapur in his seminal paper [10]. It was remarked also by Zografos [21] in
the multivariate case, but not connected to the Rényi entropy. We state here
an extension of Kapur’s main result to the correlated case. This result can be
proven using the stochastic representation (see [18] for details).

Theorem 2. fα with α < 1 (resp. α > 1) and characteristic matrix Cα is the
solution of the following optimization problem

fα = argmax
f

S1 (f)

under constraint∫
log

(
1 + xT C−1

α x
)
f (x) dx = ψ

(
m+ n

2

)
− ψ

(m
2

)
(13)

(
resp.

∫
log

(
1− xT C−1

α x
)
f (x) dx = ψ

(
m
2

) − ψ
(

m+n
2

))
, where ψ(m) = Γ ′(m)

Γ (m)

is the digamma function.

We make the following observations. Firstly, the constraint in this multivari-
ate optimization problem is real-valued, and its value is independent of the char-
acteristic matrix Cα. Secondly, as the logarithmic moment E log

(
1 + XT C−1

α X
)

exists for all α > 0, the distributions fα as defined by (4) are solutions of the
logarithmic constrained maximum Shannon entropy problem even in the case
α < n

n+2 . However, in this case the covariance matrix does not exist and there-
fore the matrix Cα can not be interpreted as a covariance matrix.

3 Convolution of Entropy Maximizing Distributions

We first discuss the issue of renormalization as presented by Mendes et al. [12].
Then we address the issue of stability under the addition operation.
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3.1 Renormalizability of fα

Mendes and Tsallis ([12]) have shown that Rényi distributions have the impor-
tant property of “renormalizability”, but contrarily to the Gaussian case, they
are not “factorizable”. fα has the renormalizability property when∫ +∞

−∞
fα (x1, x2) dx2 = fα′ (x1)

for some α′. In statistical terms, this expresses the fact that the 2−dimensional
distributions remain of the same type after marginalization. Using the elliptical
invariance property, we provide here a much more general result, as stated by
the following theorem.

Theorem 3. Let XT =
[
XT

1 ,X
T
2

]
(dimXi = ni, n1 + n2 = n) be a ran-

dom vector distributed according to fα with characteristic matrix C =
[C11,C12;C21,C22] (dimCij = ni × nj). Then the marginal density of vector
Xi (i = 1, 2) is fαi , with index αi such that

1
1− αi

=
1

1− α
− ni

2
,

and characteristic matrix Cii.

Proof. Suppose first α < 1 and consider the stochastic representation

X = C
1
2

[
NT

1 ,N
T
2

]T

χm
,

where
[
NT

1 ,N
T
2

]
is a Gaussian vector with identity covariance and partitioned

similarly to X. Then the stochastic representation of Xi is

Xi =
Ñi

χm

for some ni−variate Gaussian vector Ñi so that the indices α and αi are char-
acterized by

α =
m+ n− 2
m+ n

, αi =
m+ ni − 2
m+ ni

.

Hence
1

1− αi
=

1
1− α

− ni

2
.

The characteristic matrix of Xi can be deduced by remarking that Xi can be
expressed as

Xi = HX ,

where H is a ni × n matrix whose i− th block is the ni × ni identity matrix so
that the characteristic matrix of Xi writes (see [2, corollary 3.2])

HCHT = Cii .

The case α > 1 follows accordingly. 	
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Thus the renormalization property, as observed in [12], is nothing but a con-
sequence of the elliptical invariance property, which is itself induced by the or-
thogonal invariance of both the Rényi entropy and the covariance constraint.

3.2 Stability of Rényi Distributions

It is well known that the Gaussian distributions are stable in the sense that the
sum of two Gaussian random vectors is also Gaussian, although with possibly
different means and variances. An interesting question is the stability of the class
of Rényi-entropy maximizing distributions defined as the set of all densities fα

of the form (3)-(4) for some α ∈ (0, 1] and some positive definite characteristic
matrix Cα. In the following, we characterize the conditions under which stability
of the Rényi-entropy maximizing distributions is ensured, and link this feature
with their elliptical invariance property, distinguishing between three important
cases: the Rényi mutually dependent case, the mutually independent case and
the special case of odd degrees of freedom. For proofs of these results see the
referenced articles or [18].

Mutually Dependent Case

Theorem 4 ([2]). If X1 and X2 are n1 and n2-variate vectors mutually dis-
tributed according to a Rényi-entropy maximizing density fα with index α and
characteristic matrix Cα, and if H is a n′ × n matrix with n = n1 + n2, then
the n′-variate vector

Z = H
[
X1

X2

]

is distributed according to a Rényi-entropy maximizing density fα′ with index α′

and characteristic matrix Cα′ such that

Cα′ = HCαHT ,

1
1− α′ =

1
1− α

+
n′ − n

2
.

Independent Rényi-Entropy Maximizing Random Variables

Theorem 5 ([15]). If X and Y are two scalar i.i.d. random variables with
density fα, then Z = X + Y has a density which is nearly equal to fα′ , with
index α′ such that

α′ = 2− (2− α)
(
1− 4

α (α− 1)
(3α− 5) (α+ 3)

)
. (14)

The relative mean square error of this approximation is numerically bounded by
10−5.
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Relation (14) was obtained in [15] by evaluating all derivatives up to order 5
at point 0 of the distribution of X + Y and showing that they are nearly iden-
tical (up to numerical precision of the simulations) to those of a Rényi-entropy
maximizing distribution fα′ with the given parameter α′. In the case where m
is an odd integer stronger results can be established. For economy of notation,
we define, for m a positive integer,

f (m) = fα , α =
m+ n− 2
m+ n

. (15)

The first original result we state now is an extension to the multivariate case
of the classical one-dimensional result, for which a rich literature already exists
(see for example [19],[20]).

Theorem 6. Suppose that X and Y are two independent n-variate random vec-
tors with densities f (mX) and f (mY), respectively, and characteristic matrices
CX = CY = In, with odd degrees of freedom mX and mY. Then, for 0 ≤ β ≤ 1,
the distribution of Z = βX + (1− β)Y is

pZ (z) =
kZ∑

k=0

αkf
(2k+1) (z) , (16)

where kZ ≤ mX+mY

2 − 1.

Proof. Denote kX ∈ N such that, by hypothesis, mX = 2kX + 1, and kY
accordingly. The characteristic function of X in this special case writes

φX (u) = e−‖u‖QkX (‖u‖) ,

where ‖u‖ =
√

uTu and QkX is a polynomial of degree d (QkX) = kX. By the
independence assumption, the characteristic function of Z writes

φZ (u) = φX (βu)φY ((1− β)u)

= e−|β|‖u‖QkX (β ‖u‖) e−|1−β|‖u‖QkY ((1− β) ‖u‖)
= e−‖u‖QkX (β ‖u‖)QkY ((1− β) ‖u‖) .

As each polynomial Qk has exactly degree k, the set of polynomials {Ql}0≤k≤kZ

is a basis of the linear space of polynomials with degree lower or equal to kX+kY :
thus, QkX (β ‖u‖)QkY ((1− β) ‖u‖), itself a polynomial of degree kZ ≤ kX +
kY = mX+mY

2 −1, can be expressed in a unique way in this basis. Consequently,
there exists a unique set {αk}0≤k≤kZ

of real numbers such that

QkX (β ‖u‖)QkY ((1− β) ‖u‖) =
kZ∑

k=0

Qk (‖u‖)

and

φZ (u) = e−‖u‖
kZ∑

k=0

αkQk (‖u‖) .
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Result (16) now follows by inverse Fourier transform. Note that coefficients {αk}
depend on β. 	


This result can be restated as follows: the distribution of a convex linear
combination of independent Rényi-entropy maximizing random variables with
odd degrees of freedom is distributed according to a discrete scale mixture of
Rényi-entropy maximizing distributions with odd degrees of freedom. However,
although the fact that

kZ∑
k=0

αk = 1

holds trivially by integrating relation (16) over IRn, the positiveness of the co-
efficients αk has, to our best knowledge, never proved in the literature. We are
currently working on this conjecture, for which numerical simulations have con-
firmed the positivity of αk’s for a large number of special cases.

A Second Result: An Information Projection Property

The second result that we propose in this context allows us to characterize
the projection of the Rényi entropy maximizing distribution onto a convolution
of f (m′)’s with odd degrees of freedom.

Theorem 7. Consider X and Y two independent n-variate random vectors
following densities f (mX) and f (mY), respectively, with characteristic matrices
CX = CY = In and odd degrees of freedom mX and mY. Let Z = 1

2 (X + Y).
Then, the Rényi distribution which is the closest to the distribution of Z in the
sense of the Kullback-Leibler divergence has m′ degrees of freedom such that

wn (m′) = Ewn [M ] , (17)

where,

– function wn is defined as

wn (m) = ψ

(
m+ n

2

)
− ψ

(m
2

)
;

– the random variable M is distributed according to

Pr{M = 2k + 1} = αk , (18)

where coefficients αk are defined by (16) for β = 1
2 .

Moreover, condition (17) is equivalent to

E
f(m′) log

(
1 + xT x

)
= EfZ log

(
1 + xT x

)
.
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Proof. The Kullback-Leibler distance between the distribution pZ of Z and a
Rényi distribution f(m

′) with parameter m′ is given by

D
(
pZ||f(m

′)
)
=

∫
pZ log

pZ
f (m′)

= −S1 (pZ)−
∫

pZ log f(m
′) .

Distribution pZ takes the form

pZ (z) =
kZ∑

k=0

αkf
(2k+1) (z) ,

with kZ = mX+mY

2 − 1. Finding the optimal value of m′ is thus equivalent to

maximizing the integral
∫
pZ log f(m

′) that can be explicitly computed using
a result obtained by Zografos [21]: if X ∼ fm then 1

E log
(
1 + XTX

)
= wn (m) ∆= ψ

(
m+ n

2

)
− ψ

(m
2

)
.

Thus ∫
pZ log f(m

′) =
∫ mZ∑

k=0

αkf
(2k+1) (z) log f(m

′) (z) dz

=
mZ∑
k=0

αk

∫
f (2k+1) logAα′

(
1 + zT z

)−m′+n
2 dz

=
mZ∑
k=0

αk logAα′ − m′ + n

2

mZ∑
k=0

αkEf(2k+1)

(
1 + ZTZ

)

= log
Γ

(
m′+n

2

)
Γ

(
1
2

)
Γ

(
m′
2

) − m′ + n

2

mZ∑
k=0

αkwn (2k + 1) .

Taking the derivative and equating to zero yields

wn (m′) = Ewn (M) ,

whereM is distributed according to (18). The fact thatm′ corresponds to a max-
imum of the considered integral (and thus to a minimum of the Kullback-Leibler
distance) is a direct consequence of the negativity of the second derivative of ψ,
together with

ψ′(
m′ + n

2
)− ψ′(

m′

2
) =

∂2

∂m′2

∫
pZ log f(m

′) .

1 Function wn (m) is denoted as w2 (m, n) in [21].
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Fig. 1. Equation (14) (solid line) and the solutions of equation (17) (circles).
See text for explanation

Finally, computing

E
f(m′) log

(
1 + ZTZ

)
= wn (m′)

=
mZ∑
k=0

αkwn (2k + 1)

=
mZ∑
k=0

αkEf(2k+1) log
(
1 + ZTZ

)
= EfZ log

(
1 + ZT Z

)
yields the final result. 	


Equation (17) defining variable m′ in terms of dimension n and degrees of
freedom m does not seem to have any closed-form solution. However, it can be
solved numerically2: Fig. 1 represents the resulting values of α′ as a function of α,
when m takes all odd values from 1 to 51 (circles); moreover, the superimposed
solid line curve shows α′ as a function of α as defined by (14) in the approach
by Oliveira et al [15]. This curve shows a very accurate agreement between our
results and Oliveira’s results.
2 Note that in the case m = 1, the solution is obviously m′ = 1 since the Cauchy
distributions are stable.
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Table 1. m′ as a function of m

m = 3 5 9 11 21 51

n = 1 4.2646 8.0962 16.026 20.017 40.004 100.0
n = 2 4.2857 8.1116 16.047 20.021 40.005 100.0
n = 5 4.318 8.1406 16.032 20.031 40.008 100.0

Moreover, by inspecting the numerical solutions m′ of equation (17) for dif-
ferent values of m and n, as depicted in Table 1, we propose an approximation
rule called the “m′ = 2m− 2” rule.

Proposition 2. Given m and n, the solution m′ of (17) can be approximated,
for m sufficiently large, as:

m′ � 2m− 2 ,

or, equivalently
(
as α = m+n−2

m+n

)

α′ � (4 + n)α− n

(2 + n)α− (n− 2)
.

We note that this approximation is all the more accurate when α is near 1,
and it is in agreement with the approximation provided by Oliveira et al.

A Third Result: Almost Additivity Unfortunately, a closed form expression for
the distance between pZ and f(m

′) is difficult to derive. The following theorem,
however, allows us to derive an upper bound on this distance.

Theorem 8. The distribution of the form f(m
′) closest to pZ satisfies the or-

thogonality property

D
(
f(m

′)||pZ
)
= S1

(
f(m

′)
)
− S1 (pZ) . (19)

Moreover, the corresponding minimum Kullback-Leibler distance can be bounded
as follows:

D
(
f(m

′)||pZ
)
≤ S1

(
f(m

′)
)
− S1

(
f (m)

)
+

1
2
log 2 . (20)

Proof. Remarking that

∫
pZ log f(m

′) = logAα′ − m′ + n

2

mZ∑
k=0

αkwn (2k + 1)

= logAα′ − m′ + n

2
wn (m′) ,
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we deduce

D
(
pZ||f(m

′)
)
= −S1 (pZ)−

∫
pZ log f(m

′)

= S1

(
f(m

′)
)
− S1 (pZ) .

Let us now consider

S1 (pZ) = S1

(
pX+Y

2

)
= S1 (pX+Y)− log 2 .

A classical inequality on the Shannon entropy of the sum of independent random
variables is the so called entropy power inequality [3]:

S1 (pX+Y) ≥ S1

(
pX̃+Ỹ

)
, (21)

where X̃ and Ỹ are independent Gaussian random variables such that

S1

(
pX̃

)
= S1 (pX) and S1

(
pỸ

)
= S1 (pY) .

These constraints are equivalent to

σX̃ = σỸ =
exp

(
m+n

2 wn (m)
)

Aα

√
2πe

,

so that

S1

(
pX̃+Ỹ

)
=

1
2
log

(
2πe2σX̃

)
= S1

(
f (m)

)
+

1
2
log 2 .

	

Let us remark that, as m grows, the Shannon inequality (21) and the bound

expressed by (20) become tighter.
For the sake of comparison, it is more convenient to consider a relative

Kullback-Leibler distance defined as

Drel

(
f(m

′)||pZ

)
=

∣∣∣∣∣∣
S1

(
f(m

′)
)
− S1 (pZ)

S1

(
f (m′)

)
∣∣∣∣∣∣ , (22)

so that the computed upper bound is now defined by

Drel

(
f(m

′)||pZ

)
≤

∣∣∣∣∣∣
S1

(
f(m

′)
)
− S1

(
f (m)

)
+ 1

2 log 2

S1

(
f (m′)

)
∣∣∣∣∣∣ . (23)

In Table 2, we present, for n = 1 and several values of m, the values of the
relative upper bound as defined by the right hand side of (23). Moreover, we
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Table 2. Relative Kullback-Leibler distance, upper bound and numerical ap-
proximation

m = 3 5 7 9 11 13 15 21 25 31

Drel(f(
m′)||pZ)×104 9.176 5.931 3.501 148.7 1.875 1.407 0.516 0.028 0.042 0.031

bound (23)×104 660 480 476 783 1718 2 75 1 25 33.18 18.75 9.82

give an approximated numerical value of the true relative distance as defined by
(22).

Inspection of the numerical values ofDrel(f(m
′)||pZ) as a function ofm shows

that the approximation of pZ by f (m′) holds up to a relative error bounded by
0.1%, which is decreasing a function of m, for m ≥ 11. The bound (23) is weaker
but has the advantage of being in closed form.

4 Conclusion

In this paper, we have provided a complete characterization of the α−entropy
maximizers under covariance constraints for multivariate densities. Elliptical in-
variance and a Gaussian mixture representation where established and the issue
of stability of the entropy-maximizing densities was addressed. Applications of
these results to pattern recognition, inverse problems, communications, and in-
dependent components analysis are currently being pursued.
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