A Characterization of the Multivariate Distributions Maximizing Renyi Entropy

José A. Costa¹, Alfred O. Hero III E.E.C.S., University of Michigan Ann Arbor, MI 48109 USA

E-mail: hero@eecs.umich.edu

Abstract — We characterize the multivariate probability distributions that maximize the Renyi entropy under covariance constraint. Then, we show that these distributions are stable under a particular type of convolution.

I. Introduction

Renyi entropy is now a widely used tool in information theory, with applications such as statistical processing or database indexing [1]. In this paper, we characterize the multivariate probability measures that maximize Renyi entropy under a covariance constraint. Then we extend a particular convolution whose stable distributions are these Renyi maximizing laws.

II. MULTIVARIATE RENYI MAXIMIZING DISTRIBUTIONS

We first recall that the Renyi entropy H_{α} of order α of a random variable **X** distributed according to f(x) is $H_{\alpha} = \frac{1}{1-\alpha} \log \int f^{\alpha}(x) dx$ and that, as $\alpha \to 1$, this entropy converges to the classical Shannon entropy [2]. Let us denote by f_{α} the n-variate probability densities defined as follows:

$$f_{\alpha}(\mathbf{x}) = A_{\alpha} \frac{1}{|2\pi c_{\alpha}^{2} \mathbf{K}|^{\frac{1}{2}}} \left(1 - \operatorname{sign}(\alpha - 1) \frac{\mathbf{x}^{T} \mathbf{K}^{-1} \mathbf{x}}{2c_{\alpha}^{2}}\right)^{\frac{1}{\alpha - 1}}$$

with $c_{\alpha} = \left(\operatorname{sign}\left(\alpha - 1\right)\left(\frac{n}{2} + \frac{1}{\alpha - 1}\right)\right)^{1/2}$, $A_{\alpha} = \frac{\Gamma\left(\frac{1}{\alpha - 1}\right)}{\Gamma\left(\frac{1}{\alpha - 1} - \frac{n}{2}\right)}$ if $\alpha < 1$, $\frac{\Gamma\left(\frac{\alpha}{\alpha - 1} + \frac{n}{2}\right)}{\Gamma\left(\frac{\alpha}{\alpha - 1}\right)}$ if $\alpha > 1$ and $\mathbf{x} \in \left\{\mathbf{x} \mid \mathbf{x}^T \mathbf{K}^{-1} \mathbf{x} \leq 2c_{\alpha}^2\right\}$ for $\alpha > 1$ and $\mathbf{x} \in R^n$ for $\alpha \in [0, 1[$. Our main result expresses as follows:

Theorem 1 the probability distribution that maximizes H_{α} under the constraint $E\left[\mathbf{X}\mathbf{X}^{T}\right] = \mathbf{K}$ is $f_{\alpha} \ \forall \alpha > \frac{n}{n+2}$

This theorem is easily proved using the convexity of a directed version of the Renyi divergence, namely $D_{\alpha}\left(f||g\right)=sign\left(\alpha-1\right)\int\frac{f^{\alpha}}{\alpha}+\frac{\alpha-1}{\alpha}g^{\alpha}-fg^{\alpha-1}$. In statistics, the distributions f_{α} are known as the Pearson type II or Student -t [3] laws $(\alpha>1)$ and type VII or Student -s laws $(0<\alpha<1)$. Moreover, a stochastic representation of these random variables may be deduced from their elliptical symmetry property [4]:

Theorem 2 if $\frac{n}{n+2} < \alpha < 1$, then $\mathbf{X} \sim f_{\alpha}$ writes as $\mathbf{X} = \left(2c_{\alpha}^2\mathbf{K}\right)^{\frac{1}{2}}\mathbf{N}_0/\sqrt{A}$ where \mathbf{N}_0 is an n-variate normal random variable, A is a scalar χ^2 random variable with $2c_{\alpha}^2 =$

Christophe Vignat
Université de Marne-la-Vallée, ENST URA 820
77 454 Marne-la-Vallée cedex, France
and E.E.C.S., University of Michigan
Email: vignat@univ-mlv.fr.

 $\begin{array}{ll} \frac{2}{1-\alpha}-n \ \ degrees \ \ of \ freedom \ \ and \ \ independent \ \ of \ \mathbf{N}_0. \ \ Moreover, \ \ if \ 2c_{\alpha}^2 \ \in \ N, \ \ then \ \ denoting \ 2c_{\alpha}^2 = m, \ \mathbf{X} \ \ writes \ \ as \\ \mathbf{X} = \mathbf{K}^{\frac{1}{2}} \frac{\mathbf{N}_0}{\sqrt{\frac{1}{2m}\left(N_1^2+\cdots+N_m^2\right)}} \ \ where \ \ the \ \ N_0 \leq i \leq m \ \ are \ \ Gaussian \\ \mathcal{N} \ (0,1) \ \ and \ \ mutually \ \ independent \end{array}$

Now if $\alpha > 1$ and if $2c_{\alpha}^{2} \left(= \frac{2}{a-1} + n \right) \in N - \{0\}$ then (denoting $m = 2c_{\alpha}^{2}$) **X** writes

$$\mathbf{X} = \mathbf{K}^{\frac{1}{2}} \frac{\mathbf{N}_0}{\sqrt{\frac{1}{m} (\mathbf{N}_0^T \mathbf{N}_0 + N_1^2 + \dots + N_m^2)}}$$

III. A NATURAL CONVOLUTION ASSOCIATED WITH THE RENYI ENTROPY

Based on Urbanik's results [6], we provide now an extension of Kingman's convolution [5] that allows to identify the maximum Renyi entropy distributions as stable laws associated with a specific type of convolution.

Theorem 3 Let X and Y both distributed according to f_{α} (α < 1) and assume that $Z=X*Y\triangleq (|X|^{-2}+|Y|^{-2}+2\lambda|X|^{-1}|Y|^{-1})^{-\frac{1}{2}}$ where λ is a random variable independent of X and Y, and distributed according to $f_{\alpha_{\lambda}}$ ($\alpha_{\lambda}>1$) with $\alpha=\frac{2\alpha_{\lambda}}{3\alpha_{\lambda}-1}$. Then Z is also distributed according to f_{α} .

As remarked by Kingman, among all possible random variables λ in (3), the only choice that makes the operation Z=X*Y associative is exactly $\lambda \sim f_{\alpha_{\lambda}}$.

IV. CONCLUSIONS AND PERSPECTIVES

The preceding results represent a first step toward the characterization of operations having maximizing Renyi entropy distributions as stable laws. An extension to multivariate random variables, and to Student -r laws remains to be exhibited.

References

- A. O. Hero, Divergence matching criteria for registration and indexing, http://www.eecs.umich.edu/~hero/presentations.html
- A. Rényi, Probability theory, North-Holland Series in Applied Mathematics and Mechanics, Vol. 10., 1970
- [3] A.M.S. de Souza, C. Tsallis, Student's -t and -r distributions: unified distributions from an entropic variational principle, Physica A, 236, 52-57, 1997
- [4] K.C. Chu, Estimation and Detection for linear systems with elliptical random variables, IEEE Tr. on Automatic Control, 18, 500-505, 1973
- [5] J. F. C. Kingman, Random walks with spherical symmetry, Acta Math 109, 11-53, 1953
- [6] K. Urbanik, Generalized Convolutions I to V, Studia Mathematica, 23, 45, 80 -1, 83 -2 and 91-2 resp., 1963, 73, 84, 86 and 88 resp., pp. 217-45, 57-70, 167-189, 57-95, 153-178 resp.

¹J. Costa was supported by Fundacao para a Ciencia e Tecnologia under the project SFRH/BD/2778/2000.