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Abstract—This paper focuses on estimating the maximum of
the initial measures in a Wireless Sensor Network. Two different
algorithms are studied : the RANDOM GOSSIP , relying on
pairwise exchanges between the nodes, and the BROADCAST in
which each sensor sends its value to all its neighbors; both are
asynchronous and distributed. We prove the convergence of these
algorithms and provide tight bounds for their convergence speed.

I. I NTRODUCTION

Distributed estimation algorithms over Wireless Sensors
Networks (WSN) have been widely studied since the seminal
work of Tsitsiklis [1]. The goal of these algorithms is to
make the network reach a consensus over the value of interest
by means of local communications between the sensors; in
particular, a lot of results have been shown in the past few
years concerning the problem of averaging (that is to say make
consensus over the mean of the initial values) [2], [3], [4],[5],
[6].

However, various applications such as stock management or
distributed computing could need the maximum value of the
network (obviously, the estimation of the maximum value is
equivalent to the estimation of any extrema over any function
of the network measures such as the minimum value or the
closest to a constant, ...). For example, if all the sensors have
i) a task for which they want the collaboration of the network
and ii) a priority coefficient, by making consensus over the
maximal coefficient and the associated task or sensor ID, the
network can process the most urgent task in priority.

Beyond going further, a clarification on the wordbroadcast
is needed. In the rest of the paper,broadcastwill refer to
the fact of sending information to all reachable sensors as in
[5] and not to the goal of information propagation like in the
computer scientific literature [7]. An important point hereis
that the sensors do not know if they have the maximal value
or not, because if it was the case a flooding algorithm would
be more suitable (see [7], [8] for some results about the speed
of convergence of flooding algorithms).

To share the maximum value over the entire network, the
standard Random Pairwise Gossip approach (analyzed in [2],
[3] in the case of averaging) can be used, but it does not
take benefit of the broadcast nature of the wireless channel.
Actually, broadcasting causes a major issue for averaging
algorithms because the sum of measures is not conserved

so the broadcast-based algorithms do not generally converge
the statistical average [5]. This is obviously not a problem
while estimating the maximum value. Hence, broadcasting
information can be a good way to speed up convergence for
the distributed estimation of the maximum in a WSN.

The paper is organized as follows : in Section II we
will present our model and explicit the studied algorithms.
Section III will be dedicated to the study of the convergence
and in Section IV we will give speed convergence bounds for
the consensus over the maximum value which are the main
contributions of the paper. Finally, Section V will illustrate our
results with some simulations and Section VI will be devoted
to concluding remarks.

II. PROPOSEDALGORITHMS

A. Model

We consider a network ofN sensors modeled by an
unweighted undirected graphG = (V,E) whereV is the set
of vertices/sensors (|V | = N ) andE is the set of edges/perfect
links between the sensors. Each sensori can exchange data
with its neighborhoodNi = {j ∈ V |(i, j) ∈ E} and we define
di = |Ni|, the degree of nodei and dmax = maxi∈V di,
the maximal degree across the network. We will denote by
A the adjacency matrix of the graph such that(A)ij = 1 if
and only if i ∈ Nj and0 elsewhere; as the considered graph
is undirected, the adjacency matrix is obviously symmetric.
We also introduceD the diagonal matrix of the degrees and
L = D−A the Laplacian matrix of graph [9].

For practical reasons, we will suppose thatG is connected
and that each sensor is equipped with an independent Poisson
clock of common parameterλ for its activation. This setup
is equivalent to a global clock of parameterNλ and uniform
selection of the awaking sensor. We will notet the instant of
the t-th ring of the global clock. We will also suppose that
the communication duration is small with respect to the time
between two clock ticks so there are no collisions between
messages.

Each sensori has an initial valuexi(0); we introduce
xmax = maxi∈V xi(0) andx(t) = [x1(t) . . . xN (t)]

T where
xi(t) is the estimate of thei-th sensor at global timet. It is
therefore obvious that we wishx(t) to converge toxmax1

(with 1 being the sizeN vector of ones) ast goes to infinity.



Hence, the goal of the studied algorithms will be to achieve
max-consensusin finite time τ , i.e. ∀x(0) ∈ RN , ∃τ < ∞:

∀t > τ, x(t) = xmax1 (1)

B. RANDOM GOSSIPand BROADCAST algorithms

Let us now present our two algorithms of interest:

• The RANDOM GOSSIP comes from the classical algo-
rithm for average estimation over Sensor Networks [3].
When a sensor’s clock ticks, it chooses uniformly another
sensor among its neighbors and they update their estimate
by taking the max of both their received and former value.

Algorithm 1 RANDOM GOSSIP (RG)
When the sensori wakes up (at global timet) :

• The sensori chooses uniformly a neighborj ∈ Ni

• i and j exchange their value
• i and j update as follows

xi(t+ 1) = xj(t+ 1) = max(xi(t), xj(t))

• The BROADCAST algorithm uses the broadcast nature of
the wireless channel: when a sensor wakes up, it broad-
casts its estimate to all its neighbors. The sensors that
receive a communication update their value accordingly.

Algorithm 2 BROADCAST (BC)
When the sensori wakes up (at global timet) :

• The sensori broadcasts its value to all its neighbors
• The sensors of the neighborhoodNi update as follows

∀j ∈ Ni, xj(t+ 1) = max(xi(t), xj(t))

III. PROOFS OF CONVERGENCE

The goal of both algorithms is to reachmax-consensusin
finite time. Let Ht = {i ∈ V |xi(t) = xmax} be the set of
vertices that have the maximum value at timet and H̄t its
complementary set. We can remark that once a sensor has
the maximal value, its value does not change anymore (∀x ∈
x(t),max(x, xmax) = xmax), hence the number of sensors
informed withxmax ( that is|Ht| at timet) is non-decreasing
in t. Let τN = argmint{|Ht| = N} be the first time themax-
consensusis reached, we can easily notice that as soon as the
consensus is reached, it is stable :∀t > τN , |Ht| = N . So,
proving the convergence of an algorithm with high probability
is equivalent to proving thatE[τN ] < ∞.

Theorem 1. The RANDOM GOSSIP algorithm reaches max-
consensus in finite timeτRG with high probability.

Proof: While max-consensus is not reached, there is at
least one vertex inHt that is connected to a vertex in̄Ht as the
graph is supposed to be connected. The probability of choosing
one of these two vertices at timet is 2/N and the probability
that they exchange with each other is at least1/dmax. Hence,

P[|Ht+1| = |Ht|+ 1] ≥
2

Ndmax

Considering the Bernouilli variableBt = |Ht+1| − |Ht| of
parameterp ≥ 2/(Ndmax), we can conclude that the time
for a new sensor to be informed is a random variableUt that
follows a geometrical distribution of parameterp. Finally, the
mean time for allN sensors to be informed is upper bounded
by N times the expectation ofUt :

E[τRG] ≤ dmax

N2

2
.

Corollary 1. The BROADCAST algorithm reaches max-
consensus in finite timeτBC with high probability.

Proof: Similarly, the probability of incrementing the
number of max-informed sensors is the probability of choosing
an informed node connected to a uninformed one which is
greater than1/N as long as the consensus is not reached.
Considering the worst case where only one sensor is informed
when an informed node at the inner border ofHt broadcasts,
we have

E[τBC ] ≤ N2.

IV. CONVERGENCESPEED BOUNDS

Simple convergence speed bounds have already been ob-
tained in the previous section but they do not depend much nei-
ther on the graph nor on the algorithm; yet, simulations show
that the max-consensus time changes significantly according
to the underlying graph and the algorithm (see section V for
an illustration). Therefore, we propose here graph-dependent
bounds with a different approach for each algorithm.

A. Bound for theRANDOM GOSSIP

Result 1. E[τRG] ≤
Ndmax

λL
2

∑N−1
k=1

1
k
∼ Ndmax log(N−1)

λL
2

whereλL
2 is the second smallest eigenvalue of the Laplacian

of the graph.

Proof: It is straightforward to see that incrementing the
number of sensors informed with the maximum value is the
same as exchanging along an edge that goes from the set of
informed sensors,Ht , to the set of uninformed sensors,̄Ht.

Let S be a subset ofV and ∂S = {e = (i, j) ∈ E|i ∈
S, j ∈ S̄} the edge frontier ofS. We know from Cheeger
[10], [11] that

|∂S| ≥ λL
2 |S|

(

1−
|S|

|V |

)

So, as the probability of choosing a particular edge is greater
than2/(Ndmax) and as there are|∂Ht| increasing edges, we
have

P[|Ht+1| = |Ht|+ 1] ≥ 2
|∂Ht|

Ndmax

≥ 2λL
2 |Ht|

|V | − |Ht|

dmax|V |2

As in the proof of Theorem 1, this inequality gives us an upper
bound for the parameter of the geometrical law representing



the time to inform one more node knowing that|Ht| = i
sensors have already been informed. Then,

E [τi+1|i nodes informed] ≤
Ndmax

2λL
2

N

i(N − i)

Finally, E[τN ] is obtained by summing the above inequality
over i from 1 to N − 1.

B. Bound for theBROADCAST

Result 2. E[τBC ] ≤ ǭN + (ǭ− 1)N log
(

N−2
ǭ−1

)

where ǭ is the mean eccentricity of the graph.

Proof: First, like in the works of Feige, Frieze and
Grimmett [12], [7], let us consider the spanning tree subgraph
G′ of G rooted on a sensorr with maximal value at time0.
It is evident that the BROADCAST algorithm will reach max-
consensus less quickly onG′ than it does onG.

Let us denote byL(i) the set of nodes (or layer) at distance
i from the root node. As the spanning tree transformation
keeps the smallest distance between the nodes and the root
node, the number of layers is the eccentricity of the root node
ǫr = maxi∈V \{r} d(r, i) whered(r, .) stands for the distance
betweenr and another node in the graph.

Let us denote byτ (j+1) the time for all the nodes of
the layerL(j+1) to be informed knowing that the previous
layer L(j) is informed. This time is the time needed to pick
M =

∣

∣L(j)
∣

∣ elements amongN by uniform picking. The
expectation of this time is the sum overk going from 1 to
M of the expectation of the time to pick one element among
the k remaining that is

E[τ (j+1)] =

M
∑

k=1

∞
∑

t=0

t.
k

N
.

(

1−
k

N

)t−1

= N

M
∑

k=1

1

k

where the last equality comes from the fact that∀x : |1−x| <
1,
∑∞

k=1 k (1− x)
k−1

= 1/x2.
Now, we upper bound the time to inform all the graphG′

by the time to inform it layer by layer. Also, in order to have
a tighter inequality we separate the time to inform the first
layerL1 which is equal toN .

E[τBC ] ≤ N +

ǫr−1
∑

j=1

E[τ (j+1)|L(j) informed]

= N +N

ǫr−1
∑

j=1

|L(j)|
∑

k=1

1

k

≤ N +N

ǫr−1
∑

j=1

(

log
(

|L(j)|
)

+ 1
)

using the fact that∀n ≥ 1,
∑n

k=1 ≤ log(n) + 1. Now, by
applying the arithmetico-geometric inequality and the fact that
the sum of the elements of layers2 to N−1 is less thanN−2
(the layer1 is treated apart and there is no need to hit the last

layer, the two layer containing both at least one node), we
have

E[τBC ] ≤ ǫrN +N log





ǫr−1
∏

j=1

|L(j)|





≤ ǫrN + (ǫr − 1)N log

(

∑ǫr−1
j=1 |L(j)|

ǫr

)

≤ ǫrN + (ǫr − 1)N log

(

N − 2

ǫr − 1

)

Remarking thatE[ǫr] = ǭ since the root node can be any-
where in the graph along with Jensen’s inequality concludes
the proof.

V. SIMULATIONS AND REMARKS ON THE TIGHTNESS

First, let’s introduce Random Geometric Graphs (RGGs)
[13]. These graphs are pretty well suited for Wireless Sensor
Networks because they consist in uniformly disposing sensors
on the unit square and creating a (perfect) link between two
sensors if and only if their euclidean distance is lower thana
fixed radiusr0. The simulations below are done on connected
Random Geometric Graphs of radiusr0 =

√

4 log(N)/N .
Figure 1 illustrates the fact that the convergence speed of

the proposed algorithms can be very different according to the
graph type (which is advocated in section IV) by plotting the
mean percentage of informed sensors with respect to the global
time. The mean percentage of informed sensors is evaluated
by doing 1, 000 trials of the algorithm, the graph being un-
changed. The graphs considered here are : thecompletegraph,
the star graph where one node is connected to all others, the
pathgraph, aRandom graph(see below for a proper definition)
and the2D grid, all with 49 sensors. Along with the fact that
the convergence speed is strongly graph-dependent, this figure
illustrates the fact that RANDOM GOSSIP and BROADCAST

have different behaviors according to the encountered graph.
On thestar andpath graphs, their convergence speed is quite
the same whereas there are huge differences on thegrid or
on random graphs. Roughly speaking, this is due to the fact
that the RANDOM GOSSIP works along edges whereas the
BROADCAST algorithm works on neighborhoods.

In Figure 2, we plot the mean percentage of informed
sensors versus the global time for a RGG sensors network
with 75 nodes. As expected, the BROADCAST scheme informs
a lot faster the unaware sensors, especially at the beginning.
The curve of RANDOM GOSSIPsuggest a3-phase progression
: starting, permanent regimeand endingas stated in [8] and
the proofs therein.

In Figure 3, we plot thecommunication costfor the
RANDOM GOSSIP and the BROADCAST algorithm and the
proposed bounds given in Section IV versus the number of
sensors. In the Wireless Sensor Networks, the power con-
straints are often heavy and as the power consumption is
rather associated to the number of communications than to
the number of algorithms iterations, we advocate the use of



the communication costas a measure of an algorithm perfor-
mance. This cost can be easily deduced fromτN (the iteration
cost) by multiplying it by the number of communications per
iteration, namely,2 for the RANDOM GOSSIP and 1 for the
BROADCAST (we do not differentiate pairwise and broadcast
communications here as their power consumption and speed
are very close). We can see that the proposed bounds are
good for both algorithms. It is also worth noticing these
bounds are tight for the complete graph and the bound for the
BROADCAST is also tight for the path graph. In our simulation,
the proposed bounds are less tight when the number of sensors
grows since we have remarked that the simulated RGG graphs
are less connected, i.e., their smallest non-null eigenvalue of
the Laplacian matrix decreases.
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(a) RANDOM GOSSIPalgorithm
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(b) BROADCAST algorithm

Fig. 1. Mean percentage of informed sensors versus global timefor different
graph types.

VI. CONCLUSION AND FUTURE WORK

We proved that the RANDOM GOSSIPand the BROADCAST

algorithms dealing with the distributed maximum value esti-
mation over a WSN converge to the max-consensus and we
gave tight bounds for their convergence speed.
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Fig. 2. Mean percentage of informed sensors versus global timefor the
RANDOM GOSSIPand the BROADCAST algorithms on RGGs.
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Fig. 3. Communication costs and proposed bounds for RANDOM GOSSIP

and BROADCAST algorithms on RGGs.

We are currently working on concentration inequalities
around the time of max-consensus in order to add a bound on
the dispersion of consensus times. Also, it is easy to see that
choosing uniformly the sensors might not always be the best
thing to do (for example, as long as a sensor does not receive
any update on its value, its action is useless). To cover up this
defect, we are working on distributed clock management to
better select the awaking sensors which would speed up the
convergence.
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