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Analysis of signals in the Fisher–Shannon information plan
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Abstract

We show that the analysis of complex, possibly non-stationary signals, can be carried out in an information plane
by both Shannon entropy and Fisher information. Our study is exemplified by two large families of distributions with p
relevance: the Student-t and the power exponentials.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fisher Information Measure (FIM) was introduc
by Fisher in 1925 [9] in the context of statistic
estimation. In the last ten years, a growing inter
for this information measure has arisen in theoret
physics. In a seminal paper [1], Frieden has cha
terized FIM as a versatile tool to describe the e
lution laws of physical systems; one of his major
sults is that the classical evolution equations (e.g.,
Schrödinger wave equation, the Klein–Gordon eq
tion, the Helmoltz wave equation, the diffusion equ
tion, the Boltzmann and Maxwell–Boltzmann law
can be derived from the minimization of FIM un
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der proper constraint. As another important resul
version of theH -theorem has been extended—un
the nameI -theorem—to the notion of Fisher info
mation [3]. Until recently, Shannon (Boltzmann) e
tropy was considered as the major tool to desc
the informational behavior and complexity of phy
cal systems. The theoretical contributions cited ab
suggest that this judgment should be revised and
FIM appears as an appealing alternative to Shan
entropy.

Since FIM allows an accurate description of the
havior of dynamic systems, its application to the ch
acterization of complex signals issued from these s
tems appears quite natural. This approach was ado
for example by Martin et al. [2] for the characteriz
tion of EEG signals. One of the interesting results
their study was that FIM allowed the detection of so
non-stationary behavior in situations where the Sh
non entropy shows limited dynamics.
hts reserved.
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Motivated by this work, we define a Fisher–Sha
non information plane and show that the simultane
examination of both Shannon entropy and FIM m
be required to characterize the non-stationary beha
of a complex signal. More precisely, we exhibit tw
families of physically relevant signals, the Tsal
signals and the power exponential signals which h
the unexpected property that their temporal traject
in the Fisher–Shannon (FS) information plane c
be arbitrarily designed. As a consequence, any n
stationarity measurement device based on only on
these two measures would yield a suboptimal resu

This Letter is organized as follows: in Section
we review some basic properties of entropy and Fis
information measures and introduce the notion of
Fisher–Shannon plane. In Section 3, we study
families of parameterized random variables and th
locations in the Fisher–Shannon plane. These res
are used in Section 4 to build explicitly two familie
of signals whose trajectories in the FS plane can
designed arbitrarily.

2. Fisher’s information measure and Shannon
entropy power

In the following, we consider a random variab
X whose probability density function is denoted
fX(x). Its Shannon entropy writes

(1)HX = −
∫

fX(x) logfX(x) dx

and its Fisher information measure writes

(2)IX =
∫ (

∂

∂x
fX(x)

)2 dx

fX(x)
.

For convenience, we will use, rather than entropy,
alternative notion of entropy power (see [4]), defin
by

(3)NX = 1

2πe
e2HX.

Among other properties, both measuresNX and IX
verify a set of resembling inequalities.

• Evolution law: if X represents the state of
system, the second law of the thermodynam
writes

(4)δNX � 0

whereas theI -theorem writes accordingly

(5)δIX � 0.

• Superadditivity property: the Shannon entropy o
the sum of two independent random variab
verifies the entropy power inequality [4]

(6)NX+Y � NX +NY

and the corresponding Fisher information inequ
ity [4] writes

(7)I−1
X+Y � I−1

X + I−1
Y .

Two additional properties will help us to track th
information trajectory of a random signal.

• The scaling property: when scaling a random
variableX by a scalar factora ∈ C∗, the entropy
power and FIM transform as follows

NaX = |a|2NX,

I−1
aX = |a|2I−1

X .

• The uncertainty property:

(8)NXIX � 1

with equality if and only if X is a Gaussian
random variable. A proof of this property can
found, for example, in [4].

Both scaling and uncertainty properties enlight
fact that FIM and Shannon entropy are intrinsica
linked, so that the characterization of signals sho
be improved when considering their location in t
Fisher–Shannon (FS) plane.

Definition 1. The FS area, denoted asD, is the set
of all reachable values of FIM and Shannon entrop
namely

(9)D = {
(N, I) |N � 0, I � 0 andNI � 1

}
.

Next, as a consequence of the scaling property
note that a scaled versionaX of a random variableX
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Fig. 1. The FS area.

belongs to the sameNI =K curve asX, as illustrated
on Fig. 1.

3. Two families of random variables

In this part, we study two families of probab
ity densities, namely the Student-t and the power ex
ponential distributions. Both families include hea
tailed densities and the Student-t family is a mem-
ber of the larger class of power laws. Furthermore,
Gaussian distribution is a particular case of both fa
ilies and the uniform and exponential distributions
special cases of the power exponential family.

For both types of distributions, we compute t
Shannon entropy power and FIM and the area span
by these distributions in the FS plane.

3.1. Student-t random variable

The importance of Student-t distributions in statis-
tical physics has been highlighted in the seminal w
of Tsallis (see [7] and references therein). A part
the versatility of these distributions is due to the f
that they maximize under variance constraint a re
vant statistical quantity, namely the Tsallis entropy

(10)H
(q)
X = 1

q − 1

(
1−

∫
f
q
X(x) dx

)
,

whereq > 0 is the extensivity parameter. Their exa
expression is the following:

fS(m,σ, x)= �
(
m+1

2

)
σ
√
m− 2�

(
m
2

)
�
( 1

2

)
×
(

1+ x2

(m− 2)σ 2

)−m+1
2

(11)for (m > 2,1> q > 0, x ∈ R)

wherem= 1+q
1−q

andσ is a scale parameter. These d
tributions and their properties have been extensiv
characterized, including in the multivariate case,
[6]. Note that the Gaussian law can be recovered f
the Student-t family by lettingm → +∞ or q → 1−.
For convenience, we cite here two properties of th
distributions that are helpful for the numerical simu
tions considered in Section 4.

• If X is distributed according to a Student-t law
fS(m,σ, x), then a stochastic representation ofX

writes

(12)X = N
χm

,

whereχm is a gamma distributed random variab
with parameterm, independent ofN which is
Gaussian with zero mean and varianceσ 2(m−2).

• Moreover, if m is integer,χm is distributed as
a chi variable withm degrees of freedom and
stochastic representation ofX is thus

(13)X = N√∑m
k=1N 2

k

,

where the{Nk}1�k�m are independent Gaussia
random variables with unit variance.

The information measures of a Student-t law are
characterized in the following theorem.

Theorem 1.The entropy power and the Fisher info
mation measure of the Student-t distribution with pa-
rametersm andσ are

(14)

NS(m,σ)= 1

2πe

(
σ
√
m− 2�

(
m
2

)
�
( 1

2

)
�
(
m+1

2

)
)2

× e(m+1)
(
ψ(m+1

2 )−ψ(m2 )
)
,
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(15)IS(m,σ)= 1

σ 2

m(m+ 1)

(m− 2)(m+ 3)
,

whereψ denotes the digamma function.

Proof. By direct computation. Result (14) has be
already obtained, for example, in [8].✷

We are now in position to determine the ar
spanned by all Student-t laws in the Fisher–Shanno
plane.

Theorem 2. DenoteDS the area of the FS plan
defined by

(16)

{
1 � ISNS � 3e5

80π ,

IS � 0, NS � 0.

Then the application

]2,+∞[×[0,+∞[→DS,

(17)(m,σ) �→ (IS,NS)

is a bijection.

Proof. The productIS(m,σ)NS(m,σ) depends only
on m sinceσ is scale parameter. DenotehS(m) this
function so that

hS(m)= m(m+ 1)

2e(m+ 3)

�2
(
m
2

)
�2
(
m+1

2

)
(18)× e(m+1)

(
ψ(m+1

2 )−ψ(m2 )
)

(m > 2).

It is easy to check thathS(m) decreases from+∞ to
1 for 2<m<+∞ and that limm→+∞ hS(m)= 1 and

hS(2)= 3e5

80π . Thus the equation

(19)ISNS = hS(m)

determines uniquely 2� m � +∞. Then, solving
(15) in variableσ 2 yields a unique positive value o
σ 2. ✷
3.2. Power exponential random variables

Let us now consider a second kind of random va
able denoted asXPE(λ, γ ) whose probability density
is of the power exponential type:

(20)fPE(λ, γ, x)= γ λ1/γ

2�
( 1 ) exp

(−λ|x|γ ) x ∈ R,
γ

whereλ > 0 is a scale parameter andγ > 1 is a shape
parameter. Note thatγ = 2 gives the Gaussian ca
while γ → +∞ leads to a uniform distribution. Thi
versatility explains that these distributions are use
model accurately some physically realistic quantit
for instance the amplitudes of wavelets coefficien
These distributions can also be shown to maximize
Shannon entropy under moment constraint [10].

The information measures associated with t
probability density function are characterized in t
following theorem.

Theorem 3. The entropy power and the FIM of th
power exponential law with parametersλ andγ are

(21)NPE(λ, γ ) = 2

2πe

(
1

γ
�

(
1

γ

)(
e

λ

)1/γ)2

,

(22)IPE(λ, γ ) =
�
(
1− 1

γ

)
�
( 1
γ

) γ (γ − 1)λ2/γ .

Proof. By direct computation. Result (21) has alrea
been derived in [5]. ✷

Now given any point(I,N) in the Fisher–Shanno
area, the following theorem proves that an exponen
power random variableXPE(λ, γ ) havingI andN as
respective FIM and entropy power can be found.

Theorem 4.Both applications

]0,+∞[×]2,+∞[→D,

(23)(λ, γ ) �→ (I,N)

and

]0,+∞[×]1,2[→D,

(24)(λ, γ ) �→ (I,N)

are bijections.

Proof. Suppose that we are given a couple(I,N) ∈ D
and we want to determine(λ, γ ). As λ is a scale
parameter, the productNPE(λ, γ )IPE(λ, γ ) � 1 is a
function of the shape parameterγ only: denotehPE(γ )

this function so that

(25)hPE(γ )= 2e
2
γ −1

π
�

(
1

γ

)
�

(
2− 1

γ

)
.
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A straightforward computation shows that functi
hPE decreases from+∞ to 1 for 1< γ � 2 and
increases from 1 to+∞ for 2 � γ � +∞. Thus
equationhPE(γ ) = NI has two solutionsγ1 and γ2
such that 1< γ1 � 2 and 2� γ2. Given one of these
solutions,λ can be determined uniquely by solvin
equation (21) or (22). ✷

4. Application to signal analysis

We are now in position to build non-stationa
signals having arbitrary time trajectories in the
plane. An an example, we have designed explicitly t
signals:

• A first signal, based on independent Student
samples, whose entropy power and FIM descr
through time a step-like trajectory in the doma
DS of the FS plane.

• A second signal, based on independent po
exponential samples, whose entropy and F
evolve through time along a circle in the doma
D of the FS plane.

4.1. The steps trajectory

The signalssteps(n) is built from 112 000 indepen
dent samples of a Student-t with non-stationary para
metersm(n) andσ(n) chosen as follows:

• Over the first 28 000 samples (A to B), parame
m(n) increases linearly fromm = 3 to m = 30,
of one unit each 1000 samples; parameterσ(n)

evolves according to the following rule

(26)σ 2(n) = IS
(
m(n),1

)
so that the FIM ofssteps(n) remains equal to 1 ove
all samples.

• Over the next 28 000 samples (B to C), parame
m(n) decreases linearly fromm = 30 tom = 3,
of one unit each 1000 samples; parameterσ(n)

evolves according to the following rule

(27)σ(n)= 1√
NS(m(n),1)

so that the entropy power remains equal to 1 o
all samples.
• These two first steps are repeated accordin
over the 56 000 remaining samples so that
final trajectory in the FS plane looks as shown
Fig. 2: the first 28 000 of them (C to D) have
linearly decreasing entropy power with FIM fixe
to 1.3 and conversely for the last part of the sig
(D to E) where the entropy power is fixed
N = 0.75. Fig. 3 shows the corresponding sign
ssteps(n).

This example shows that any measurement ba
on one only of the two information measures wou
yield a suboptimal detection.

Fig. 2. The step-like trajectory ofssteps(n).

Fig. 3. Signalssteps(n).
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4.2. The circle trajectory

A signal was generated by drawing independ
samples of power exponential distribution such
their entropy powers and FIM describe the cir
trajectory in the FS plane as depicted on Fig. 4: to e
point of the circle correspond 1000 samples, the ci
being described clock-wise starting from angleθ = 0,
and step%θ = π/10. Details of the whole signa
corresponding to anglesθ = π/5 andθ = π + π/5,
are shown on Fig. 5.

This example shows once again that any trajec
can be designed in the FS plane and that a n
stationarity tracking device should inspect both F

Fig. 4. Trajectory ofscircle(n).

Fig. 5. Signalscircle(n).
and entropy power to provide a good characteriza
of the signal.

4.3. Variance analysis

Given any point(I,N) in the areaDS of the
FS plane, it follows from Theorems 2 and 4 th
there exists a unique Student-t and a unique powe
exponential distribution having(I,N) as coordinates
But the variances of these distributions may also di
or not.

Fig. 6 shows constant variance trajectories
Student-t and power exponentials distribution
curve (1) (respectively (2)) corresponds to the fa
ily of Student-t (respectively power exponentials) wi
variance equal to 0.4, while curve (3) (respectively (
corresponds to a variance of 0.3. We deduce from
graph that there exist Student-t and power exponen
tial laws that may be distinguished (separated) in
FS plane, although their variances coincide. Hence
a non-stationary context, analysis in the FS plane m
be useful.

On Fig. 7, a signal with a constant varianceσ 2 = 2
is presented: first and last 2000 samples were ge
ated according to a power exponential with parame
(λ, γ ) = (0.25,2.05) and coordinates(0.975,1.74) in
the FS plane; the 2000 center samples were gene
according to a Student-t with parameters(m,σ 2) =
(3.5,2) and coordinates(0.807,1.567).

Conversely, curves (5) and (6) in Fig. 6 correspo
respectively to the trajectories of all Student-t distrib-
utions with variance equal to 36 and to all power ex

Fig. 6. Variance study in the FS plane.
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Fig. 7. Signals(n) with constant variance but different FS location

Fig. 8. Signals(n) generated according to distributions with sam
FS location but different variances.

nentials with variance 0.317. The intersection of th
two curves correspond to a Student with parame
m = 2.005 andσ = 6 and to a power exponential wit
parametersλ = 1 andγ = 6.25. These two distribu
tions are thus indistinguishable in the FS plane, wh
their variances are very different. A signals(n) gener-
ated from 1000 independent samples of the first dis
bution followed by 1000 samples of the second dis
bution, is shown on Fig. 8.

From this study, we conclude that in order
capture the dynamics of the complex signal,
additional information provided by variance may
useful, resulting in the analysis in the extended sp
(σ 2, I , N ).
5. Conclusion

In this Letter, we have shown that two inform
tion measures, the Fisher information measure and
Shannon entropy power, can be used jointly in a c
text of non-stationarity detection. We have exhibi
families of relevant signals that can behave arbit
ily in the Fisher–Shannon plane, proving that a dev
based on only one of these measures may fail to t
the non-stationarity of the signal. We insist on the f
that the Student-t and power exponential distribution
used here are not trivial examples, since both fam
span a large set of classical distributions and as s
are often used to model complex data.

We can conclude that the EEG signals exhibited
[2] have a nearly horizontal trajectory in the FS pla
and thus are better described by the inspection of t
Fisher information rather by their entropy (power). W
are currently working on the interpretation of such
property (and of its converse) for real data and t
ing to check its versatility for a larger class of phy
ically relevant phenomena. We are also studying
geometrical characterization of signals in the FS pla
in terms of information distances and projections.
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