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Abstract

This paper addresses the blind identification of a linear time invariant channel, using some second-order cyclo-
stationnary statistics. In contrast to other contributions, the case where the second-order statistics of the noise and
of the jammers are totally unknown is considered. It is shown that the channel can be identified consistently by
adapting the so-called subspace method of Moulines et al.: this adaptation is valid for Fractionally Spaced systems
and, more interestingly, for the general systems exhibiting Transmitter Induced Cyclostationnarity introduced by
Tsatsanis and Giannakis. The new subspace method is based in both cases on a common tool, i.e., a general spectral

factorization algorithm. The identifiability conditions are specified and some simulation examples are given.
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1 Introduction

Under standard hypotheses (linear modulation, time-invariant channel), the complex envelope of the (noise-free)
received signal in a digital communication context is' z4(t) = >, cz 5(k)ha(t — kT'), where {s(n)} is the sequence of
symbols, T the symbol period, and h,(.) a composite time-limited causal mapping - the support of which is [0, M,T],
say - accounting for shaping, the multi-path effects and the reception filter. It is easily checked that z,(t) can be

rewritten as

za(t) = 3 S(n)halt — k) (11)

keZL q

where ¢ > 1 is any integer, and {5(n)} is the so-called zero-padding sequence at the rate Z, given by 5(¢qn) = s(n)

and 5(ng+ k) =0 for k=1---q — 1. Hence, the expression of the sampled version of z,(t) at the rate % is

2(n) = [h(2)]-5(n) (1.2)

where h(z) = EZZS hxz7*, and hy, = ha(k%) (without any restriction, we have imposed gM, to be an integer). Thus
the sampled observation is the output of an unknown finite impulse response filter h(z) of degree gM, driven by the
sequence {5(n)}, leading to Inter-Symbol-Interference (ISI). It is of interest to identify the unknown channel h(z) from
the second-order statistics of the observation so as to remove the ISI. Concerning this point, the model (1.2) calls for

comments:

e If ¢ =1 (standard systems), §(n) = s(n) and, in general, the second-order statistics of {z(n)} do not allow the

identification of h(z);

e A contrario, the case ¢ > 1, which corresponds to a Fractional Sampling (FS) system, deserves consideration.

Noticing that {3(n)} is cyclostationary at the cyclic frequencies 0, ..., %, it was proved indeed that if h(z)

does not possess q zeros on a circle, separated by %T” radian angles, the entire second-order statistics of {z(n)}
enables the identification of h(z). Various time-domain estimation algorithms of h(z) based on the second order
statistics of the observation have been proposed in [15] [14] [7]. These approaches can be extended to the case
where the useful signal z,(t) is corrupted by an additive noise or / and interferences with known (up to a scalar

factor) second order statistics.

The purpose of this paper is to develop a simple blind identification scheme, relying on certain second-order statistics,
which remain consistent when z,(t) is corrupted by an additive noise or/and interference process i,(t), uncorrelated

with z,(t), the second-order statistics of which are unknown.

Lthe subscript “a” stands for “analog”.



In the case of an FS system with ¢ > 2, it was briefly remarked by Giannakis in [8] that it is possible to identify h(z)
from the cyclo-statistics of the noisy observed signal®> z(n) + i(n) at the non-null cycles 1/q,...,(q — 1)/q, provided
that these cycles are not cycles of {i(n)}.

This principle of separating the contributions of the different cycles, then removing the corrupted statistics, is clever
as far as the struggle against jammers is concerned. One should nevertheless note that this theoretical approach may
prove useless in certain F'S contexts, since the band-limited character of a communication channel makes most of the
cyclo-statistics of interest numerically negligible, and the aforementioned method is often prone to degeneracies (see [1]
[2] [3]). In order to deal with numerically significant cycles, one idea is to impose some second-order cyclic properties
at the emitter: the so-called concept of Transmitter Induced Cyclostationarity (TIC) was introduced in [11] and has
met with various extensions since (see e.g. [13] [10] [12]).

The principle of TIC is to transmit a sequence of pseudo-symbols {v(n)} at a larger rate (7-) than that of the original

symbol sequence®. The transmission is such that the noise-free analog signal, so received, can be written as

T, (t) = Z v(n)he(t — kT"). (1.3)
keZ
The sampled version at the rate % is then
z(n) = [h(2)].v(n). (1.4)

This time, h(z) = Z,iéw“ hrz"%, and hj = ho(kT') where, as usual, 4 M, is assumed to be an integer. This
formulation shows that Equation (1.4) is a direct generalization of Equation (1.2) in which v(n) = §(n) and T' = T'/q.
The reader may wish to consult the various contributions to appreciate the communication-oriented problems inherent
to TIC systems.

Dealing with the model (1.4), we propose here to show that the subspace method of [5] can be adapted so as to identify
h(z) from some reliable statistics, namely, those free of any corruption. In Section 2, a general spectral factorization
algorithm is presented. Section 3 applies this algorithm to blind identification; rather than developing a general
method, we will focus on three particular cases: the F'S case, the repetition coding case [11] and the modulation case
[13]. Extensions to other contexts are possible. In each scenario, we will thoroughly depict the spectral factorization

and make some remarks on the identifiability conditions. Simulation examples are subsequently given and analyzed.

Section 4 summarizes the main points previously studied for various TIC systems.

2i(n) is the sampled version of i,(t) at the rate &

3The one-to-one correspondence between {v(n)} and {s(n)} is obviously assumed.



2 A factorization algorithm

Let S(z) be a g x 1 rational function* of the form
S(z) = H(2)I*(z™h) (2.5)

where H(z) = E,ﬁio Hyz % is a g x 1 degree M polynomial of the variable 21, [(z) is a scalar-valued® causal rational
transfer function, and I*(z) is obtained by conjugating the coefficients of [(z). Of course, S(z) has a Laurent expansion
S(2) = > 1cz Skz ¥ converging around the unit circle. We focus on the problem of retrieving H(z) from S(z). As

H(z) is a polynomial, it is clear that Sy = 0 as soon as k > M, and we consequently consider

Problem 2.1 Given N > M, under what conditions is it possible to recover H(z) from the Laurent coefficients

{Sk}k=—n,..,n of S(2)? Ezhibit a means of extracting H(z).
We assume the following hypotheses:

e H1 H(z) # 0 for each z, including oo,

e H2 [, = I(o0) is nonzero.

Problem (2.1) could be solved by developing a linear prediction-like method. However, for simplicity, we shall rather
generalize the noise subspace approach of [7].

We first need to recall an important result presented in [5]. Let By be the set of all g(N + 1)-dimensional row vectors
G = [Go, ..., Gn] satisfying the linear relation G(z)H(z) = 0, where G(z) = Zszo Grz *. By is of course a linear
subspace of C*M*Y)_ Let IIy be the orthogonal projector onto By. For every g x 1 polynomial A(z) = 22420 Az k

of degree M, we denote by Tx(A) the ¢(N + 1) x (N + M + 1) Sylvester matrix defined as

Ay A ... Ay 0 ... O
0 AO Al .. AM .. E

Tn(A) = (2.6)
0 ... 0 4 A ... Aym

Then, we have the following result:

Theorem 2.1 Let F(z) be a g X 1 polynomial of degree M. If H1 is true, then, for N > M, the linear equation

InNTN(F) =0 (2.7)

holds if and only if F(z) coincides with H(z) up to a scalar factor.

4In the sequel, capital letters stand for matrices or vectors.

5the case when I(z) is vector-valued can also be treated this way



In other words, H(z) can be identified from the subspace By by solving a linear system. This follows from properties
of minimal polynomial bases of a rational subspace; see [4] for details. It now remains to show that By, and hence I,
can under H2 be extracted from the Laurent coefficients {Si}_n,.... v of S(2). It is clear that G(z) = EkN:O Grz7F, of
dimension 1 x g, satisfies G(2)H(z) = 0 if and only if G(2)S(z) = 0. Denoting by Sy the ¢(IN + 1) x (2N + 1) matrix

defined as
So ... Sy 0

Sy = R ;
Sy ... So ... Sn

G(z)S(z) = 0 implies in particular that GSy = 0, which is equivalent to the condition [G(2)S(z)]_ = 0, where the
notation [.]_ stands for the causal truncation of the function inside the brackets. Conversely, [G(2)S(z)]- = 0 also
means that [k(2)*(271)]- = 0, where k(2) is the scalar-valued polynomial G(z)H(z). Assuming now that H2 holds,
we deduce immediately that k(z) = 0. Hence the space By coincides with the left kernel of matrix Sy associated with
S(2).

Problem (2.1) is solved: we have found a method for recovering H(z), which is valid as soon as H1 and H2 hold. We

now recast some blind second-order problems into this framework.

3 Application to blind identification

Generally speaking, the correlation coefficient at lag 7 and at cycle o of a second-order process {y(n)} is defined as

(see [16] and the references therein) :

According to model (1.4), it is easy to prove that the expression of the cyclo-spectrum of {z(n)} at cycle a is

Séa) (eiw) — h(eiw)h(ei(wf%ra))*sq()a) (eiw)‘ (39)

The expression (3.9) remains valid in a noisy context, as soon as the noise and the jammers are decorrelated from the
signal of interest and do not admit « as a cycle.
Although it is possible to develop further the general framework depicted thus far, such would result in cumbersome

relations. We shall thus concentrate henceforth on the three cases raised in the introduction.



3.1 The FS case.

It is assumed here that ¢ > 2, so that at least two non-null cycles can be exploited. The contribution of the

jammers {i(n)} is assumed not to exhibit cyclostationarity at the shifts %, wes %, and we recall that {v(n) = §(n)}

and T' = T/q. We propose to develop a scheme in the case where the input symbols are white; the method can

be extended directly when the symbols are colored. Under this assumption, S* (ei) = %, for all o = %, ey %.

Consider now the following vector:
S(e) = g8 ()", .., SLaD/D) (¢i) )T

Recalling (3.9), and defining

and I(z) = h(z), the factorization (2.5) holds. The results of the previous section then apply: provided h(z) does not
possess ¢ — 1 zeros on a circle, equally separated by 27” radians, one can identify h(z) from the cyclo-statistics of the
observation at the non-null cycles. In practice, the Laurent coefficients of S(z) are unknown, but they can be replaced
by consistent estimates in the procedure sketched in Section 2 (the equation (2.7) should be solved in the least squares
sense). The proposed estimate of the channel is of course consistent.

Let us now consider the practical aspects of the above-mentioned approach. So as to enlighten the identifiability con-

dition, one may consider increasing the oversampling rate: indeed, the more cycles, the less stringent the identifiability

condition. But
e the order M increases with g,

e since the analog filter h,(t) is band-limited, a larger g reduces the bandwidth of h(2); in other words, according

to Equation (3.9), there are only two non-null numerically relevant cycles: %, %.

A good practical choice is ¢ = 3. The question is: what is the relevance of removing the zero cycle? When the problem
is well-conditioned (this occurs for a large excess bandwidth and for short impulse responses), the color of the noise
does not impact significantly the performance of the full method (all cycles considered, see [7]), even if consistency is
lost. By contrast, consistency is crucial in ill-conditionned problems: in this case the full method is very sensitive to
the perturbations brought by the color of the noise, and fails to provide a good estimate. Excluding the zero cycle is

then recommended; of course, the bad conditioning compels one to use a large analysis window.

Simulation results: ¢ = 3. We consider a GSM channel: the shaping is a raised-cosine with 85% excess-bandwidth; the

symbol period is T = 3.7us and the carrier frequency is fo = 1.087654G Hz. A three path realization is studied. The



characteristics of the channel are given in Tables 1 and 2. The digital channel h(z) is consequently a degree M = 8
polynomial. The symbols are BPSK. The colored noise is the output of r(z) = %(1 + 272 + z=%) driven by a white
Gaussian noise independent of the symbols. The averaged square Euclidean distance between the estimate and the
true channel (MSE) is estimated from 200 Monte-Carlo trials. In Figure (1), the SNR is fixed to 9.2dB whereas the
duration of observation varies from N = 500 to N = 1700 symbol periods. As expected, the standard subspace method

of [7] reaches a limit due to its inconsistency; the consistency of our method is observed. In Figure (2), N = 1000 and

the SNR goes from 4dB to 16dB. As expected, removing the zero cycle is all the less pertinent as the SNR increases.

3.2 The repetition coding and interleaving scheme [11].

One now transmits the sequence {v(n)} at the rate & = 2, which may be read as consecutive blocks of the type

[s(nL),s(nL + 1),...,s(nL + L — 1)||s(nL),s(nL + 1),...,s(nL + L — 1)]. Tt is easy to prove that {v(n)} admits

(2k+1

51— )k=0,...,L—1 as non-zero cyclic frequencies.

Let us moreover assume that {s(n)} is white. Setting uj, = 1/(L(1 — e ?27(2k+1)/2L)) "5 simple computation gives
S£2k+1/2L) (Z) — ,LLk(Z + Z_l).
Consider now the following vector:

. 1 . 1 .
S(e“") — [TS£(2k1+1)/2L) (ezw)*’ -y T5152191\7—1/2L) (ezw)*]T
kl ukN

for any collection of N distinct k; € {1,..., L}. This yields S(z) = 2~ H(2)I*(27') , where

) ) T
H(z) = I:h(zez27r(2k1+1)/2L)’ ___’h(zezzn(sz+1)/2L)

and I(z) = (1 + 272)h(z). The results of Section (2) still hold if one considers S(z) = z5(z). Noticing that L is a

design parameter and can then be chosen arbitrarily big, two crucial remarks follow:

e many cycles in the factorization: let us exploit all the non-null cycles, so that there are L — 1 entries in H(z). On
the one hand, the identifiability condition is that h(2) does not possess L — 1 zeros on a circle, equally separated
2w

by 7. On the other hand, h(z) has M zeros. If one imposes L > M, the previous points are contradictory,

hence showing that the identifiability condition is automatically fulfilled (see [11]).

o two well-chosen cycles: take any two cycles 2’“21—31 and 2’“2'”’—L+1 so that ka — k1 and L are coprime (this is always
possible since L can be chosen arbitrarily large). According to a structural result of [13] (see also [10]), the

identification of h(z) is possible, without any restriction on h(z), as soon as L > M.

Therefore, the identification in a repetition context is robust as regards the unknown channel.



3.3 The modulation case.

In this model, 7’ = T , and the sequence {v(n) = f(n)s(n)} is transmitted, where f(n) is a deterministic (almost)
periodic sequence. This scheme has been proposed independently in [13] and [10]. For sake of simplicity, we restrict
the study to i.i.d. sequences of symbols®. Under this condition, it is easy to prove that Sf,a) (2) = Mg for some a and
Ao depending on the development of f(n) as a Fourier series. Suppose a; and as are non-null cycles. Consider the

function”
1

7 Yk
Ab,

S(eiw) — [is(cn) (eiw)*

)\Zl ( Séaz)(eiw)*]T.

If H(z) = [h(ze?m), h(ze""’”az)]T and [(2) = h(z), we have S(z) = H(2)I*(z71).

As in the previous section, the identifiability condition vanishes in the following two cases (see [13] [10]):
e ay — ay is irrational, or

e ay —a; = %, k and p coprime, is such that p > M, M being as usual the degree of h(z).

As compared to the repetition scheme, the modulation of the symbols also brings a robust way of identifying the chan-
nel. The advantage of modulation over repetition is that the channel order is halved, thus yielding faster algorithms,
with a lower computational burden.

Simulation results: The pulse is a raised-cosine with 20% excess bandwidth; 7' = 3.7us and fo = 1.087654GHz. We

averaged over 10 realizations of channels resulting from 5 multi-paths. The maximum delay is set to 27", so that the

degree is M = 4. The impulse responses are in Table 3. The deterministic sequence is f(n) = \/114_—2(1 + yet2many,
v

with v = 0.5 and a = %. The symbols are white BPSK sequences. In the factorization algorithm, we chose the

two cyclo-frequencies o and —a. In Figure (3), the MSE is given as the number of observed samples increases. The
SNR is set to 10dB; the noise is either white Gaussian, or is the output of r(z) = %(1 + 272 + 27%) driven by a
white Gaussian noise. Notice the consistency of the estimate when the noise has an unknown color. In Figure (4), the
observation lasts 600 symbol periods. The SNR, varies from 0 to 18dB.

The results thus obtained are satisfactory; however, the “best” choice of a sequence f(n) is currently under investiga-

tion.

4 Conclusion.

When cyclostationarity is induced at the transmitter, we have shown that some second-order cyclo-spectra provide

a way of identifying the unknown channel. In contrast to the conventional approches, the consistency of the pro-

6For a generalization to any distribution, see [13].

"More cycles may be taken into account.



posed method is achieved when the observation is corrupted by interference, the second-order structures of which are

unknown. We propose in Table 4 a sum-up of the main points developed in the paper.

References

[1]

[2]

[6]

[10]

Z. Ding, “Characteristics of band-limited channels unidentifiable from second-order statistics”, IEEE Sig. Proc.

Letters, pages 150-152, May 1996.

A.J. van der Veen, "Resolution limits of blind multi-user channels identification schemes: the band-limited case”,

Proc. ICASSP, pages 2722-2725, 1996.

Ph. Ciblat and Ph. Loubaton, “Egalisation aveugle au second ordre : le cas de signaux a bande limitée”, actes

du GRETSI, Grenoble, France, Septembre 1997.
T. Kailath, “Linear Systems” , Prentice-Hall, 1978.

K. Abed Meraim, P. Loubaton and E. Moulines, ” A subspace algorithm for certain blind identification problems”,

IEEE Trans. on Info. Theory, vol. 43, no 2, pages 499-511, March 1997.

K. Abed-Meraim, J.F. Cardoso, A. Gorokhov, P. Loubaton and E.Moulines, “On subspace methods for blind
identification of single-input/multi-output FIR systems”, IEEE Trans. on Sig. Proc., vol. 45 no. 1, pages 42-56,

January 1997.

E. Moulines, P. Duhamel, J.F. Cardoso, S. Mayrargue, ”Subspace methods for the blind identification of multi-

channel FIR filters”, IEEE Trans. on Sig. Proc., vol. 43, pages 516-526, February 1995.

G. B. Giannakis, ”A linear cyclic correlation approach for blind identification of FIR channels”, Proc. Asilomar

Conf., pages 420-424, 1994.

G. B. Giannakis, “Filterbanks for blind channel identification and equalization”, Proc. Wavelet, Subband, and

Block Transforms in Communications Symposium, New Jersey Inst. of Tech., March 1997.

E. Serpedin and G. B. Giannakis, “Blind channel identification and equalization with modulation induced cy-
clostationarity”, Proc. 81st Conf. on Info. Sciences and Systems, The Johns Hopkins Univ., Baltimore, March

1997.

10



delays attenuation
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h(0)

h(1)

h(2)

h(3)

h(4)

0.0766 - 0.0472i

0.1727 + 0.2774i

-0.5916 + 0.2153i

-0.2405 + 0.6518i

-0.0645 - 0.0394i

-0.0300 + 0.0204i

0.1597 - 0.0300i

0.4166 + 0.7988i

-0.1903 + 0.3093i

-0.1673 + 0.0215i

0.4175 - 0.1257i

0.1802 + 0.3764i

-0.6259 + 0.3107i

-0.3777 4+ 0.0284i

0.0128 + 0.0591i

0.8130 + 0.0577i

-0.2574 - 0.1393i

-0.0456 - 0.2748i

0.0356 + 0.3854i

-0.0951 - 0.1151i

-0.0402 + 0.0787i

0.2298 - 0.1537i

0.2845 - 0.0574i

-0.4862 + 0.7622i

0.0265 - 0.1149i

0.2502 + 0.0668i

0.8357 + 0.4010i

-0.1944 + 0.0851i

-0.1363 + 0.0901i

0.0324 - 0.0279i

0.3149 - 0.0940i

-0.1115 - 0.1508i1

0.1901 - 0.8604i

-0.0521 - 0.2384i

-0.0681 + 0.1261i

-0.0383 - 0.0137i

0.4540 + 0.0190i

0.1122 - 0.6541i

0.3695 - 0.4206i

-0.1635 + 0.1052i

0.1348 - 0.1371i

0.6038 - 0.07351

-0.5815 + 0.0650i

-0.4808 - 0.0372i

0.1239 + 0.0512i

-0.0251 - 0.0294i

0.5445 + 0.46879

0.1939 + 0.4547i

-0.4566 + 0.1545i

0.0738 + 0.0024i

Table 3: Modulation: 10 channel realizations.

FS at 3/T repetition | modulation
support of h,(t) M,T M,T M, T
degree of h(z) to identify M = 3M, M=2M, | M =M,
number of cycles used p=2 2<p<L |p>2
identifiability condition h(20) = 0 = h(2e®™/3) # 0 | none none
control of cycles no yes yes
estimation in jammers consistent consistent | consistent
generalization to colored sources | yes yes yes
over-estimation of the degree no yes yes

Table 4: TIC and blind second-order identification.
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Figure 1: FS system. Line 1: standard method. Line 2: 0 cycle excluded ; SNR = 9.2dB
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Figure 2: FS system. Line 1: standard method. Line 2: 0 cycle excluded ; N = 1000
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Figure 3: Modulation. Line 1: white noise. Line2: colored noise ; SNR = 10dB
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Figure 4: Modulation. Line 1: white noise. Line 2: colored noise ; N = 600 samples.
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