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Abstract—This paper focuses on estimating the maximum of so the broadcast-based algorithms do not generally coaverg
the initial measures ip a Wireless Sensor Network. Two Qifferent the statistical average [5]. This is obviously not a problem
algorithms ‘are studied : the RANDOM GOSSIP , relying on  yhijje estimating the maximum value. Hence, broadcasting
pairwise exchanges between the nodes, and theRBADCAST in . .
which each sensor sends its value to all its neighbors; both are |nformat!on can b,e a QOOd way to SPeed up convergence for
asynchronous and distributed. We prove the convergence of tise the distributed estimation of the maximum in a WSN.
algorithms and provide tight bounds for their convergence speed.  The paper is organized as follows : in Section Il we
will present our model and explicit the studied algorithms.
Section Il will be dedicated to the study of the convergence
and in Section IV we will give speed convergence bounds for

Distributed estimation algorithms over Wireless Sensotie consensus over the maximum value which are the main
Networks (WSN) have been widely studied since the seminantributions of the paper. Finally, Section V will illuate our
work of Tsitsiklis [1]. The goal of these algorithms is toresults with some simulations and Section VI will be devoted
make the network reach a consensus over the value of intetestoncluding remarks.
by means of local communications between the sensors; in
particular, a lot of results have been shown in the past few Il. PROPOSEDALGORITHMS
years concerning the problem of averaging (that is to sa)ema'& Model
consensus over the mean of the initial values) [2], [3], [E], '

[6]. We consider a network ofV sensors modeled by an

However, various applications such as stock managemenuoweighted undirected gragh = (V, E) whereV is the set
distributed computing could need the maximum value of thaf vertices/sensorgi(| = N) andE is the set of edges/perfect
network (obviously, the estimation of the maximum value inks between the sensors. Each sensoan exchange data
equivalent to the estimation of any extrema over any functiovith its neighborhoodV; = {j € V|(i,j) € E} and we define
of the network measures such as the minimum value or te = |N;|, the degree of node and d,,,., = max;cy d,
closest to a constant, ...). For example, if all the sensave hthe maximal degree across the network. We will denote by
i) a task for which they want the collaboration of the networld the adjacency matrix of the graph such tiiat);; = 1 if
and ii) a priority coefficient, by making consensus over thend only ifi € A; and0 elsewhere; as the considered graph
maximal coefficient and the associated task or sensor ID, tfiseundirected, the adjacency matrix is obviously symmetric
network can process the most urgent task in priority. We also introducéD the diagonal matrix of the degrees and

Beyond going further, a clarification on the wdstbadcast L = D — A the Laplacian matrix of graph [9].
is needed. In the rest of the papérpadcastwill refer to For practical reasons, we will suppose tigats connected
the fact of sending information to all reachable sensorsasdnd that each sensor is equipped with an independent Poisson
[5] and not to the goal of information propagation like in thelock of common parametex for its activation. This setup
computer scientific literature [7]. An important point hdése is equivalent to a global clock of paramet®\ and uniform
that the sensors do not know if they have the maximal valselection of the awaking sensor. We will natéhe instant of
or not, because if it was the case a flooding algorithm wouttie ¢-th ring of the global clock. We will also suppose that
be more suitable (see [7], [8] for some results about thedspgbe communication duration is small with respect to the time
of convergence of flooding algorithms). between two clock ticks so there are no collisions between

To share the maximum value over the entire network, theessages.
standard Random Pairwise Gossip approach (analyzed in [2]Each sensor has an initial valuex;(0); we introduce
[3] in the case of averaging) can be used, but it does nof,,. = max;cy ;(0) andx(t) = [xl(t)...xN(t)]T where
take benefit of the broadcast nature of the wireless channel(t) is the estimate of thé-th sensor at global time. It is
Actually, broadcasting causes a major issue for averagititerefore obvious that we wisk(t) to converge toz,,,.1
algorithms because the sum of measures is not conser¢eith 1 being the sizeV vector of ones) as goes to infinity.

I. INTRODUCTION



Hence, the goal of the studied algorithms will be to achieveonsidering the Bernouilli variablé, = |H; .| — |H,| of
max-consensusn finite time 7, i.e. Vx(0) € RY,3r < co:  parameterp > 2/(Nd,na.), We can conclude that the time
for a new sensor to be informed is a random varidijlehat

vt > 7, X(t) = Tmaal @ foliows a geometrical distribution of parameterFinally, the
B. RANDOM GossiPand BROADCAST algorithms mean time for allN sensors to be informed is upper bounded

Let us now present our two algorithms of interest: by N times the expectation df :

. 2
o The RanDOM Gossip comes from the classical algo- E[rpc] < dmme.
rithm for average estimation over Sensor Networks [3]. -2
When a sensor’s clock ticks, it chooses uniformly another |

sensor among its neighbors and they update their estimétgro”ary 1. The BROADCAST algorithm reaches max-
by taking the max of both their received and former Valu%onsensus in finite timesc: with high probability

Algorithm 1 RANDOM GossIP(RG) Proof: Similarly, the probability of incrementing the
When the sensor wakes up (at global timé) : number of max-informed sensors is the probability of chogsi
e The sensoi chooses uniformly a neighbgre A; an informed node connected to a uninformed one which is
e i andj exchange their value greater thanl/N as long as the consensus is not reached.
e i andj update as follows Considering the worst case where only one sensor is informed
zi(t+1) = x;(t + 1) = max(z;(t), z;(t)) when an informed node at the inner borderfHf broadcasts,
we have
E[rpc] < N2.

o The BROADCAST algorithm uses the broadcast nature of
the wireless channel: when a sensor wakes up, it broad- u
casts its estimate to all its neighbors. The sensors that

. - . ; IV. CONVERGENCESPEED BOUNDS
receive a communication update their value accordingly.
Simple convergence speed bounds have already been ob-

Algorithm 2 BROADCAST (BC) tained in the previous section but th_ey do not d_epend_ muech nei
ther on the graph nor on the algorithm; yet, simulations show
that the max-consensus time changes significantly acaprdin
to the underlying graph and the algorithm (see section V for
an illustration). Therefore, we propose here graph-degpeind
bounds with a different approach for each algorithm.

When the sensor wakes up (at global time) :
e The sensoi broadcasts its value to all its neighbors
e The sensors of the neighborhodd update as follows
Vj € Niy wj(t +1) = max(z;(t), 2 (t))

A. Bound for theRANDOM GOSSIP
IIl. PROOFS OF CONVERGENCE Ndpar SoN—11  Ndpas log(N—1)
Result 1. E[rrg] < ‘T —Tmez e T o)

=~

. . . k=1 k AL
~ The goal of both algorithms is to reachax-consensud where \} is the second smallest eigenvalue of the Laplacian
finite time. Let H, = {i € V[z;(t) = Zmas} be the set of of the graph.

vertices that have the maximum value at tihand H; its ) ] ] _
complementary set. We can remark that once a sensor has Proof: It is straightforward to see that incrementing the
the maximal value, its value does not change anymaied( number of sensors informed with the maximum value is the
x(t), Max(z, Tmaz) = Tmas), hence the number of sensor$ame as exchanging along an edge that goes from the set of
informed withz,,,,, ( that is|H,| at timet) is non-decreasing informed sensorsl; , to the set of uninformed sensoi,.
in ¢. Let 7y = argmin,{|H,| = N'} be the first time thenax- _ L€t S5 be a subset oV and 95 = {e = (i,j) € Eli €
consensuss reached, we can easily notice that as soon as the/ € S} the edge frontier ofS. We know from Cheeger
consensus is reached, it is stablét:> 7y, |H, = N. So, [10], [11] that

roving the convergence of an algorithm with high prob#pili S
proving 9 g gh probap 8S|2)\2L|S< ||)

is equivalent to proving thaE[ry] < cc. TV

Theorem 1. The RANDOM GossiP algorithm reaches max-  So, as the probability of choosing a particular edge is great

consensus in finite timege with high probability. than2/(Nd,,..) and as there ar@ H;| increasing edgeswve
Proof: While max-consensus is not reached, there is g%\ve

least one vertex i, that is connected to a vertex i, as the P[|Hyyr| = |Hy| +1] > Qﬂ

graph is supposed to be connected. The probability of chgosi ~ Ndmaa

one of these two vertices at timds 2/N and the probability > oAL|H,| V| — |Hi|

that they exchange with each other is at leigst,,.... Hence, - 2 | V]2

2 As in the proof of Theorem 1, this inequality gives us an upper
Pl[Her| = [He| +1] > Ndyrow bound for the parameter of the geometrical law representing



the time to inform one more node knowing thidi;| = ¢ layer, the two layer containing both at least one node), we

sensors have already been informed. Then, have
Nd N
E [r;41]i nodes informed < — =% R
[ z+1‘ q > 2)\5 Z(N—Z) E[TBC] < N+ Nlog H ‘£(1)|
Finally, E[7x] is obtained by summing the above inequality i=1

overi from1to N — 1. [ St L))
< &N+ (¢ —1)Nlog ==

B. Bound for theBROADCAST €r

Result 2. E[rpc] < éN + (¢ — 1) Nlog (X2 < &N+ (e —1)Nlg <N - 2)
— T T 1

whereé is the mean eccentricity of the graph. €r —

Proof: First, like in the works of Feige, Frieze and Remarking thatf[e,| = € since the root node can be any-
Grimmett [12], [7], let us consider the spanning tree suplgrawhere in the graph along with Jensen’s inequality concludes

G’ of G rooted on a sensar with maximal value at time). the proof. [ |
It is evident that the BOADCAST algorithm will reach max-
consensus less quickly @il than it does org. V. SIMULATIONS AND REMARKS ON THE TIGHTNESS

Let us denote by.(!) the set of nodes (or layer) at distance

¢ from the root node. As the spanning tree transformatiT\% First, lets introduce Random Geometric Graphs (RGGS)

keeps the smallest distance between the nodes and the %l These graphs are pretty well suited for Wireless Senso

. o etworks because they consist in uniformly disposing senso
n he number of layers is th ntricity of the r . ) .
ode, the number of layers is the eccentricity of the oobno%n the unit square and creating a (perfect) link between two

sensors if and only if their euclidean distance is lower than
fixed radiusrg. The simulations below are done on connected

€ = max;ey\ v} d(r,7) Whered(r,.) stands for the distance
betweenr and another node in the graph.

Let us denote byrU+1) the time for all the nodes of . T e
the layer £U*1) to be informed knowing that the previousRandom Geometric Graphs of raditis= \/4log(N)/N.

layer £U) is informed. This time is the time needed to pick Figure 1 iIIustratgs the fact that the. convergence .speed of
M — |£(j)’ elements amongV by uniform picking. The the proposed al_gor!thms can be very dlfferent accordlngleot
expectation of this time is the sum ovérgoing from 1 to  9"@Ph type (which is advocated in section IV) by plotting the

M of the expectation of the time to pick one element amor{ﬁsan percentage of informed sensors with respect to thalglob
the & remaining that is time. The mean percentage of informed sensors is evaluated

by doing 1,000 trials of the algorithm, the graph being un-
E[r+D) i i k < k )tl changed. The graphs considere_d here are conepletegraph,
the star graph where one node is connected to all others, the
o pathgraph, aRandom graplisee below for a proper definition)
_ N Z 1 and the2D grid, all with 49 sensors. Along with the fact that
k the convergence speed is strongly graph-dependent, thi®fig
) illustrates the fact that R\DOM Gossip and BROADCAST
where the last eqL’iaI{ty comes from the fact that: [L—z| < have different behaviors according to the encounteredhgrap
L2l k(l—2)" =1/22 On thestar and path graphs, their convergence speed is quite
Now, we upper bound the time to inform all the gragh the same whereas there are huge differences omyrieor
by the time to inform it layer by layer. Also, in order to haveyn random graphs Roughly speaking, this is due to the fact
a tighter inequality we separate the time to inform the firghat the RRNDOM GossiP works along edges whereas the

layer £* which is equal toN . BROADCAST algorithm works on neighborhoods.
er—1 In Figure 2, we plot the mean percentage of informed
Elrgc] < N+ Z E[rU+Y|£0) informed sensors versus the global time for a RGG sensors network
j=1 with 75 nodes. As expected, theRBADCAST scheme informs
er—11£9)) a lot faster the unaware sensors, especially at the beginnin
= N+ N Z Z 1 The curve of RNDOM GossiPsuggest a&-phase progression
J=1 k=1 k . starting permanent regimand endingas stated in [8] and
er—1 the proofs therein.
< N+N> <log (|£(j>|) +1) In Figure 3, we plot thecommunication costfor the
j=1 RANDOM GossIp and the BROADCAST algorithm and the

proposed bounds given in Section IV versus the number of
using the fact that'n > 1,%;_, < log(n) + 1. Now, by sensors. In the Wireless Sensor Networks, the power con-
applying the arithmetico-geometric inequality and the fhat straints are often heavy and as the power consumption is
the sum of the elements of layetdo N —1 is less thanV —2 rather associated to the number of communications than to
(the layerl is treated apart and there is no need to hit the late number of algorithms iterations, we advocate the use of



the communication cosas a measure of an algorithm perfor
mance. This cost can be easily deduced from(the iteration
cos) by multiplying it by the number of communications pel
iteration, namely?2 for the RaNDOM Gossipand 1 for the
BROADCAST (we do not differentiate pairwise and broadcas
communications here as their power consumption and spe
are very close). We can see that the proposed bounds
good for both algorithms. It is also worth noticing thes:
bounds are tight for the complete graph and the bound for t
BROADCASTIs also tight for the path graph. In our simulation
the proposed bounds are less tight when the number of sen:
grows since we have remarked that the simulated RGG graj
are less connected, i.e., their smallest non-null eigervaf
the Laplacian matrix decreases.
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Fig. 1. Mean percentage of informed sensors versus globalftindifferent
graph types.

VI. CONCLUSION AND FUTURE WORK

We proved that the RNDOM Gossipand the BROADCAST
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Fig. 2. Mean percentage of informed sensors versus global fiiméhe
RANDOM Gosslipand the BROADCAST algorithms on RGGs.
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Fig. 3. Communication costs and proposed bounds ferBoM GOSSIP
and BROADCAST algorithms on RGGs.

We are currently working on concentration inequalities
around the time of max-consensus in order to add a bound on
the dispersion of consensus times. Also, it is easy to sde tha
choosing uniformly the sensors might not always be the best
thing to do (for example, as long as a sensor does not receive
any update on its value, its action is useless). To cover igp th
defect, we are working on distributed clock management to
better select the awaking sensors which would speed up the
convergence.
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