Matrix Fisher Inequalities for non-invertible linear systems

Christophe Vignat
Université de Marne-la-Vallée, ENST URA 820
77 454 Marne-la-Vallée cedex, France
and E.E.C.S., University of Michigan
Email: vignat@univ-mlv.fr.

Abstract — In this paper, we show how Fisher inequalities first derived by Zamir can be proved and extended using a simplified approach. Cases of equality are detailed to reveal interesting links between notions of gaussianity and invertibility.

I. Introduction

In [1], R. Zamir extended an important series of Fisher Information Inequalities (FII), first derived in [2], to the case of non-invertible linear systems. In this paper, we provide an alternate elementary derivation of Zamir's inequalities, and show how the concept of extractable component [1] characterizing the cases of equality is related to the notion of minimum norm solution of the linear system.

II. A NEW DERIVATION OF ZAMIR'S F.I.I.

In this paper, we consider a linear system with $(n \times 1)$ random input vector X and $(m \times 1)$ random output vector Y, represented by a full row rank $m \times n$ matrix A, as

$$Y = AX$$

The probability densities f_X and f_Y are supposed to satisfy regularity conditions [2], and we denote ϕ_X and ϕ_Y their respective score (log derivative) functions. The following first theorem extends [3, Lemma 1].

Theorem 1 The best estimate (in the minimum mean square error sense) of $\phi_X(X)$ from observations Y is

$$\hat{\phi}_X(X) = A^T \phi_Y(Y) \tag{1}$$

We propose here a simple proof of this theorem by showing that, for any multivariate function $h: \mathbb{R}^m \to \mathbb{R}^n$

$$E_X \left(\phi_X \left(X \right) - \hat{\phi}_X \left(Y \right) \right)^T h \left(Y \right) = 0 \tag{2}$$

where $\hat{\phi}_X(Y) = A^T \phi_Y(Y)$. This result follows from elementary algebraic computation rules involving the score functions. The proof follows then from the classical orthogonality property of the MMSE estimate. Observe that theorem 1 extends [3, Lemma 1] since the components of X are not supposed independent here.

Next, as was shown in [1], theorem 1 implies the following FII:

$$J_X \geq A^T J_Y A \tag{3}$$

$$J_Y \leq \left(AJ_X^{-1}A^T\right)^{-1} \tag{4}$$

The simplified proof we propose here follows from the positivity of block matrices U_1 and U_2 :

$$\left\{ \begin{array}{l} U_{1} = E \left[\begin{array}{c} \phi_{X} \left(X \right) \\ \phi_{Y} \left(Y \right) \end{array} \right] \left[\begin{array}{c} \phi_{X}^{T} \left(X \right) & \phi_{Y}^{T} \left(Y \right) \end{array} \right] \\ U_{2} = E \left[\begin{array}{c} \phi_{Y} \left(Y \right) \\ \phi_{X} \left(X \right) \end{array} \right] \left[\begin{array}{c} \phi_{Y}^{T} \left(Y \right) & \phi_{X}^{T} \left(X \right) \end{array} \right]. \end{array} \right.$$

Jean-François Bercher
ESIEE, Laboratoire Signaux et Télécoms
Cité Descartes BP 99
93 162 Noisy-le-Grand Cedex
Email: bercherj@esiee.fr

Moreover, we remark that this result can be retrieved as a consequence of a more general theorem by Papathanasiou [2].

III. CASE OF EQUALITY IN ZAMIR'S F.I.I.

In this section, the components X_i of X are supposed mutually independent. The case of equality in inequality (3) is characterized by the following theorem.

Theorem 2 Equality holds in (3) if and only of matrix A possesses (n-m) null columns or, equivalently, if A writes, up to a permutation of its column vectors

$$A = [A_0|0],$$

where A_0 is a $(m \times m)$ non-singular matrix.

The case of equality in (4) is characterized as follows:

Theorem 3 Equality holds in (4) if and only if each component X_i of X verifies at least one of the three properties

- a- X_i is gaussian
- b- X_i coincides with the i-th component of the minimum norm solution X_0 of system Y=AX
- c- X_i correspond to a null column of A.

We show that this result can be easily proved by considering the set of solutions of system Y = AX expressed as $X = X_0 + (I - A^\# A)Z$ where $X_0 = A^\# Y$ is the minimum norm solution, $A^\#$ denotes the pseudoinverse of A while Z is any vector.

As a conclusion, equality in (4) requires that all components of X that differ from the components of the minimum norm solution X_0 and that influence the output Y – the so-called non-extractable and non-irrelevant [1] components of X – should have a gaussian distribution.

ACKNOWLEDGMENTS

The authors wish to thank Pr. A. Hero for helpful remarks about this problem.

REFERENCES

- R. Zamir, "A Proof of the Fisher Information Inequality via a Data Processing Argument", IEEE Trans. on Information Theory, IT 44, 3, pp. 1246-1250, 1998.
- [2] V. Papathanasiou, "Some Characteristic Properties of the Fisher Information Matrix via Cacoullos-type Inequalities", Journal of Multivariate Analysis, 14, pp. 256-265, 1993.
- [3] R. Zamir, "A Necessary and Sufficient Condition for Equality in the Matrix Fisher Information Inequality", technical report, Tel Aviv University, Dept. Elec. Eng. Syst., 1997.