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ABSTRACT

This paper addresses the problem of blind beamform-
ing in a cyclostationary context. We show the equiva-
lence between the SCORE algorithm derived by Gard-
ner et al., and the minimization af an aptimally weighted
quadratic cost function. This approach allows us to jus-
tify, from a statistical point of view, the relevance of the
SCORE algerithm.

Introduction

Introducing the blind beamforming problem in
a cyclostationary context

The cyclostationarity property of signals appears to con-
siderably simplify the treatment of many problems in
which they are involved. Specifically, Gardner et Al
have highlighted how this property may be exploited in
the context of digital communications. In this article,
we address the more specific problem of blind heam-
forming,.

In this context, a signal transmitted by some emitter
is supposed to be received by an array of ¢ sensors. In
the absence of multi-path effects, the complex envelope
of the continuous-time sensor array output writes:

F(t) = ho(t) + ow(t) (1)

were §(t) = [fa(t)...T(t)]"and () is the complex
envelope of the modulated signal. h is a constant un-
known vector, representing the distortion due to propa-
gation; ils norin may be, without restriclion, sel Lo one.
The oi(t) term represents the effects of both interfer-
ences and additive noise; it is assumed to be stationary
and Gaussian. If we assume moreover that 2(t) writes

7)) = Y amplt —mT) )

meZ

where (a,,),,., are the symbols to be transmitted,
then the signal 7(t) is cyclostationary with cyclic fre-
quency % Denoting by y(n) the array output sampled
at frequency 13 , e y(n}= y(n%) , we have the follow-

ing discrete time model:

y(n) = hv(n) + aw(n) (3)

where v(n) is a discrete time, cyclostationary signal
assumed to be circular, with cyclic frequency o = %,
and where w(n) is a stationary Gaussian noise. The
problem of blind beamforming is the following: how to
reconstruct the unknown emitted sequence ¥(n) from
the observation of the received signal y(n), vector h be-
ing unknown.

In the case where vector k is known, a natural so-
hution to this problem consists in constructing an esti-
mate signal ¥{n} of v(n} using a spatial filter g such as
%(n) = g7 v(n); the spatial filter is then chosen so as to
minimize the quadratic cost function

N=1
Ciener(d) = Y~ 3 B [[0(m) —0(m)F] 0
=0

The corresponding minimum gw iene of this function
is nothing but the classical spatial Wiener filter given,
up to a constant scalar factor, by Guioner = R;yl fe,
where symbol ~ stands for conjugation and R, denotes
the "covariance matrix”

N-1
By = lim [% e [y(n)y‘(n)}} %)
In practice, the observation is available from n =: 0 to
n =N -1 < oo, and R, is replaced by its empirical
consistent, estimate Ry, = + }:2’;01 E(y(n)y (n)).

As h is unknown, Gardner [2] proposed the so-called
SCORE algorithm remarking that the minimum §w iener
of function Ciy;ener(¢) coincides, up to a constant, with
the minimum of the following cost function:

N1

()scorc(g) = Nlill'lilw % Z FE [|gTy(n) _ T(ﬂ)ei'm|2}
(6)

n=0
where the signal r(n)}, constructed as r(n) = ¢Ty(n),
acts as a reference signal. Vector ¢ is supposed to be
chosen non orthogonal to vector it , and may be chosen
optimal in a certain sense. In the context of a finite sam-
ple observation {y{n))o<n<N—1, Cseore(g) is replaced by

- N- ine|2 .
the cost function 3 anol lgTy(n) — r(n)e | , leading



ta the estimate
Twiener = By Rir (7

where R‘;‘, is the empirical estimate

N-1
fy =y 2 uwirte e ®

of the cyclic correlation Ry, at frequency a.

However, the choice of a unique scalar reference sig-
nal, although motivated by computational cost consid-
erations, is not, from a statistical point of view, fully
justified. In other words, the multivariate observation
y(n) is reduced, in the Cazore cost function, to a scalar
signal r(n) = ¢’ y(n), what should induce a loss of in-
formation. The purpose of this paper is to show that
the reduction of y(n} to a one-dimensional observation
can be justified in a statistical sense.

the proposed approach

Instead of directly estimating the spatial Wiener filter,
it is possible to first estimate &t by some vector R and to
deduce from % the estimate of gw iener given by Rw

Under certain conditions, we shall establish that if )
is an optimal estimate in a sense to be precised, then
the estimate R 1h has exactly the structure (7)used by
Gardner.

In order to estimate /i, we remark that the correlation
matrix Ry, verifies, from (3}, the following relation:

RS, = hh" RS, (9)

where R%, denotes the cyclic correlation coefficient of
v at time 0 and cyclic frequency . From this obser-
vation, it follows that the unknown vector h coincides,
up to a constant factor, with the left singular vector of
Ry, corresponding to its unique non zero singular value.
This remark gives a number of straightforward methods
to derive consistent estimates of vector i. However, in
order to show the statistical relevance of the SCORE al-
gorithm, we adapt to the present situation an approach
presented by Gurelli and Nikias [5] in the context of
rulti-channel blind equalization.

1 Deflnition of a cost function and its optimal
weighting

1.1 the guadratic cost function

Ifz = [zy...2,] is a rxq matrix, let us denote by F(z)
the 9-(--q',‘,_—ll-r:h:q matrix whose block lines are the matrices
0,...,0,-%;0,...,0,%,0...,0] with } <i<j <ql}.
Matrix F(RT) is in fact deﬁned so that each of its lines
are orthogonal to hT. Moreover, it is easy to check that
Rank{F(hT)) = g—1 , so that the rows of F(hT) form
a generating family of the orthogonal of AT. Finally, for
convenience, we denote by G{z) the matrix F(z7)7 .

It follows from {9) that matrix F(zT)verifies the other
following relation:

F(hT)Rg, =0 (10)

This remark leads to a simple estimation scheme.
First, matrix Ry, is estimated empirically by

R, = Nzy(n).; (n)e~ine (11)

n=0

Then one estimates & {up to a constant factor) by
minimizing the cost function C'(f) defined by:

ctn =||runig, || (12

under the non triviality constraint ||fl| = 1. In or-
der to explicit the expression of C'(f), we introduce the
row vectorization operator vec which associates to a ma-
Ay
trix 4 = the row vector wec{A) = [A; --- An].
An
Then, it is clear that C(f) can also be written as

() = {t-'ec (F( f)ﬁf;y)} [Uec(F( f)ﬁ:;y)]" (13)

Moreover, one checks easily that vec (F { f)fﬁ;'y) =
fTG(R2,), so that C(f) can be written as C(f) =

o
the constraint ||ff] = 1 is the eigenvector assomated to

the smailest eigenvalue of the matrix G( G yy)
and is a consistent estimate of R up to a constant scalar
factor.

Of course, the minimum of C{f) under

1.2 a weighted version of the quadratic cost
function

We consider in what follows a generalization of this cost
function, introducing a weighting matrix W as follows

Cw(f) = [vec (FUIRS, )| W [vec (F(NES,)] (19)

A very important point is that W can be chosen op-
timally in a certain sense. In order to explain this, we
first have to remark that the minimum of the above cost
function is of course defined up to a constant medulus
1 scalar factor.

In order to fix which particular selution we consider,
we denote by hw the unique solution of the above min-
imization problem for which h'ﬁw is real. Then, under
mild technical assumnptions, # can be shown as in [4]
that the following results hold.

Theorem 1 If Kernel(G(R, )G(

Kernel(G(R )WG(
timate of h

vy ) coincides with
’y)%) then Rw is a consistent es-



Such a weighting matrix W will be called admissi-
bie from now on. Moreover, VN (ﬁw - h) converges
in distribution, as the number /¥ of cbservations grows
infinitely, toward a Gaussian random vector N'(0, 3,y ).
The matrix Y, is called the asymptotic covariance ma-
trix of the estimate Ew. Moreover,

Theorem 2 Let A% denote the pseudo inverse matriz
of matriz A defined as the asymptotic covariance matrix
of the random vector vec{F(h)RS,). Matriz A¥* is ad-
missible and leads to an asymptotically optirnal estimate
in the sense that

Ta#» SXw (15}

Finally, the optimal asymptotic covariance matrix
YA is given by

Tas = [GRI)A*GRS)]T (16)

This shows that it is possibie to choose optimally the
weighting matrix W so as to minimize the asymptotic
covariance of the estimate. At this point, one should
note that the estimate Aw introduced below satisfies the
requirement; h* hw is real. In practice, as 2 is of course
unknown, it is not possible to extract hw but ahw for
some unknown modulus one scalar factor a. Therefore,
the estimator minimizing Cy (f) for W = A¥ is in some
sense optimai up to a modulus one factor.

Our remaining work consists thus in computing ma-
trices A and A* in order to obtaln, according to the
preceding theorems, the optimal weighting matrix as
W = A¥  as well as the structure of the corresponding
estimate of A when the noise plus interference contribu-
tion converges toward zero.

2 Derivation of the optimal weighting matrix

= cov [UGC(F(h)ﬁgy
the symbol cov stands, in order to simplify the exposi-
tion, for the asymptotic covariance matrix. For this, we
use the relation vec{ABC) = vec(B} AT © C) for any
three matrices A, B and €. Thus

= [G(h) @ I,] [ccm (vec(ﬁ‘;y)” [GhYaL]" (7)

(recall that G(h) = F(h)T). We have first to compute
cov (vec(ﬁ;y)). In this aim, we recall the following for-

We first express matrix A )] where

mulas which generalize the Bartlett formulas [3] in the
case of stationary process:

cov [ﬁﬁ,f.ﬁi‘,,p} = Z Riol,(u)ﬂﬁ)(u)" "o

ueZ

-3 A e

wEL

+ 3 Crprsr(u,u,0)e (18)

weZ

with Cr g g0 (u, w0, 0) = cumiye(u), 37 (v}, 5. (0), yer (0)].
Using Parseval identity, this can be rewritten in the fre-
quency domain as:

Lo .
cov [R Ry p] = 5 fo Stw +@)S{P wyer @ty

1 2x

tor | 8% (w + )P w) el )y
+ > Cropotar(uu, 0)e 7 (19)
ucZ
Let us set T} = 5 _]'0217 5w + )T SO (W)dw,

T3 = & [7 §@)(w + a)T SN w)" dw and
Ty = (AT @ hh™) Y, 7 Colu, 1, 0)e ~d0u
with Cy(u,4,0) = cumlv(n), v(n)", ¢(0)",v(0}].
Then, putting all pieces together and using the Gau-
sianity property of w{n), it follows immediately that

cov (-vec (ﬁ;’;)) =TT +hHh+T (20)

Therefore,
A=[Gh e LN +T+T:GRh & L] (21)

Let us first evaluate the contribution of term T%. For
this, we remark that

[G(A)* @ L) T2 [G(h) @ 1] = (22)

2w
% f Ch) S (w + )T G(R) © S (w)* dw
o]

But, S©@Nw+a)T — RRTSI P (a+w). As F(AT)h — 0,
it follows that G(h)*A = 0. Therefore, the term T3 has
no contribution in A. Similarly, contribution of term T3
vanishes. On the other hand, S ()7 = RAT 3% (W) +

028%) (). Hence, remarking again that G(h)*R = 0, it
follows that

2
A = - / G ?SOWGHR)  (23)
2 [
® (rh"SQ(w) +0*SOw) ) du

le.

A =d2Ag +atA, (24)

where Ay = G( YKG(R) @ hh~
with K = L % §0) ()5 w)duw.

From now on, we con51der only the case where the
signal lo noise ratio is lavorable. In Lhis case, one inay
approximate A by o¥Ag. On the other hand, it can be
shown that Ag is admissible, so that

Sas = o2 [G (R2,) A%G (Rf;y)] *iole?)  (25)



and that, up to terms in o{c?), this coincides with the
asymptatic covariance of the estimate ki, ». Therefore,
o

as 0?2 — 0, the estimate 34# may be approximated in a
relevant way by h a¥
We now study the structure of Egg. In this aim,

we remark that i af minimizes the following quadratic

form fTG( w) A#G (Rfy'y) f under the constraint
[l = L. Let us denote by Q the associated matrix

O— G( )A#G (R;‘y) . Clearly,
hh
iR

Af = (GKGHhH* o (26)

On the other hand, matrix K is positive definite.
Therefore, the column spaces of both (G(R)KG(h)")*
and G (k) coincide, and are {g—1) dimensional. If we de-
note by V{h) a ﬂg;—llx(q— 1) isometric matrix for which
Range(V(h)) = Range(G{h)), matrix (G(h)KG(h)*)#
can be written as (G(R)KG(h)"Y* = V(R)LL*V(R)" for
some invertible {q )x(¢—1) matrix L. Therefore, ma-
trix A writes Af = V(R)LL*V(h)" ® P

Moreover, it is straightforward that

e B
G (R vimL ||h1[ -G (ngmﬁ) V(R)L (27)

If we put
rn) = ¥(n) (28)

h*

P
1]
it 1= clear that ﬁgﬂl'h_”f = Rf;, where 1t is understood

that
N-1

N2 Oy(ﬂ)‘r(ﬂ)' e (29)

Therefore, § = C( )V(h)LL Vih) G’( )‘.
By the particular structure of the operator G we
have Ran,k(G( )) = g — 1. Hence, it is clear that
Rank( A) < g — 1, and that, unless with probability 0,
Rank(()} = ¢ — 1. Thus, the above minimization prob-

lgm has, as unjgue solution, the vector of the Kernel of
€}, i.e. vector Ry,

Ry, =

3 Conclusion

As a conclusion, we may remark that the optimal
weighting approach consists in the following steps:

1- the reference signal should be constructed using
(28). As however vector h is unknown, one has
to construct a consistent initial estimate ‘ﬁo and to
form the estimated reference signal 'Tn) defined

by analogy with (28) by F(n) = TN o y(n)

2- an estimate ﬁg,. can then be computed following
(29), replacing r(n) by its estimate #{n)
Ra
3- one estimates i by h= =
RG
yr
One can show that replacing A by its consistent esti-
mate does not modify the asymptotic covariance matrix.

4- finally the corresponding estimste Gy of gy is given
by:

p-1
ARy

" Tm

and exactly coincides with the solution given by
SCORE algorithm in the case where the "scalar refer-
ence” signal coincides with 7{n) (see [2] for more de-
tails). Therefore, our results demonstrate that, in a
certain sense, the use of a well chosen scalar reference
signal in the context of the SCORE algorithm is quite
motivated from a statistical point of view.

__One may finally remark that, if the initial estimate
ho is huilt as the greatest left singular vector of A2
R .ho
R2 holl’
may be viewed as one step of the power algorithm for
the extraction of an eigenvector of matrix H,.

(30)

yﬁ"

relation (30) rewrites simply as h = which
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