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Analysis of signals in the Fisher—Shannon information plane
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Abstract

We show that the analysis of complex, possibly non-stationary signals, can be carried out in an information plane, defined
by both Shannon entropy and Fisher information. Our study is exemplified by two large families of distributions with physical
relevance: the Studentand the power exponentials.
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1. Introduction der proper constraint. As another important result, a
version of theH -theorem has been extended—under

Fisher Information Measure (FIM) was introduced the name/-theorem—to the notion of Fisher infor-
by Fisher in 1925 [9] in the context of statistical mation [3]. Until recently, Shannon (Boltzmann) en-
estimation. In the last ten years, a growing interest tropy was considered as the major tool to describe
for this information measure has arisen in theoretical the informational behavior and complexity of physi-
physics. In a seminal paper [1], Frieden has charac- cal systems. The theoretical contributions cited above
terized FIM as a versatile tool to describe the evo- suggest that this judgment should be revised and that
lution laws of physical systems; one of his major re- FIM appears as an appealing alternative to Shannon
sults is that the classical evolution equations (e.g., the entropy.

Schrédinger wave equation, the Klein—-Gordon equa-  Since FIM allows an accurate description of the be-
tion, the Helmoltz wave equation, the diffusion equa- havior of dynamic systems, its application to the char-
tion, the Boltzmann and Maxwell-Boltzmann law) acterization of complex signals issued from these sys-
can be derived from the minimization of FIM un- tems appears quite natural. This approach was adopted
for example by Martin et al. [2] for the characteriza-
— _ o ] . tion of EEG signals. One of the interesting results of
5 Corresponding author. Université de Marne-la-Vallée, Cité their study was that FIM allowed the detection of some
escartes, 77454 Champs-sur-Marne cedex 2, France. ) .. . .

E-mail addressesvignat@univ-miv.fr (C. Vignat), non-stationary behavior in situations where the Shan-
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Motivated by this work, we define a Fisher—-Shan-
non information plane and show that the simultaneous
examination of both Shannon entropy and FIM may
be required to characterize the non-stationary behavior
of a complex signal. More precisely, we exhibit two
families of physically relevant signals, the Tsallis
signals and the power exponential signals which have
the unexpected property that their temporal trajectory
in the Fisher—Shannon (FS) information plane can
be arbitrarily designed. As a consequence, any non-
stationarity measurement device based on only one of
these two measures would yield a suboptimal result.

This Letter is organized as follows: in Section 2,
we review some basic properties of entropy and Fisher
information measures and introduce the notion of the
Fisher—Shannon plane. In Section 3, we study two
families of parameterized random variables and their

locations in the Fisher—Shannon plane. These results

are used in Section 4 to build explicitly two families
of signals whose trajectories in the FS plane can be
designed arbitrarily.

2. Fisher’s information measure and Shannon
entropy power

In the following, we consider a random variable
X whose probability density function is denoted as
fx (x). Its Shannon entropy writes

Hy = —ffx(X)|09fx(X)dx 1)

and its Fisher information measure writes

0 2 dx
Iy = / (afm)) — @

writes

§Nx <0 4
whereas thd -theorem writes accordingly

8Ix <0. ©)

Superadditivity propertythe Shannon entropy of
the sum of two independent random variables
verifies the entropy power inequality [4]

Nxiy 2 Nx + Ny (6)

and the corresponding Fisher information inequal-
ity [4] writes

-1 -1 -1
[X+Y 2 IX +IY : )

Two additional properties will help us to track the

information trajectory of a random signal.

e The scaling propertywhen scaling a random

variable X by a scalar factor € C*, the entropy
power and FIM transform as follows

2
Ngx =la|"Nx,
-1 27-1
Iy =lal"ly".

e The uncertainty property

NxlIx >1 (8)

with equality if and only if X is a Gaussian
random variable. A proof of this property can be
found, for example, in [4].

Both scaling and uncertainty properties enlight the

fact that FIM and Shannon entropy are intrinsically
linked, so that the characterization of signals should

For convenience, we will use, rather than entropy, the pe improved when considering their location in the
alternative notion of entropy power (see [4]), defined Fisher—Shannon (FS) plane.

by
Ny = ieZHx ) (3)
2me

Among other properties, both measu®g and Iy
verify a set of resembling inequalities.

e Evolution law if X represents the state of a

Definition 1. The FS area, denoted d% is the set
of all reachable values of FIM and Shannon entropies,
namely

={(N.)|N>0, I >0andN/ >1}. 9)

Next, as a consequence of the scaling property, we

system, the second law of the thermodynamics note that a scaled versiarX of a random variablel



C. Vignat, J.-F. Bercher / Physics Letters A 312 (2003) 27-33 29

whereq > 0 is the extensivity parameter. Their exact
expression is the following:

r("s*
B s ey
x2 J"TH
14>
(14 5m)
for(m>2,1>¢9g>0,xeR) (11)

wherem = l_ﬂ ando is a scale parameter. These dis-
tributions ang their properties have been extensively
characterized, including in the multivariate case, in
[6]. Note that the Gaussian law can be recovered from
the Student-family by lettingm — 400 org — 17.

For convenience, we cite here two properties of these
distributions that are helpful for the numerical simula-
tions considered in Section 4.

Fig. 1. The FS area.

belongs to the sam® I = K curve asX, as illustrated

on Fig. 1. e If X is distributed according to a Studentaw
fs(m, o, x), then a stochastic representationsof
writes
3. Two families of random variables X — ﬁ (12)
Xm
In this part, we study two families of probabil- wherey,, is a gamma distributed random variable
ity densities, namely the Studentnd the power ex- with parametern, independent of\" which is
ponential distributions. Both families include heavy Gaussian with zero mean and variancéém — 2).
tailed densities and the Studenfamily is a mem- e Moreover, if m is integer, x,,, is distributed as
ber of the larger class of power laws. Furthermore, the a chi variable withm degrees of freedom and a
Gaussian distribution is a particular case of both fam- stochastic representation &fis thus
ilies and the uniform and exponential distributions are N
special cases of the power exponential family. X=—7—"°, (13)
For both types of distributions, we compute the VN2

Shannon entropy power and FIM and the area spanned

by these distributions in the FS plane. where the{Ni}1<k<m are independent Gaussian

random variables with unit variance.
3.1. Student-random variable The information measures of a Studerdgw are
characterized in the following theorem.

The importance of Studentdistributions in statis-
tical physics has been highlighted in the _seminal work Theorem 1.The entropy power and the Fisher infor-
of Tsallis (see [7] and references therein). A part of mation measure of the Studendistribution with pa-
the versatility of these distributions is due to the fact rgmetersn ando are
that they maximize under variance constraint a rele-

2
vant statistical quantity, namely the Tsallis entropy Ns(m 0)_i<o«/m—2f‘(%)[‘(%)
P m\ T T

1
HO — q—_1<1— / f;gmdx), (10) X DIV ) (14)
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i m(m + 1)

02 (m—2)(m+3)’
whereyr denotes the digamma function.

Is(m,o0) = (15)

Proof. By direct computation. Result (14) has been
already obtained, for example, in [8].0

We are now in position to determine the area
spanned by all Studenttaws in the Fisher—Shannon
plane.

Theorem 2. Denote Dy the area of the FS plane
defined by

{1<ISNS<%, (16)
Is >0, Ng=>O0.

Then the application

12, +o00[ x [0, +o0o[ — Dy,

(m,0) > (Is, Ns) (17)

is a bijection.

Proof. The product/s(m, c)Ns(m, o) depends only
onm sinceo is scale parameter. Denokg (im) this
function so that

m(m + 1) FZ(%)

2e(m + 3) FZ(’"TH)

% MO "3 =y (5))

hs(m) =

m=>2. (18)

It is easy to check thats(m) decreases from-oo to
1for2<m < +oo andthatliny,_, 4 hs(m) =1 and

hs(2) = %. Thus the equation
IsNg =hg(m) 19

determines uniquely Z m < 4o0. Then, solving

(15) in variables? yields a unique positive value of
2

o°. 0O

3.2. Power exponential random variables

Let us now consider a second kind of random vari-
able denoted aXpg(2, y) whose probability density
is of the power exponential type:

yaly
1
2r(3)

fre(h, ¥, x) = exp(—Alx]”) xeR,  (20)
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wherei > 0 is a scale parameter apd> 1 is a shape
parameter. Note that = 2 gives the Gaussian case
while y — +o0 leads to a uniform distribution. This
versatility explains that these distributions are used to
model accurately some physically realistic quantities,
for instance the amplitudes of wavelets coefficients.
These distributions can also be shown to maximize the
Shannon entropy under moment constraint [10].

The information measures associated with this
probability density function are characterized in the
following theorem.

Theorem 3. The entropy power and the FIM of the
power exponential law with parametexrsaandy are

2 /1 (1 Yry2?
= ()Y
r(-41
Ipe(h, y) = (71’/)7/(7/ — a2/, (22)

r'(y)

Proof. By direct computation. Result (21) has already
been derived in [5]. O

Now given any poin{/, N) in the Fisher—Shannon
area, the following theorem proves that an exponential
power random variabl&pg(i, y) havingl andN as
respective FIM and entropy power can be found.

Theorem 4.Both applications

10, +00[ x 12, 4+00[ = D,

A, y)=>(,N) (23)
and

10, +o0[ x 11, 2[ — D,

A, y)=>(,N) (24)

are bijections.

Proof. Suppose that we are given a coupleN) € D
and we want to determinéi, y). As A is a scale
parameter, the produdpe(r, y)Ipe(h,y) > 1 is a
function of the shape parameteonly: denoteipe(y)
this function so that

2evt /1 1
e ==r (G)r(e-3)

(25)
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A straightforward computation shows that function
hpe decreases fromtoo to 1 for 1<y < 2 and
increases from 1 totoo for 2 < y < 4+o0. Thus
equationzpg(y) = NI has two solutiong; and y»
such that 1< y1 < 2 and 2< y». Given one of these
solutions, . can be determined uniquely by solving
equation (21) or (22). O

4. Application to signal analysis

We are now in position to build non-stationary
signals having arbitrary time trajectories in the FS
plane. An an example, we have designed explicitly two
signals:

e A first signal, based on independent Student-
samples, whose entropy power and FIM describe
through time a step-like trajectory in the domain
Ds of the FS plane.

A second signal, based on independent power
exponential samples, whose entropy and FIM
evolve through time along a circle in the domain
D of the FS plane.

4.1. The steps trajectory

The signalsstepdr) is built from 112000 indepen-
dent samples of a Studentwith non-stationary para-
metersn(n) ando (n) chosen as follows:

e Over the first 28 000 samples (A to B), parameter
m(n) increases linearly frorm = 3 to m = 30,
of one unit each 1000 samples; parametér)
evolves according to the following rule

o?(n) = Is(m(n), 1) (26)

so that the FIM ofstepdn2) remains equalto 1 over
all samples.

Over the next 28 000 samples (B to C), parameter
m (n) decreases linearly fromw = 30 tom = 3,

of one unit each 1000 samples; parametér)
evolves according to the following rule

1
v/ Ns(mn), 1)

so that the entropy power remains equal to 1 over
all samples.

o(n) = (27)
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e These two first steps are repeated accordingly
over the 56000 remaining samples so that the
final trajectory in the FS plane looks as shown on
Fig. 2: the first 28000 of them (C to D) have a
linearly decreasing entropy power with FIM fixed
to 1.3 and conversely for the last part of the signal
(D to E) where the entropy power is fixed to
N = 0.75. Fig. 3 shows the corresponding signal
Sstepin)

This example shows that any measurement based
on one only of the two information measures would
yield a suboptimal detection.

0
0

Fig. 2. The step-like trajectory Gftepdn).
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Fig. 3. Signalsstepgn).
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4.2. The circle trajectory and entropy power to provide a good characterization
of the signal.

A signal was generated by drawing independent
samples of power exponential distribution such as 4.3. Variance analysis
their entropy powers and FIM describe the circle
trajectory in the FS plane as depicted on Fig. 4: toeach ~ Given any point(Z, N) in the areaDg of the
point of the circle correspond 1000 samples, the circle FS plane, it follows from Theorems 2 and 4 that

being described clock-wise starting from angle: 0, there exists a unique Studentnd a unique power
and stepA# = 7/10. Details of the whole signal, €xponential distribution having/, N) as coordinates.
corresponding to angles= =/5 andf = = + /5, But the variances of these distributions may also differ
are shown on Fig. 5. or not.

This example shows once again that any trajectory ~ Fig. 6 shows constant variance trajectories of
can be designed in the FS plane and that a non-Student: and power exponentials distributions:
stationarity tracking device should inspect both FIM curve (1) (respectively (2)) corresponds to the fam-
ily of Student# (respectively power exponentials) with
variance equal to 0.4, while curve (3) (respectively (4))
corresponds to a variance of 0.3. We deduce from this
graph that there exist Studentand power exponen-
tial laws that may be distinguished (separated) in the
FS plane, although their variances coincide. Hence, in
a non-stationary context, analysis in the FS plane may
be useful.

On Fig. 7, a signal with a constant variancé= 2
is presented: first and last 2000 samples were gener-
ated according to a power exponential with parameters
(A, y) = (0.25, 2.05) and coordinate€).975 1.74) in
the FS plane; the 2000 center samples were generated
according to a Studentwith parametergm, o2) =
(3.5, 2) and coordinated.807, 1.567).

Conversely, curves (5) and (6) in Fig. 6 correspond
respectively to the trajectories of all Studerdistrib-
utions with variance equal to 36 and to all power expo-

0.45

0.4r

b Lk <
L

4 L L L L L L L L
12000 12200 12400 12600 12800 13000 2 3 4 5 6 7 8

Fig. 5. Signalscijrcle(n)- Fig. 6. Variance study in the FS plane.
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Fig. 7. Signals(n) with constant variance but different FS locations.

_o5 L L 1 1
0

L 1 1 L L
20 40 60 80 100 120 140 160 180 200

Fig. 8. Signals(n) generated according to distributions with same
FS location but different variances.

nentials with variance 0.317. The intersection of these
two curves correspond to a Student with parameters
m = 2.005 ando = 6 and to a power exponential with
parameters. = 1 andy = 6.25. These two distribu-
tions are thus indistinguishable in the FS plane, while
their variances are very different. A signdk) gener-
ated from 1000 independent samples of the first distri-
bution followed by 1000 samples of the second distri-
bution, is shown on Fig. 8.

From this study, we conclude that in order to
capture the dynamics of the complex signal, the
additional information provided by variance may be
useful, resulting in the analysis in the extended space
(62,1, N).

33

5. Conclusion

In this Letter, we have shown that two informa-
tion measures, the Fisher information measure and the
Shannon entropy power, can be used jointly in a con-
text of non-stationarity detection. We have exhibited
families of relevant signals that can behave arbitrar-
ily in the Fisher—Shannon plane, proving that a device
based on only one of these measures may fail to track
the non-stationarity of the signal. We insist on the fact
that the Student-and power exponential distributions
used here are not trivial examples, since both families
span a large set of classical distributions and as such
are often used to model complex data.

We can conclude that the EEG signals exhibited in
[2] have a nearly horizontal trajectory in the FS plane
and thus are better described by the inspection of their
Fisher information rather by their entropy (power). We
are currently working on the interpretation of such a
property (and of its converse) for real data and try-
ing to check its versatility for a larger class of phys-
ically relevant phenomena. We are also studying the
geometrical characterization of signals in the FS plane,
in terms of information distances and projections.
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