T mn

T

ANALYSIS OF GRADIENT-BASED ADAPTATION ALGORITHMS FOR LINEAR AND NONLINEAR
RECURSIVE FILTERS

Christophe Vignat, Christine Uhl ™ and Sylvie Marcos

Laboratoire des Signaux et Systemes
ESE-Plateau de Moulon, 91192 Gif sur Yvette, Cedex, France
* Thomson CSF/RGS, 66 rue du Fossé blanc, 92231 Gennevilliers, France

ABSTRACT

In this paper, the problem of adapting linear and nonlinear
recursive filters through a gradient-based optimization
procedure is considered. The rigourous application of this
technique implies a time-growing computation load.
Recently, a method for estimating the weight updates was
introduced, leading to a new class of algorithms. Here, the
convergence properties of these algorithms, when applied to a
linear, then nonlinear recursive filter, are exhibited, through a
dynamical analysis of the adaptation process. Since the
general analysis is very difficult, the case of a first order filter
with a constant input is considered. Significant results are
obtained in this particular application.

INTRODUCTION

In many fields of signal processing, such as time series
prediction and modelling or system identification, the use of
recursive linear or nonlinear filters is desirable. The
adaptation ability of these filters is essential when the
nonstationnary environment implies that the system acquires
and continuously tracks an optimal state. Then, adaptive
algorithms aim at updating the system parameters.

The LMS algorithm is of common use in linear filtering
because of its simplicity. It consists in a stochastic
approximation of the gradient algorithm minimizing the mean
square error at the system ouput. However, in addition to the
specific problems of recursive filters (i.c. non-unicity of the
optimal filter, possible unstability), appears the difficulty of
evaluating the recursive quantities (output error and its partial
derivatives) involved in the parameter updating [1]. These
quantities should theoretically be computed, at time n, as the
output of a recursive filter whose parameters are fixed at their
latest value, taking into account all the past of the input
signal. This results in a memory length and a computation
load which grow with n. This is not realistic for an on-line
application.

A class of algorithms has been recently proposed [2],
consisting in truncating the memory of the system to fixed

values, i.e. L for the system output and L' for the derivatives.
These finite memory recursive LMS algorithms
(FMRLMS(L,L)) are briefly described in the first section.

In section 2, the behavior of these algorithms (stability,
speed and accuracy of convergence) is analysed as a function
of L and L'. The global system, consisting in the recursive
filter plus the adaptation process, is a discrete time dynamical
system whose behavior is described by a nonlinear
recurrence:

X(n+1) = F(X(n)). 0.1
X(n) is the state vector at time n, and its dimension is the
order of the system. The analysis of this system is performed
through the search of fixed points and second order cycles as
well as their associated multipliers. The simple case of a first
order linear, and then nonlinear, filter with a constant input is
considered. Results are given with respect to the values of L
and L' and compared to simulation results.

1. GRADIENT-BASED ADAPTATION OF
RECURSIVE FILTERS

1.1. The gradient algorithm
Let e(n) be the output of a recursive nonlinear filter with
input s(n), transverse parameters a;, 0<j<T and recursive
parameters b;, 1<iSR

R T
e(n) = Ybif(e(m-i)) + Zajs(n—j). (1.1
=0

i=1

Note that such a nonlinear recursive filter can be a part of a
DPCM speech encoder or of a decision feedback loop
equalizer. It can also be viewed as a formal neuron with a
feedback and with a time signal as input {2]. Some examples
of function f will be given below.

In an adaptive context, a; and b; parameters are updated in
order to minimize the mean square error between e(n) and a

target response d(n). In the following, we will set dm=0. A
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classical minimization procedure consists in using a gradient-
based algorithm. The straightforward application of the LMS
algorithm to the case of recursive filters leads to the following
parameters update formula:

{aj(n+1)=aj(n)+ue(n)aj(n) j=0, ..., T 2

bi(n+1)=bi(n)+pem)Bi(n) i=1, ..., R

where a;(n) and Bi(n) are computed recursively as follows:

R
aj(m) & - de ;j‘) = s(n-j)+ Y.buf (e(n-k))aj(n—k) (1.3)
k=1
R
Bicm) & - B _ i)+ Thuf emxnpin)
k=1

At time n, all the derivatives oj(n—k), i(n—k) and the outputs
e(n—k) used in (1.1) and (1.3) should be evaluated with the
coefficients a;=aj(n) and by=by(n) being fixed. Accordingly,
at time n, aj(n), Bi(n) and e(n) should be computed with an
unbounded growing memory and fixed parameters. This
cannot be fulfilled in practice.

1.2. Finite memory recursive algorithms

Recently, a general class of algorithms was introduced,
which consists in truncating, for the calculus of e(n) (resp.
a;(n) and Bi(n)), the memory to a fixed length L (resp. L.
This class of FMRLMS(L,L") algorithms was shown to
include most of the gradient-based algorithms existing in the
litterature for adaptive recursive linear filtering [2]. These
FMRLMS(L,L') algorithms consist in replacing the
recurrences (1.1) and (1.3) by
( R T
™) = L bimfe®m-i) + Tamsm-j)

j=0

i=1

R T
{ e®n-1) = Y bimfe®m-i-1)) + Tam)st-i-1)
i=1 =0

-- - (1.4)
R T

e®™n-L+1) = X, bimfE®m-i-L+1))+ Tajm)s(n—j-L+1)

\ i=1 0

-

R
Bi®m)=—f(e™(n—i))+ Y bi(m)f (e(n—k))Bi™(n-k)
k=1

R
B®m~1)=—f(e™m-i-1))+ Y by(mf (e(n—k-1))B;™(nk-1)
k=1

B P (n-L'+1)=—f(e®(n-i-L'+1))
R

(1.5)

+Z b(m)f (em—k-L'+1))B™(n—k-L'+1)
\ k=1

j(n) is determined in the same way as [B;(n) with s instead of
f(e). The superscript (n) means that the values are computed
with aj(n) and bj(n) being fixed. Several choices to initialize
these recurrences are possible [3]. In this paper, we choose
i L+1)=e®Dn—i-L+1), Bi®n-k-L'+1) = ;& Dn-
k-L'+1). In this case, the recursive nature of the system is
maintained.

Note that the extended LMS algorithm [1] corresponds to
L=1 and B (n)=—f(e®™(n~i)) which cannot be derived from
(1.5). In the following, a generalization of the extended
LMS, L21 and B;®™m)=—f(e®(n-i)), will be referred to by
antificially noting L'=0.

2. BEHAVIOR OF THE FMRLMS ALGORITHMS

2.1. Definitions
X is a fixed point of the non linear recurrence (0.1) if:

F(X)=X 2.1
A second order cycle of the non linear recurrence (0.1) is a
set of 2 points C=[X, Y] satisfying:

FX)=Y, F(Y)=X, F(X)#X, F(Y)=Y. 2.2)
Their attractive or repulsive nature is determined by their
multipliers which are the eigenvalues of J{G(X)], J being the
jacobian, and G(X)=F(X) if X is a fixed point,
G(X)=F(F(X)) if X is a point of a second order cycle. Note
that the multipliers are independent of the point X of the
cycle. If all the multipliers have their moduli smaller than 1,
the cycle is attractive. If one of the multipliers has a modulus
larger than 1, the cycle is repulsive.

2.2, The investigated system

Since the study in the general case is very difficult, we
deal with the case of a first order recursive nonlinear system,
with a constant input s, adapted by the FMRLMS algorithm.
It is completely determined by a recurrence of type (0.1)
which is of order 2 (X(n)=(e(M(n),b(n)) if L'=0, or 3
(X(m)=(e®(n), b(n), B®(n)) if L'#0:
e®(n) = s — b(n)f(e®(n - 1)), L21,
b(n+1)=b(n)+pe®X(n)B®)(n)
B®(n) =f(e™Xn-1))-b(n)f (e™(n-1))B™(n-1)) if L'=0
B®X(n) = f(e®(n-1)) if L'=0.
Accordingly, if L'=0 the system is of order 2 and if L'#0, it
is of order 3. This case is the basis to a generalization for

(2.3)
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more complex systems. The superscript (n) will be omitted in

the following.

2.3. The linear system: f(x)=x

This case was investigated in [4]. There is no fixed point
for s#0. If s#0, two different cycles, C, and C,, are found
according as L'=0 or L'#0 and L>1.
When L'=0, C;=[(s, 1), (0, 1)}]. Its multipliers are complex
conjugate. Note that in Cy, b=1is the stability limit for a first
order recursive linear filter. The case L=1 (extended LMS) is
critical since the modulus of the multipliers is equal to 1.
There is no general theory determining the nature of the cycle
C, in this case. The simulations show that b(n) moves around
1 at a fixed distance without leading to instability: the cycleis
neither attractive nor repulsive. The latter has been referred to
as the selfstabilization phenomenon of the LSM algorithm
[5]. When L>1, C; is a focus with multipliers modulus equal
1o 11-us2L-1)/21. If pusAL-1)<4, C; is attractive and the
selfstabilization is reinforced. This is illustrated in figure 1.
When L'#0, C,=[(e1,b1,B1), (€2,52,87)] with e, and e, not
equal to 0, and b; and b, not equal to 1. The points of the
cycle and the multipliers can be computed numerically; the
system is unstable (repulsive cycle) if L=1 [5] and stable
(attractive cycle) if L>1. In addition, the larger L', the faster
the convergence to Cs. This is illustrated in figure 2 and 3.

2.4. The nonlinear system: f(x)=A sign(x)

Since f£'(x)=0 except for x=0, necessarily L'=0. In this
case, it is easy to show that there exists a fixed point (0, s/A).
Its multipliers (0,1-11A2) are independent of s and L, and the
fixed point is attractive. Futhermore, no second order cycle
such as by=bz exists.

2.4. The nonlinear system: f(x)=A tanh(px), p<e

This nonlinear function, characterized by its slope p at the
origin, is common in neural networks and can be viewed as a
derivable approximation function of the sign function used in
quantification or decision systems.

There are no fixed points for s#0. Two different cycles,
C, and C,, are found according as L'=0 or L'#0.

When L'=0, C; = [(0, s/f(s)), (s, s/f(s)]. In the case of
p>>Als, £(s)=A and f(s)=0 and the multipliers (0, 1-psA)
of C; are found independent of L. Cycle C, is illustrated in
figure 4.

In the case of p<<Afs such as f(s)=ps and f(s)=p, the
multipliers of C; are found equal to (1, 1-pp2s2(L-1)/2).
This is illustrated in figure 5; note that in this case s/f(s)>s/A.

When L'#0, the determination of second order cycles is
untractable. For L=L'=1, approximated results can be found
and their generalization to larger values of (L,L") can be
observed on simulations.

In the case of p<<A/s (f(s)=ps), C4=[(€1,01.81).(e2:02,87)].

T

T

The two points of the cycle are different but close. In first
approximation, we find (see also in figure 6): e, #¢&, =8/2,
b, #by =1/p , By # By = s/(1+P?).

In the case of p>>A/s (f(s)=A) such as f(e)=A, the results are
shown to be the same as in the case 1L'=0 with a large slope.
In the case of p=A/s, assuming that O<lel<s, ¢ is between the
linear part and the threshold part of f(x). Thus, in first
approximation e, # ¢; = s/(14p/f(e)) , by # by =1/(c).

The influence of p on the cycle points are shown in figure 7.

3. CONCLUSION
The behavior of adaptive recursive linear and nonlinear

filters when adapted with the FMRLMS(L,L") algorithms
was investigated in a simple case. In the linear case or

_nonlinear case with a small slope at the origine, the larger L

and L', the faster and more accurate the convergence. This is
not the case in the nonlinear case. Note, however, that
increasing L and L' can be interesting in nonstationary
environments or when the system is close to its stability limit;
it is to say, each time that b(n) may be very different from
b(n+1). At last, note that neither in the linear case, nor in the
nonlinear case the FMRLMS algorithms give the same results
when L'=0 and L'#0: we found that the minimum of the
mean square output is reached more accurately for L'#0.
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Figure 1: FMRLMS(L,0): Linear case.
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Figure 2 : FMRLMS(2, 2): linear case.
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Figure 3 : FMRLMS(5, L"): linear case.
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