
ON FISHER INFORMATION INEQUALITIES AND SCORE FUNCTIONS IN
NON-INVERTIBLE LINEAR SYSTEMS

C. VIGNAT AND J.-F. BERCHER

ABSTRACT. In this note, we review score functions properties and discuss inequalities on the
Fisher Information Matrix of a random vector submitted to linear non-invertible transformations.
We give alternate derivations of results previously published in [6] and provide new interpreta-
tions of the cases of equality.

1. INTRODUCTION

The Fisher information matrixJX of a random vectorX appears as a useful theoretic tool to
describe the propagation of information through systems. For instance, it is directly involved
in the derivation of the Entropy Power Inequality (EPI), that describes the evolution of the
entropy of random vectors submitted to linear transformations. First results about information
transformation were given in the 60’s by Blachman [1] and Stam [5]. Later, Papathanasiou
[4] derived an important series of Fisher Information Inequalities (FII) with applications to
characterization of normality. In [6], Zamir extended the FII to the case of non-invertible linear
systems. However, the proofs given in his paper, completed in the technical report [7], involve
complicated derivations, especially for the characterization of the cases of equality.

The main contributions of this note are threefold. First we review some properties of score
functions and characterize the estimation of a score function under linear constraint. Second,
we give two alternate derivations of Zamir’s FII inequalities and show how they can be related
to Papathanasiou’s results. Third, we examine the cases of equality and give an interpretation
that highlights the concept of extractable component of the input vector of a linear system, and
its relationship with the concepts of pseudoinverse and gaussianity.

2. PRELIMINARY LEMMAS

2.1. Notations and definitions. In this note, we consider a linear system with a (n×1) random
vector inputX and a (m× 1) random vector outputY , represented by am× n matrixA, with
m ≤ n as

Y = AX.

Matrix A is assumed to have full row rank (rankA = m).
Let fX andfY denote the probability densities ofX andY . The probability densityfX is

supposed to satisfy the three regularity conditions (cf. [4])
(1) fX(x) is continuous and has continuous first and second order partial derivatives,
(2) fX(x) is defined onRn andlim||x||→∞ fX(x) = 0,
(3) the Fisher information matrixJX (with respect to a translation parameter) is defined as

[JX ]i,j =

∫
Rn

[
∂ ln fX(x)

∂xi

∂ ln fX(x)

∂xj

]
fX(x)dx,
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and is supposed nonsingular.

We also define the score functionsφX(.) : Rn → Rn associated withfX according to:

φX(x) =
∂ ln fX(x)

∂x
.

The statistical expectation operatorEX is

EX [h(X)] =

∫
Rn

h(x)fX(x)dx.

EX,Y andEX|Y will denote the mutual and conditional expectations, computed with the mutual
and conditional probability density functionsfX,Y andfX|Y respectively.

The covariance matrix of a random vectorg(X) is defined by

cov[g(X)] = EX

[
(g(X)− EX [g(X)])(g(X)− EX [g(X)])T

]
.

The gradient operator∇X is defined by

∇Xh(X) =

[
∂h(X)

∂x1

. . .
∂h(X)

∂xn

]T

.

Finally, in what follows, a matrix inequality such asA ≥ B means that matrix(A − B) is
nonnegative definite.

2.2. A first theorem. We derive here a first theorem that extends Lemma 1 of [7].

Theorem 2.1.Under the hypotheses expressed in 2.1, the solution to the minimum mean square
estimation problem

(2.1) φ̂X (X) = arg minwEX,Y

[
||φX (X)− w(Y )||2

]
submitted toY = AX,

is

(2.2) φ̂X (X) = AT φY (Y ) .

The proof we propose here relies on elementary algebraic manipulations according to the
rules expressed in the following lemma.

Lemma 2.2. If X andY are two random vectors such thatY = AX whereA is a full row-
rank matrix then for any smooth functionsg1 : Rm → R, g2 : Rn → R, h1 : Rn → Rn,
h2 : Rm → Rm,

(rule0) EX [g1 (AX)] = EY [g1 (Y )]

(rule1) EX [φX (X) g2 (X)] = −EX [∇Xg2 (X)]

(rule2) EX

[
φX (X) hT

1 (X)
]

= −EX

[
∇XhT

1 (X)
]

(rule3) ∇XhT
2 (AX) = AT∇Y hT

2 (Y )

(rule4) EX

[
∇XφT

Y (Y )
]

= −AT JY
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Proof. Rule 0 is proved in [2, vol. 2, p.133]. Rules 1 and 2 are easily proved using integration
by parts. For rule 3, denotehk thekth component of vectorh = h2, and remark that

∂
∂xj

hk (AX) =
m∑

i=1

∂hk(AX)
∂yi

∂yi

∂xj

=
m∑

i=1

Aij [∇Y hk (Y )]i

=
[
AT∇Y hk (Y )

]
j
.

NowhT (Y ) =
[
hT

1 (Y ) , . . . , hT
n (Y )

]
so that∇XhT (Y ) =

[
∇XhT

1 (AX) , . . . ,∇XhT
n (AX)

]
=

AT∇Y hT (Y ) .
Rule 4 can be deduced as follows:

EX

[
∇XφT

Y (Y )
]

rule3
= AT EX

[
∇Y φT

Y (Y )
]

rule0
= AT EY

[
∇Y φT

Y (Y )
]

rule2
= −AT EY

[
φY (Y ) φY (Y )T

]
.

�

For the proof of theorem 2.1, we will also need the following orthogonality result.

Lemma 2.3. For all multivariate functionh : Rm → Rn, φ̂X (X) = AT φY (Y ) satisfies

(2.3) EX,Y

[(
φX (X)− φ̂X (X)

)T

h (Y )

]
= 0.

Proof. Expand into two terms and compute first term using the trace operatortr(.)

EX,Y

[
φX (X)T h (Y )

]
= tr EX,Y

[
φX (X) hT (Y )

]
rules2,0

= −tr EY

[
∇XhT (Y )

]
rule3
= −tr AT EY

[
∇Y hT (Y )

]
.

Second term writes

EX,Y

[
φ̂X (X)T h (Y )

]
= tr EX,Y

[
φ̂X (X) hT (Y )

]
= tr EY

[
AT φY (Y ) hT (Y )

]
= tr AT EY

[
φY (Y ) hT (Y )

]
rule2
= −tr AT EY

[
∇Y hT (Y )

]
thus both terms are equal. �
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Using lemmas 2.2 and 2.3 we are now in position to prove theorem 2.1.

Proof of theorem 2.1

Proof. From lemma 2.3, we have

EX,Y

[
[φX(X)− φ̂X(X)]h(Y )

]
=

∫ ∫
[φX(x)− AT φY (y)]h(y)pX,Y (x, y)dxdy

=

∫ (∫
[φX(x)− AT φY (y)]pX|Y (x, y)dx

)
h(y)pY (y)dy = 0.

Since this shall be verified whateverh, it means the inner integral is null∫
[φX(x)− AT φY (y)]pX|Y (x, y)dx = 0,

or, in other terms, that
EX|Y [φX(X)] = AT φY (Y ) .

Hence, we deduce that the estimatorφ̂X(X) = AT φY (Y ) is nothing else but the conditional
expectation ofφX(X) givenY . Since it is well known (see [8] for instance) that the conditional
expectation is the solution of the Minimum Mean Square Error (MMSE) estimation problem
(2.1), theorem 2.1 follows.

�

Theorem 2.1 not only restates Zamir’s result in terms of an estimation problem, but also
extends its conditions of application since our proof does not require, as in [7], the independence
of the components ofX.

3. MATRIX FISHER INFORMATION INEQUALITIES

3.1. Introduction. As was shown by Zamir [6], the result of theorem 2.1 may be used to derive
the pair of Fisher Information Inequalities stated in the following theorem:

Theorem 3.1.Under the assumptions of theorem 2.1,

(3.1) JX ≥ AT JY A

and

(3.2) JY ≤
(
AJ−1

X AT
)−1

.

We exhibit here an extension and two alternate proofs of these results, that do not even rely on
theorem 2.1. The first proof relies on a classical matrix inequality combined with the algebraic
properties of score functions as expressed by rules (rule1) to (rule4). The second (partial) proof
is deduced as a particular case of results expressed by Papathanasiou [4].

3.2. First proof of theorem 3.1. The first proof we propose is based on the well-known result
expressed in the following lemma.

Lemma 3.2. If U =

[
A B
C D

]
is a block symmetric non-negative matrix such thatD−1 exists,

then
A−BD−1C ≥ 0,

with equality if and only ifrank(U) = dim(D).
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Proof. Consider the block L∆M factorization [3] of matrixU :

U =

[
I BD−1

0 I

]
︸ ︷︷ ︸

L

[
A−BD−1C 0

0 D

]
︸ ︷︷ ︸

∆

[
I 0

D−1C I

]
︸ ︷︷ ︸

MT

Remark that the symmetry ofU implies thatL = M and thus

∆ = L−1UL−T

so that∆ is a symmetric nonnegative definite matrix. Hence, all its principal minors are non-
negative, and

A−BD−1C ≥ 0.

�

Using this matrix inequality, we can complete the proof of theorem 3.1 by considering the
two following (m + n)× (m + n) matrices

U1 = E

[
φX (X)
φY (Y )

] [
φT

X (X) φT
Y (Y )

]
,

U2 = E

[
φY (Y )
φX (X)

] [
φT

Y (Y ) φT
X (X)

]
.

For matrixU1, we have, from lemma 3.2

(3.3)
EX

[
φX (X) φT

X (X)
]
≥

EX,Y

[
φX (X) φT

Y (Y )
] (

EY

[
φY (Y ) φT

Y (Y )
])−1

EX,Y

[
φY (Y ) φT

X (X)
]
.

Then, using rules of lemma 2.2, we can recognize that

EX

[
φX (X) φT

X (X)
]

= JX ,

EY

[
φY (Y ) φT

Y Y
]

= JY ,

EX,Y

[
φX (X) φT

Y (Y )
]

= −EY

[
∇φT

Y (Y )
]

= AT JY ,

EX,Y

[
φY (Y ) φT

X (X)
]

=
(
AT JY

)T
= JY A.

Replacing these expressions in (3.3), we deduce the first inequality (3.1).
Applying the result of lemma 3.2 to matrixU2 yields similarly

JY ≥ JT
Y AJ−1

X AT JY .

Multiplying both on left and right byJ−1
Y =

(
J−1

Y

)T
yields inequality (3.2).

3.3. Another proof of inequality (3.2). A second proof of inequality (3.2) is now exhibited,
as a consequence of a general result derived by Papathanasiou [4]. This result states as follows.

Theorem 3.3.(Papathanasiou[4]) If g(X) is a functionRn → Rm such that,∀i ∈ [1, m], gi(x)
is differentiable and var[gi(X)]≤ ∞, the covariance matrix cov[g(X)] of g(X) verifies:

cov[g(X)] ≥ EX

[
∇tg(X)

]
J−1

X EX [∇g(X)] .

Now, inequality (3.2) simply results from the choiceg(X) = φY (AX), since in this case
cov[g(X)] = JY andEX [∇tg(X)] = −JY A. Note that Papathanasiou’s theorem does not
allow to retrieve inequality (3.1).
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4. CASE OF EQUALITY IN MATRIX FII

4.1. Introduction. We now explicit the cases of equality in both inequalities (3.1) and (3.2).
Case of equality in (3.2) was already characterized in [7] and introduces the notion of ‘ex-
tractable components’ of vectorX. Our alternate proof also makes use of this notion and
establishes a link with the pseudoinverse of matrixA.

4.2. Case of equality in inequality (3.1). The case of equality in inequality (3.1) is character-
ized by the following theorem.

Theorem 4.1.Suppose that componentsXi ofX are mutually independent. Then equality holds
in (3.1) if and only if matrixA possesses(n−m) null columns or, equivalently, ifA writes, up
to a permutation of its column vectors

A = [A0 | 0m×(n−m)],

whereA0 is am×m non-singular matrix.

Proof. According to the first proof of theorem 3.1 and the case of equality in lemma 3.2, equality
holds in (3.1) if there exists a non-random matrixB and a non-random vectorc such that

φX (X) = BφY (Y ) + c.

However, as random variablesφX (X) andφY (Y ) have zero-mean,EX [φ(X)] = 0, EY [φ(Y )] =
0, then necessarilyc = 0. Moreover, applying rules 2 and 4 yields

EX,Y

[
φX (X) φY (Y )T

]
= AT JY

on one side, and

EX,Y

[
φX (X) φY (Y )T

]
= BJY

on the other side, so that finallyB = AT and

φX (X) = AT φY (Y ) .

Now, sinceA has rankm, it can be written, up to a permutation of its columns, under the form

A = [A0 |A0M ] ,

whereA0 is an invertiblem ×m matrix, andM is anm × (n−m) matrix. SupposeM 6= 0
and express equivalentlyX as

X =

[
X0

X1

]
}m
}n−m

so that

Y = AX

= A0X0 + A0MX1

= A0X̃,

with X̃ = X0 + MX1. SinceA0 is square and invertible, it follows that

φY (Y ) = A−T
0 φX̃

(
X̃

)
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so that

φX = AT φY (Y )

= AT A−T
0 φX̃

(
X̃

)
=

[
AT

0

MT AT
0

]
A−T

0 φX̃

(
X̃

)
=

[
I

MT

]
φX̃

(
X̃

)
=

 φX̃

(
X̃

)
MT φX̃

(
X̃

)  .

As X has independent components,φX can be decomposed as

φX =

[
φX0 (X0)
φX1 (X1)

]
so that finally [

φX0 (X0)
φX1 (X1)

]
=

 φX̃

(
X̃

)
MT φX̃

(
X̃

) 
from what we deduce that

φX1 (X1) = MT φX0 (X0) .

As X0 andX1 are independent, this is not possible unlessM = 0, what is the equality condition
expressed in theorem 4.1.

Reciprocally, if these conditions are met, then obviously, equality is reached in inequality
(3.1). �

4.3. Case of equality in inequality (3.2). Assuming that components ofX are mutually inde-
pendent, the case of equality in (3.2) is characterized as follows:

Theorem 4.2. Equality holds in (3.2) if and only if each componentXi of X verifies at least
one of the following conditions

a) Xi is gaussian,
b) Xi can be recovered from the observation ofY = AX, i.e. Xi is ‘extractable’,
c) Xi corresponds to a null column of A.

Proof. According to the (first) proof of (3.2), equality holds, as previously, if and only if there
exists a matrixC such that

(4.1) φY (Y ) = CφX(X),

which implies thatJY = CJXCt. Then, as by assumptionJ−1
Y = AJ−1

X At, C = JY AJ−1
X is

such a matrix. Denoting̃φX(X) = J−1
X φX(X) andφ̃Y (Y ) = J−1

Y φY (Y ), equality (4.1) writes

(4.2) φ̃Y (Y ) = Aφ̃X(X).

The rest of the proof relies on the two following well-known results:

• if X is Gaussian then equality holds in (3.2),
• if A is a non singular square matrix, equality holds in (3.2) irrespectively ofX.
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We thus need to isolate the ‘invertible part’ of matrixA. In this aim, we consider the pseu-
doinverseA# of A and form the productA#A. This matrix writes, up to a permutation of rows
and columns

A#A =

 I 0 0
0 M 0
0 0 0


whereI is theni × ni identity, M is anni × nni matrix and0 is anz × nz matrix with nz =
n − ni − nni (i stands for invertible,ni for not invertible andz for zero). Remark thatnz is
exactly the number of null columns ofA. Following [6, 7],ni is the number of ‘extractable’
components, that is the number of components ofX that can be deduced from the observation
Y = AX. We provide here an alternate characterization ofni as follows: the set of solutions of
Y = AX is an affine set

X = A#Y + (I − A#A)Z = X0 + (I − A#A)Z,

whereX0 is the minimum norm solution of the linear systemY = AX andZ is any vector.
Thus,ni is exactly the number of components shared byX andX0.

The expression ofA#A allows to expressRn as the direct sumRn = Ri ⊕ Rni ⊕ Rz, and
to express accordinglyX as X =

[
XT

i , XT
ni, X

T
z

]T
. Then equality in (3.2) can be studied

separately in the three subspaces as follows:
(1) restricted to subspaceRi, A is an invertible operator, and thus equality holds without

condition,
(2) restricted to subspaceRni, equality (4.2) writesMφ̃(Xni) = φ̃(MXni) that means that

necessarily all components ofXni are gaussian,
(3) restricted to subspaceRz, equality holds without condition.

�

As a final note, remark that, althoughA is supposed full rank,ni ≤ rankA. For instance,
consider matrix

A =

[
1 0 0
0 1 1

]
for whichni = 1 andnni = 2. This example shows that the notion of ‘extractability’ should not
be confused with the invertibility restricted to a subspace.A is clearly invertible in the subspace
x3 = 0. However, such subspace is irrelevant here since, as we deal with continuous random
input vectors,X has a null probability to belong to this subspace.

ACKNOWLEDGMENT

The authors wish to acknowledge Pr. Alfred Hero III at EECS for useful discussions and
suggestions, particularly regarding theorem 2.1.

REFERENCES

[1] N. M. Blachman, “The convolution inequality for entropy powers”, IEEE trans. on Information Theory, IT 11,
pp. 267-271, 1965.

[2] W. Feller, “Introduction to probability theory and its applications”, New York, Wiley.
[3] G. Golub, ”Matrix Computations”, Johns Hopkins University Press, 1996
[4] V. Papathanasiou, “Some Characteristic Properties of the Fisher Information Matrix via Cacoullos-type In-

equalities”, Journal of Multivariate Analysis, 14, pp. 256-265, 1993.
[5] A. J. Stam, “Some inequalities satisfied by the quantities of information of Fisher and Shannon”, Inform.

Control, 2, pp. 101-112, june 1959.
[6] R. Zamir, “A Proof of the Fisher Information Matrix Inequality via a Data Processing Argument”, IEEE trans.

on Information Theory, IT 44, 3, pp. 1246-1250, 1998.



FISHER INFORMATION INEQUALITIES 9

[7] R. Zamir, “A Necessary and Sufficient Condition for Equality in the Matrix Fisher Information
Inequality”, technical report, Tel Aviv University, Dept. Elec. Eng. Syst., 1997. Available online
http://www.eng.tau.ac.il/ zamir/techreport/crb.ps.gz

[8] H.L. van Trees, “Detection, Estimation, and Modulation Theory”, Part I., New York London, John Wiley and
Sons, 1968.

E.E.C.S. UNIVERSITY OF M ICHIGAN , 1301 N. BEAL AVENUE, ANN ARBOR MI 48109
E-mail address: vignat@univ-mlv.fr
URL: http://www-syscom.univ-mlv.fr

ÉQUIPE SIGNAL ET INFORMATION, ESIEEAND UMLV, 93 162 NOISY-LE-GRAND, FRANCE
E-mail address: jf.bercher@esiee.fr
URL: http://www.esiee.fr


