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1. May’s model

(a) The mathematics behind May’s result
Inspired by Gardner and Ashby’s numerical results [1], Robert May proposed a first mathematical
model [2] to link the stability of an ecosystem with its complexity. In this model, the ecosystem
is represented by a vector of N functions n : t 7→ (ni(t))i∈[N ], the quantity ni(t) corresponding to
the abundance of species number i at time t.

The vector of the abundances n satisfies a system of first order nonlinear differential equations
of the form:

dni
dt

= Fi(n). (1.1)

(May did not particularly consider the form of the differential equation given by Eq.(1.1) in [3]).
The main interest of May lies in the study of stability of equilibria of such systems. We assume
the existence of an equilibrium n∗ = (n∗i )i∈[N ] and write the abundance of species number i as
ni(t) = n∗i + εi(t). Near the equilibrium, the stability of the nonlinear system (1.1) boils down to
the stability of the linear system

dε

dt
= J(n∗)ε, (1.2)

where J := J(n∗) is the N ×N Jacobian matrix

Jij :=
∂Fi
∂nj

(n∗). (1.3)

In particular, the equilibrium is Lyapunov-stable if and only if all the eigenvalues of J have
negative real parts.

The main contribution of May was to model the Jacobian as a random matrix in order to
use mathematical results from RMT. More precisely, May chose to replace the self-interaction
coefficients by −1 and all the other coefficients by independent centered random variables so
that:

J =−I +M , (1.4)

whereMii = 0 and for i 6= j,Mij are i.i.d centered random variables with variance V := Var(Mij),
and with a distribution independent from N .

May addressed the problem of determining what are the conditions onN and V to ensure that
all the eigenvalues have negative real part. He relied on the result by Ginibre [4] who proved that
asymptotically in N , the eigenvalues of matrix J are contained in a disk centered at (−1, 0) with
radius

√
NV . This lead May to state the following phase transition :

Proposition 1.1. (May [2], 1972) If the matrix J is given by (1.4), the equilibrium is stable with high
probability if

V <
1

N
(1.5)

and unstable with high probability if

V >
1

N
. (1.6)

In fact, Ginibre’s result is not enough to justify this phase transition but we need to understand
the spectral radius of the matrix J . The first results on the spectral radius were obtained by Füredi
and Komlós [5] in the Hermitian case and by Bai and Yin [6], Geman [7] and Geman and Hwang
[8] in the general case. Recently, Bordenave et al. [9] show its convergence in probability under
optimal moment assumption.
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As the condition to get stability involves the number N of species, what we need to deduce
May’s result rigorously is a concentration inequality for the spectral radius. Such an inequality
has been established in [10].

Theorem 1.1. Let XN = (Xij) denote the random N ×N matrix, where Xij are independent copies
of a given symmetric complex random variable, with E[|X11|2]≤ 1. If there exists ε > 0 and B > 0 such
that E[|X11|2+ε]≤B, then, for any δ > 0, there exists a constant K :=K(ε, δ, B)> 0, such that for any
N ∈N, we have

P
[
ρ(XN )≥ (1 + δ)

√
N
]
≤ K

(logN)2
. (1.7)

It means that, in this first model1, for N large enough, with high probability, there is no
eigenvalue of J outside the disk centered at −1 and of radius

√
NV .

The spectrum of the Jacobian matrix is illustred in Figure 1.

(a) Stability of the spectrum. (b) Some eigenvalues have positive real part.

Figure 1: Spectrum of the Jacobian matrix J =−I +M , for N = 1000 species with C = 1, the
entries Mij , for i 6= j are independent normal centered variables with variance V , with V = 1

2N <
1
N in (A) and V = 2

N > 1
N in (B).

May already considered a sparse version of his initial model in [2], where each possible
interaction takes place with probability C (connectance), independently of all the other
interactions, see Section 4(a) in [3] for an introduction to sparsity. It means that in average, each
species effectively interacts with a proportion C of all the other species. The phase transition can
be now stated as :

Proposition 1.2. (May [2], 1972) If C is the connectance of the model, the equilibrium is stable with high
probability if

CV <
1

N
(1.8)

and unstable with high probability if

CV >
1

N
. (1.9)

Mathematically speaking, it is convenient to use the following formalism. Denote by ∆ER the
adjacency matrix of the Erdös-Rényi graph (see Section 4(b) in [3] for details) meaning that each
entry of∆ER has probabilityC to be equal to 1 and is 0 otherwise. In other words, each species has

1There are slight differences between the model in [10] and the model (1.4) : in [10], the symmetry of the law of the entries is
required and all the entries of the matrix, including the diagonal entries, are i.i.d copies of the same variable while in (1.4),
the diagonal entries are put to zero.
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an effect on another species with probabilityC. Then, the matrixM introduced in (1.4) is replaced
by M̃ equal to :

M̃ :=∆ER ◦M =
(
[∆ER]ijMij

)
. (1.10)

The parameter C can therefore be interpreted as the average number of neighbours of a given
vertex of the graph.

In this new model, the matrix M̃ has the same distribution as M except that Var(M̃ij) =CV ,
for i 6= j, leading to Proposition 1.2.

(b) Relation between May’s model and Lotka-Volterra framework
Consider Eq. (2.1) in [3] (Lotka-Volterra model) and assume that there exists an equilibrium x∗.
If x∗ > 0 then one can easily compute the Jacobian at equilibrium. We provide hereafter a quick
computation. Write xi(t) = x∗i + εi(t) and notice that at equilibrium, since x∗i > 0, one has

ri = x∗i − (Γx∗)i .

Now

dxi
dt

= xi(ri − xi + (Γx)i) ,

= (x∗i + εi)(ri − (x∗i + εi) + (Γ (x+ ε))i) ,

= (x∗i + εi)(x
∗
i − (Γx∗)i − (x∗i + εi) + (Γ (x+ ε))i) ,

= (x∗i + εi)(−εi + (Γε)i) ,

= [diag(x∗)(−I + Γ )ε]i + o(ε) .

Hence the Jacobian

J(x∗) = diag(x∗)(−I + Γ ) . (1.11)

Formally, this Jacobian resembles May’s Jacobian, with important differences:

• the underlying equilibrium x∗ must be feasible (i.e. x∗ > 0). If Γ is random, then
conditions for feasibility are provided in Section 3(d) in [3]. Under these conditions,
stability is granted (see for instance [11, Corollary 1.4]).
• in the Jacobian formula diag(x∗)(−I + Γ ), there is the product of an extra matrix, namely
diag(x∗), with matrix−I + Γ that appears. Notice that if Γ is random, then diag(x∗) and
Γ are dependent since x∗ = r + Γx∗ for a feasible equilibrium.

Stone [12] considered a Jacobian matrix of this form, but with the simplifying assumption that
the entries of diag(x∗) are independent from Γ . Then J is unstable only if Γ is unstable, and thus
May’s criterion would still hold.

This independence assumption between D and Γ is strong as the subset of surviving species
and their abundances are function of the interaction matrix Γ , hence not independent.

Notice that Stone [12] does not consider the normalization under which the equilibrium x∗

is feasible. It is thus not clear that the considered formula for the Jacobian is associated to a LV
system.

(c) Other models
Some authors have used more involved models for the Jacobian matrix, such as the elliptic model
(see Eq. (2.6) in [3] and [13]) and derived from there similar criteria for stability expressed in terms
of the parameters of the model.
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We also mention other possible random models, such as studied in Ben Arous et al. [14,15]:

dxi
dt

=−xi(t) + fi(x) , (1.12)

where fi(x) is a smooth random vector field which models the complexity and nonlinearity of
interactions. It is assumed that for all i∈ [N ],

fi(x) =−
∂V

∂xi
(x) +

1√
N

N∑
j=1

∂Aij
∂xj

(x), (1.13)

where the matrixA is a random antisymmetric matrix independent of the random scalar potential
V .

2. Lotka-Volterra system in two dimensions
The question of long-time behavior of Lotka-Volterra system is a very delicate one that has
motivated an already large literature. Let us first discuss briefly the results for a deterministic
matrix Γ with N small. The N = 2 setting provides some basic heuristics for understanding
when the dynamics admits a single equilibrium with or without species going extinct, multiple
equilibria, or oscillatory behaviors (e.g. Section 2, and also [16,17]).

Recall the Lotka-Volterra system (2.1) in [3] for N = 2 species and with a deterministic matrix
Γ (e.g. [16,17]). This system generally admits four equilibria:

(0, 0),

(
0,

r2
1− Γ22

)
,

(
r1

1− Γ11
, 0

)
, or

(
(1− Γ22)r1 + Γ12r2

(1− Γ11)(1− Γ22)− Γ12Γ21
,

Γ21r1 + (1− Γ11)r2
(1− Γ11)(1− Γ22)− Γ12Γ21

)
. (2.1)

The stability of these equilibria can be discussed from the computation of the Jacobian matrix at
these critical points.

If either x1 < 0 or x2 < 0 at the equilibrium (2.1), that particular equilibrium is unfeasible and
does not correspond to an admissible solution. We generally find that in these cases one species
goes asymptotically to extinction, and is said to be excluded by the other species (e.g. competitive
exclusion). The fact that only one species survives is a classic setting of adaptive dynamics, see
Metz et al. [18] and Champagnat [19]: this corresponds to the rule that invasion implies fixation,
meaning that the weakest species is lost when a favourable mutant arises. Provided new mutant
species arrive sufficiently slowly into the system, the evolution of the population can be described
by the sequence of successive dominating species or trait substitution sequence.
If both x1 > 0 and x2 > 0 at the equilibrium (2.1): the fixed point (x1, x2) is feasible. Linear
stability analysis reveals that the feasible equilibrium is stable if Γ12Γ21 < (1− Γ11)(1− Γ22),
unstable otherwise (see e.g. chapter 6 in [20]).
When the equilibrium (2.1) is unstable, the dynamics admits two stable fixed points, with either
species 1 or species 2 extinct (both equilibria are uninvadable, insofar as the extinct species, if
introduced with small abundance, will decay exponentially). This phenomenon, known as mutual
exclusion, provides a basic template for the existence of multiple stable states in Lotka-Volterra
dynamics.
The case Γ12Γ21 = (1− Γ11)(1− Γ22) is singular and corresponds to a situation where one species
always goes extinct [21].

Let us now discuss the possible existence of cycles. The original predator-prey model of Lotka
and Volterra had antisymmetric interactions Γ12 =−Γ21, and Γ11 − 1 = Γ22 − 1 = 0 and r’s of
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opposite signs, so that the dynamics reduces to

dx1
dt

= x1(r1 + Γ12x2),
dx2
dt

= x2(r2 − Γ12x1) (2.2)

In that case, the dynamics admits neutral cycles around the marginally stable fixed point
(r2/Γ12,−r1/Γ12). Indeed, it can be checked that the function F (t) = Γ12(x1(t) + x2(t)) +

r1 log x2(t)− r2 log x1(t), called a first integral of Eq. (2.1) in [3], remains constant over time.

For more general matrices Γ , the Bendixson-Dulac theorem gives a sufficient condition to
show that there is no cycle ( [16]. We also refer to [22], who proved that attractors of competitive
or cooperative N -species systems could only be manifold of N − 1 or fewer dimensions). The
Bendixson-Dulax theorem in the case of the 2d-Lotka-Volterra equation is as follows:

Proposition 2.1. If there exists a function ϕ(x1, x2) such that

∂

∂x1

(
ϕ(x1, x2)

(
r1x1 + (Γ11 − 1)x21 + Γ12x1x2

))
+

∂

∂x2

(
ϕ(x1, x2)

(
r2x2 + Γ21x1x2 + (Γ22 − 1)x22

))
(2.3)

has a constant sign in the positive quarter plane, then there is no cycle solution of the Lotka-Volterra system
(2.1) in [3].

Let us discuss further the case where Γ11 − 1 = Γ22 − 1 = 0, but now with symmetric
interactions, Γ12 = Γ21, which may arise for some competitive or mutualistic interactions.

If r1, r2 > 0 and Γ12 > 0 (mutualistic interactions), we can choose ϕ(x1, x2) = 1 and (2.3)
becomes r1 + r2 + Γ12(x1 + x2), which is positive on positive quarter plane, so the dynamics
do not exhibit cycling.

If r1, r2 > 0 and Γ12 < 0 (competition), there is a saddle point at (−r1/Γ12,−r2/Γ12) and (0, 0)

is repulsive, so there is also no possible cycle.
As a general heuristic, antisymmetric interactions (as in the original prey-predator model (2.2))

favor cycling around fixed points, whereas symmetric interactions favor taking a shortest path
toward fixed points.

Let us now consider the general case with an arbitrary matrix Γ . Choosing ϕ(x1, x2) =

1/(x1x2) for example, we obtain that (2.3) is equal to

(Γ11 − 1)x1 + (Γ22 − 1)x2
x1x2

so there is no cycle if Γ11 > 1 and Γ22 > 1 or if Γ11 < 1 and Γ22 < 1.
In all generality, the Bendixson-Dulac theorem proves that the two-species Lotka-Volterra system
admits no isolated periodic orbit, whatever the values of the Γij and ri [16, p.33] (the cycles
exhibited above being non isolated).

Let us briefly say that in higher dimensions, the complexity increases exponentially. For three
competing species, Zeeman [23] described the compact limit sets of these systems, which are
either fixed points or periodic orbits (conforming to the general result of [22]), and found 33
different equivalence classes. For the general case of N competitive species, Zeeman and Zeeman
[24] have studied the carrying simplex that attracts all non-zero orbits and carries the asymptotic
dynamics.
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3. From individual-based models to Lotka-Volterra system
As explained in the main text, the Lotka-Volterra multidimensional ordinary differential equation
(2.1) or its stochastic analogue (5.12) in [3] can both be obtained as the large population limit of a
stochastic individual based birth-death model with interactions, see, e.g., [25–28].

The goal of the present appendix will be to derive Eq. (2.1) from individual-based models,
the other variants will be presented in Section 4. In both Sections 3 and 4, our exposition will be
mainly inspired by [26].

(a) One species as a birth and death process
Our starting point will be to describe the birth and death model for a single species. This is done
by means of a homogeneous Markov jump process (Y (t))t≥0 with values in N. The transition
probabilities of Y , defined by Pnm(h) = P(Y (t+ h) =m |Y (t) = n) for h≥ 0 and n,m∈N are
such that:

Pn,n+1(h) = bnh+ o(h), for n> 0 ,

Pn,n−1(h) = dnh+ o(h), for n> 0 ,

Pn,m(h) = o(h), for |n−m|> 1 ,

(3.1)

where (bn)n∈N and (dn)n∈N are two sequences of real non-negative numbers. For example, if
individuals are exchangeable with individual birth rate b and death rate d, then, bn = b× n and
dn = d× n, so that bn and dn are respectively the birth and death rates when the population is of
size n. We refer to [26] for more details.

We note for further use that such processes can be advantageously described by stochastic
differential equations involving random Poisson point measures [25,29]. Denoting as N(ds, du)

the random Poisson measure on R+ × R+ with the intensity measure the product of the Lebesgue
measures ds⊗ du, a birth and death process with respective birth and death rate sequences (bn)

and (dn) can be written as

Y (t) = Y (0) +

∫ t
0

∫
R+

(
1u≤bY (s−)

− 1bY (s−)≤u≤bY (s−)+dY (s−)

)
N(ds,du) . (3.2)

Such stochastic differential equations correspond to the individual-based simulation algorithms
often used by biologists (see, e.g., Gillespie [30]). In these equations, the Poisson point measure
models the possible births or deaths and the indicators correspond to an acceptation-rejection
algorithm which ensures that the events occur with the correct time-dependent and random rate
bY (s−) or dY (s−).

Using Poisson stochastic calculus, and introducing the compensated Poisson measure
Ñ(ds,du) =N(ds, du)− ds⊗ du, we have:

Y (t) = Y (0) +

∫ t
0

(
bY (s) − dY (s)

)
ds+M(t) , (3.3)

where:

M(t) :=

∫ t
0

∫
R+

(
1u≤bY (s−)

− 1bY (s−)≤u≤bY (s−)+dY (s−)

)
Ñ(ds, du)

is a centered martingale with variance E
( ∫t

0(bY (s) + dY (s))ds
)
. It is possible to rewrite (3.3) in

differential form as:
dY (t) =

(
bY (t) − dY (t)

)
dt+ dM(t). (3.4)

(b) Asymptotics for one species
We now assume that the population size is large and introduce a parameter K > 0, which is seen
as a scaling parameter for the initial population size (carrying capacity). More precisely, we now
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denote our process as Y K(t) and the rescaled version

XK(t) :=
Y K(t)

K
.

We assume that

XK(0) =
Y K(0)

K
−−−−→
K→∞

x0 in probability ,

where x0 > 0 is some deterministic or random positive real number. We also assume that the birth
and death rates depend on the scaling parameter K, and denote them as bKn and dKn respectively.
Our purpose is to study the dynamics of XK(t) in the asymptotic regime K→∞, given different
types of dependencies of the birth and death rates on K. Note that since the jumps of XK(t) are
of amplitude 1/K, the limiting process can take any value in R+.

The first model for bKn and dKn will be the so-called logistic model. Given three parameters
b, d, c > 0, this model reads

bKn = b n and dKn = dn+
c

K
n2. (3.5)

According to this model, there is no interaction between the individuals that constitute the species
regarding the births, since bKn grows linearly with the population size. This is not the case of the
deaths, since dKn has a quadratic component accounting for a competition among the individuals
within the species to access the limited amount of resources.

From the equations (3.1), we easily see that

E
(
Y K(t+ h)− Y K(t) | Y K(t) = n

)
=

∑
m

(m− n)Pn,m(h) = (bKn − dKn )h+ o(h) ,

Var
(
Y K(t+ h)− Y K(t) |Y K(t) = n

)
= (bKn + dKn )h+ o(h) .

On the other hand, the birth and death rates for the logistic model satisfy: for all x≥ 0,

lim
K→∞

bK[Kx] − d
K
[Kx]

K
= lim
K→∞

(b− d) [Kx]
K
− c [Kx]

2

K2
= rx− cx2

lim
K→∞

bK[Kx] + dK[Kx]

K2
= lim
K→∞

(b+ d)
[Kx]

K2
+ c

[Kx]2

K3
= 0,

where r= b− d. We therefore get from the previous equations that

E[XK(t+ h)−XK(t) |XK(t)]

h
'
bKY K(t) − d

K
Y K(t)

K
' rXK(t)− cXK(t)2,

Var(XK(t+ h)−XK(t) |XK(t))

h
'
bKY K(t) + dKY K(t)

K2
' 0

for large K. This argument shows that the variance of the increments of XK(·) decreases faster
than h, thus, heuristically, the stochasticity of this process disappears for large K. Assuming that
x0 is deterministic and using the expression of the conditional mean above, we thus infer that
XK(·) converges in probability, and uniformly on every time interval [0, T ], to a deterministic
process x(·) defined as the unique solution of the ODE

ẋ(t) = rx(t)− cx(t)2, x(0) = x0 . (3.6)

Formally, this means

∀ε > 0 , P

{
sup
t≤T

∣∣∣XK(t)− x(t)
∣∣∣> ε}−−−−→

K→∞
0 .

Observe that r= b− d can be seen as the population “natural increase rate” in the limit of the
small population size. When r > 0, which is usually the case, the competition for the available
resources regulates the population.
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Obviously, the ODE (3.6) is the particular case of Eq. (2.1) in [3] obtained for N = 1.
The argument for showing the convergence towards the solution of (3.6) can be made

rigorous by establishing a compactness result over the laws of the trajectories XK(·) in the space
D([0, 1],R+) of the so-called càdlàg processes before identifying the equation satisfied by the
limiting values x(·). The convergence finally results from the uniqueness of the limiting value.
A complete proof can be found in [25].

(c) Asymptotics for N species with interactions
We now address the case of N species with interactions. Our (vector) process Y K is now valued
in NN and writes Y K(t) = (Y Ki (t)) where Y Ki (t) is the population size of the species i at time t.
Let bK = (bKi ) and dK = (dKi ) be two N × 1 vectors with positive elements, and let ΓK = (ΓKij )

be a N ×N matrix.
According to the model with interactions, the individuals in the species i reproduce with an

individual rate proportional to bKi , die with the individual natural death rate proportional to
dKi , and can interact with other individuals, say of the species j, with a rate proportional to
ΓKij − 1i=j resulting in an extra birth or death term. The indicator 1i=j corresponds to the logistic
competition term inside each species, as in Section 3(b). The matrix ΓK of the interactions may be
deterministic or random. When it is random, all the computations that are presented below are
made conditionally to ΓK . As previously, it is possible to write a stochastic differential equation
involving a random Poisson point measure which generalizes (3.2).

Denote as ei the ith canonical vector of RN and consider a population represented by vector
k= (ki)∈NN . We can now express the transition probabilities:

P
(
Y K(t+ h) = k + ei |Y K(t) = k

)
=

(
bKi ki +

∑
j:ΓK

ij >0

ΓKij kikj

)
︸ ︷︷ ︸

birth rate for species i

h+ o(h) . (3.7)

P
(
Y K(t+ h) = k − ei |Y K(t) = k

)
=

(
dKi ki + k2i +

∑
j:ΓK

ij <0

|ΓKij |kikj
)

︸ ︷︷ ︸
death rate for species i

h+ o(h) . (3.8)

Now if `= (`i)∈NN represents another population distribution with

‖`− k‖1 =
∑
i

|`i − ki| > 1 ,

then:
P
(
Y K(t+ h) = ` |Y K(t) = k

)
= o(h) . (3.9)

Note that there is here a slight abuse of notations in (3.7) and (3.8), where bKi (resp. dKi ) denotes
to the individual birth (resp. death) rate of species i, whereas in (3.5), bKn (resp. dKn ) denotes the
birth (resp. death) rate of a single species with population size n. In the sequel, we will use index
i∈ [N ] for numbering the species and index n∈N for the size of a population.

The Lotka-Volterra equation (2.1) in [3] can be obtained along the same principle as for the
single species case, when the number of speciesN is fixed and their initial sizes are large. Consider
again that the scaling parameter K > 0 goes to infinity and assume that each Yi(0) is of order K.
As before, we consider

XK(t) :=
Y K(t)

K
.

Assume that XK(0) converges in probability to a deterministic vector x0 ∈ (0,∞)N . The
competition coefficient is rescaled as ΓKij = Γij/K, while the individual birth and death rates
bKi = bi and dKi = di are kept fixed. This model can be seen as a multiple species generalization
of the logistic model introduced by Equation (3.5).
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Write Γ = (Γij), define the vector r= (b1 − d1, · · · , bN − dN ) and recall the Hadamard
product notation ◦ which also applies to two vectors u= (ui) and v= (vi) and yields u ◦ v=

(uivi). Mimicking the conditional expectation and conditional variance derivations that follow
Equation (3.5), one can compute that

E
(
XK(t+ h)−XK(t) |XK(t)

)
h

' XK(t) ◦
(
r −XK(t) + ΓXK(t)

)
,

Cov
(
XK(t+ h)−XK(t) |XK(t)

)
h

' 0 ,

for large K. With these heuristical derivations, we infer that the sequence of processes (XK)

converges in probability to the deterministic process x defined as the solution of the multivariate
ODE

dx

dt
(t) =x(t) ◦ (r − x(t) + Γx(t)) , x(0) =x0 .

which writes componentwise

dxi
dt

(t) = xi(t) (ri − xi(t) + (Γx(t))i) , xi(0) = x0i .

This is exactly Eq. (2.1) in [3].

4. From individual-based models to community models with
noise

The present appendix is devoted to the derivation of various models arising in Section 5 in [3]
from individual birth-and-death processes.

(a) From the stochastic individual-based process to the Feller diffusions
We go back to the individual model defined in Section 3(b) but we now consider a different
popular model for the birth and death rates. Given an additional parameter σ > 0, we replace
the rates given by (3.5) with

bKn = bn+ σnK and dKn = dn+
c

K
n2 + σnK. (4.1)

According to this model, the individual birth and death rates scale with K, the order of
the population size. This can be realistic when one deals with very small individuals such as
unicellular organisms, which have small life expectancy [31].

Doing the same computation as above, we see that the conditional mean is unchanged :

E[XK(t+ h)−XK(t) |XK(t)]

h
'
(
rXK(t)− cXK(t)2

)
,

while this time, the conditional variance becomes

Var[XK(t+ h)−XK(t) |XK(t)]

h
' 2σXK(t).

This computation shows that, here, the stochasticity does not disappear asK→∞. More precisely
(see e.g. [25]), (XK(t))t≥0 converges to the solution of the so-called Feller stochastic differential
equation

dX(t) = (rX(t)− cX(t)2)dt+
√

2σX(t)dB(t), X(0) = x0, (4.2)

where again r= b− d and B is a standard Brownian Motion. Note that this equation coincides
with the Feller equation (5.11) in [3] for N = 1.



11

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

The multivariate analogue of the Feller equation (4.2), N ≥ 1, can be obtained in a similar
manner. Let σ > 0 be fixed. Getting back to Equations (3.7)-(3.9), let us replace the natural birth
and death rates biki and diki in the definition of the transition probabilities with biki + σkiK

and diki + σkiK respectively. As before, ΓKij = Γij/K. This operation is similar to the change
from (3.5) to (4.1) above. In this situation, the limit in distribution of the sequence of processes
(XK(t))t≥0 is given as follows :

dX(t) =X(t) ◦ (r −X(t) + ΓX(t)) dt+
√

2σX(t) ◦ dB(t),

where B(t) is a N -dimensional standard Brownian Motion, which is (5.11) in [3] in the case when
σi = σ is the same for each species i∈ [N ].

(b) Mean-Field approaches
In [32], the limit when the number of species N grows to infinity is considered, starting from the
SDE (5.12) in [3] that we recall here:

dX(t) =X(t) ◦ (1N −X(t) + ΓX(t)) dt+ λ1Ndt+ f(X(t)) ◦ dB(t),

and that is considered on a finite time window [0, T ], for a given T > 0. More precisely, we
consider the limit of

Q̂N (dx) :=
1

N

N∑
i=1

δXi
(dx), (4.3)

which is an empirical measure on C([0, T ],R+).

The limit Q depends on the choice of a model for Γ . When the correlation ξ = 0 (see Eq. (2.7)
in [3], Γ is then a non-centered Ginibre matrix), this limit Q solves the equation

Q=Eπ(GQ), (4.4)

where, for a probability measure ν on C+([0, T ]), Gν is an independent Gaussian process
supported by [0, T ] and whose law is defined by

E(Gνt ) =
∫
z(t)ν(dz), Cov(Gνt , G

ν
s ) =

∫
z(t)z(s)ν(dz),

and where, for a deterministic function h(·)∈L2([0, T ]), π(h) is the probability distribution on
C([0, T ],R+) of the diffusion process

dX(t) =X(t) (1−X(t) + h(t)) dt+ λdt+ f(X(t))dB(t),

where B(t) is a one-dimensional Brownian Motion.
As mentioned in the main text, the mathematical justification for this limit uses an approach

of Ben Arous and Guionnet: in [33] and in the subsequent contributions, this convergence is
established for related models by means of the large deviations theory, characterizing Q as the
unique minimum of an adequate rate function. This work remains to be done in the context of the
SDE (5.12) in [3].

Then, a known result, due to Sznitmann [34] asserts that if the components of X are
exchangeable, the convergence of Q̂N to Q is equivalent to the propagation of chaos: given an
arbitrary integer k > 0 and a fixed arbitrary set of integers {i1, . . . , ik}, the vector (Xi1 , . . . , Xik )
converges in distribution to a vector with probability distribution Q⊗k as N→∞.

Note that for exchangeable initial conditions and Γ drawn from an elliptic model, the
exchangeability of the components of X in C([0, T ],R+) holds. Beyond the elliptical model, one
can imagine more sophisticated exchangeable models, such as a model with randomized trophic
levels or a randomized space.
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The last step is to rigorously study the mean-field equation (4.4) satisfied by the law Q. In the
context of the elliptical model, the mean-field equation was studied in [32], where, among other
conclusions, the stationary and chaotic phases of [35] were recovered.

(c) Lotka-Volterra in models of adaptive dynamics
A last class of Lotka-Volterra equations with noise can be obtained in the context of Adaptive
Dynamics [18,28,36–38]. Start from the individual-based model with N species of large size, so
that the Proposition (5.1) in [3] applies and XK

i (t)≈Kxi(t), and assume that the solution of
Eq. (5.6) in [3] converges to a stable equilibrium x∗. Now, add mutations: upon birth, say with
probability µKi , the new offspring may be a mutant who can found a new species. If the rates of
appearance of mutants are sufficiently small (mutations are rare), i.e.

e−CK � µK �
C

K logK
, (4.5)

(see [19,28]) the time-scales of ecology (i.e. births and deaths) and of mutations can be separated.
Then, the dynamics can be separated into three phases.

Before going into their precise description, one can mention that adaptive dynamics can be
seen as an example of what is called invasion analysis in ecology. Other examples have been
analyzed through statistical physics tools such as the cavity method (see e.g. Arnoldi et al. [39]
for more details) and understanding them fully remains an interesting future task (see Section 6
in [3]).

First phase: invasion probability of the mutant population. Assume that the resident species
i∈ [N ] have abundancies close to the equilibrium state x∗ when the mutant appears. The mutant
descendance constitutes the N + 1th specie, let us denote its birth rate by bN+1, its natural death
rate by dN+1 and by Γj,N+1 and ΓN+1,j its interaction coefficient with the specie j ∈ [N ]. The
intraspecific competition rate is assumed to be −1, as for the other species. Let us also denote by
rN+1 = bN+1 − dN+1 the natural growth rate. As long as the new mutant population remains
negligible, say with a size smaller than bKεc with some small ε > 0, its dynamics is very close to
a linear birth and death process whose parameters are functions of x∗ while the other species are
unaffected by the new population. More precisely, the rates of this birth and death process are:

bN+1, and dN+1 +

N∑
j=1

ΓN+1,jx
∗
j .

Note that the non-linearities have disappeared as the state has been frozen to (x∗, 0). For such a
birth and death process, the probability of invasion or extinction depends on their fitness

φN+1(x
∗) =

(
rN+1 − x∗ + Γx∗

)
= rN+1 −

N∑
j=1

ΓN+1,jx
∗
j .

computed in Section 3(a). The probability that the tree associated with the above birth death
process is infinite, is

pN+1(x
∗) =

[
φN+1(x

∗)
]
+

bN+1
, (4.6)

where [.]+ denotes the positive part. It is also, for the original process, the probability that
the mutant population stemming from a single founder reaches size bKεc without becoming
extinct, and hence it is also called the invasion probability. With probability 1− pN+1(x

∗), the
descendance of the mutant individual gets extinct before reaching the macroscopic size bKεc.
Notice that pN+1(x

∗) belongs by definition to [0, 1]. When the fitness φN+1(x
∗) is negative, the

new population has no chance of invading the equilibrium x∗.
By coupling the original individual-based process with linear birth and death processes, it is
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possible to show that the time taken by the mutant population to reach the size bKεc is roughly
the same as the time taken by the birth-death process to increase from 0 to bKεc, which is of order

TK1 ∝ log
K

φN+1(x∗)
.

Second phase: approximation by an ODE system. Once the mutant population has reached a
size bKεc, following the same path as in Section 3(c), the evolution of the N + 1 populations can
be approximated by a system of ordinary equations as Eq. (1.1) in [3] but in RN+1

+ and started
from the initial condition (x∗, ε). Assume that the solutions converge to an equilibrium x̃∗, some
components of which might be zero. This indicates that the appearance of the mutant population
can result in wiping out some other species.
The duration of the second phase, i.e. the time taken by the random individual-based process to
enter a neighborhood of x̃∗, is of order 1: it is the time predicted by the deterministic dynamical
system.

Third phase: extinction of the species corresponding to the zeros of x̃∗. Once the stochastic
individual-based proces has entered a neighborhood of x̃∗, say of width ε > 0, we can show using
the theory of large deviations that it stays there during an exponentially long time of order eCK

with C > 0 (see [19]). The species of sizes less than bKεc correspond to species i∈ [N ] can be
coupled with subcritical birth-death processes such that φi(x̃

∗)≤ 0. These processes have birth
and death rates:

bi, and d̃i = di +

N+1∑
j=1

Γi,j x̃
∗
j .

They get almost surely extinct, and the expected time to extinction is

EbεKc [Ti] =
1

bi

∑
`≥1

( bi
d̃i

)` bεKc−1∑
k=1

1

k + `
(4.7)

(see [26, Section 5.5.3, p.190]).

In Metz et al. [18] and Champagnat [19], the case where a system of N = 2 species always
ends with the disappearance of one of the species is considered: this corresponds to the rule
that invasion implies fixation, meaning that the weakest species is lost when a favourable mutant
arises. Provided new mutant species arrive sufficiently slowly into the system, the evolution of the
population can be described by the sequence of successive dominating species or trait substitution
sequence. Later, Champagnat and Méléard [36] generalized this construction to the case where
species can coexist and construct the polymorphic evolution sequence that alternates phases where
the dynamics is described by the Lotka-Volterra system (2.1) in [3] and phases of invasion of new
arriving species. Lepers et al. [40] built on such construction to provide new models of population
genetics, for populations with demographies and competition. In particular, the consideration of
a neutral marker (see also [38]) allows to describe the evolution of the genetic diversity in a Lotka-
Volterra system between each occurrence of (rare) mutations and to show that the demographic
variance of the marker in the species i∈ [N ] is

2bi
x∗i

,

which also allows to recover a definition of the effective population size:

Nei := x∗i . (4.8)

Notice that the population effective size, which partially governs the evolution of the diversity at
the neutral marker, depends on the birth and death rates in the specie i, but also on the ones of all
the species interacting with specie i (which is hidden in our notation). In particular, it means that
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the variance in the neutral diversity within the specie i depends on the competitive interactions
of the latter with all the other strains.

5. Mathematical aspects of structured models

(a) Deterministic networks
We gather hereafter mathematical results related to sparse networks when the adjacency matrix
∆ of the network is deterministic.

In this paragraph, we propose the following model, where a single quantity d := dN accounts
for the sparsity of the network. This parameter d may depend on the number of species N or be
finite.

Consider a d-regular oriented graph with N vertices, each vertex having d neighbours. Matrix
∆ had d non-null entries per row and per column and L := d×N non-null entries overall.

One can now write the interaction matrix Γ as

Γ =
∆ ◦A√

d
,

where A= (Aij) has i.i.d. centered entries. A first question concerns the feasibility of the
equilibrium of Lotka-Volterra system stemming from such interaction matrix. In other words, the
crux of the issue is the componentwise positivity of the N × 1 vector xN = (xi)1≤i≤N , solution
of the linear system

xN = 1N +
Γ

αN
xN , (5.1)

where 1N is the N × 1 vector of ones.
Notice that since the matrix is sparse the natural normalization is

√
d instead of

√
N [41].

The first set involves block interaction matrix. Let N = d×m. Denote by Sm the group
of permutations of [m] = {1, . . . ,m} into itself, by Pσ = (δi,σ(i))i∈[m] the permutation matrix
associated to σ ∈ Sm with δik the Kronecker delta function and by Jd = 1d1

T
d the d× d matrix

of ones. We shall focus hereafter on N ×N block-permutation adjacency matrices ∆N , of the form

∆N = Pσ ⊗ Jd =
(
δi,σ(i)Jd

)
i∈[m]

, (5.2)

where N = d×m and ⊗ designates the Kronecker product.
Such matrix ∆N gathers species by blocks. Species of block i affect species of block σ(i) and

are affected by species of block σ−1(i).
Let’s provide an example to illustrate this. Let m= 4 and σ ∈ S4 defined by :

σ=

(
1 2 3 4

2 4 3 1

)
.

Matrices Pσ , ∆N and ∆N ◦A are respectively given by :

Pσ =


0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

 , ∆=


0 Jd 0 0

0 0 0 Jd
0 0 Jd 0

Jd 0 0 0

 , ∆ ◦A=


0 A(1) 0 0

0 0 0 A(2)

0 0 A(3) 0

A(4) 0 0 0

 ,

where A(i), i= 1, . . . , 4, is a d× d random matrix.
In particular, one may assume that, for each i,A(i) has i.i.dN (0, 1) entries. With a condition on

d depending on N , the same phase transition phenomenon as in the i.i.d. model 3.4 in [3] occurs,
even if the normalisation parameter of the interaction matrix Γ passes from

√
N to

√
d.
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Theorem 5.1. Let d≥ log(N), αN −−−−→
N→∞

∞ and denote by α∗N =
√
2 logN . Let xN = (xk)k∈[N ] be

the solution of (5.1) with ∆N given by (5.2) and AN a random matrix with i.i.dN (0, 1) entries, then

(i) If ∃ ε > 0 such that eventually αN ≤ (1− ε)α∗N then

P
{
min
k∈[n]

xk > 0

}
−−−−→
N→∞

0 .

(ii) If ∃ ε > 0 such that eventually αN ≥ (1 + ε)α∗N then

P
{

min
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 .

Furthermore, under the assumptions of the second point of theorem 5.1, feasibility and global
stability occur simultaneously.

Theorem 5.2. Let d≥ log(N), αN −−−−→
N→∞

∞ and denote by α∗N =
√
2 logN . Let xN = (xk)k∈[N ] be

the solution of (5.1) with ∆N given by (5.2) and AN a random matrix with i.i.dN (0, 1) entries.
Then, the probability that xN is a nonnegative and globally stable equilibrium converges to 1.

Moreover, if ∃ ε > 0 such that eventually αN ≥ (1 + ε)α∗N , then the probability that globally stable
equilibrium xN is feasible converges to 1.

One can remark that under the first assumptions of theorem 5.2, the equilibrium of the Lotka-
Volterra equation is globally stable even if its feasibility is not guaranteed. In other words, some
species can get abundances set to zero.

With less structure, one can get an interest in d-regular graphs without this block structure.
Henceforth, two different approaches are possible.

The first one is to select a d-regular graph which can have or not have a particular chosen
structure and then study the feasibility and the stability of the equilibrium.

The second one consists in choosing a random d-regular graph. A random d-regular graph is
a graph randomly selected from GN,d, where GN,d is the probability space of all d-regular graphs
on N vertices. In particular, if the distribution on GN,d is the discrete uniform distribution, then
all the graphs have the same probability to be taken.

Furthermore, the order of magnitude of d is an important factor in the mathematics study of
the feasibility and stability issues, notably if d is larger or smaller than log(N).

(b) Kernel matrices
The goal of this section is to gather some known results in the mathematical literature on
kernel matrices. As announced in Section 4 in [3], the take-home message will be that in many
situations, the limiting spectrum of a kernel matrix will be a simple deformation (in fact a linear
transformation) of the Marcenko-Pastur distribution.

The kernel matrices we will consider are of the following form : let Y be a random vector in Rp

such that E(Y ) = 0 and E(‖Y ‖2) = 1. LetX1, . . . , XN be i.i.d. copies of Y. Let g :Rp × Rp −→R be
a symmetric matrix, denoted as the kernel, and f :R−→R a function called the envelope. Typical
examples will be g(x, y) = xT y, or ‖x− y‖2 and f(x) = exp(ex) or (1 + x)a etc.

We will consider the (symmetric) kernel matrix A= (Aij)1≤i,j≤N where,

Aij := f(g(Xi, Xj)), (5.3)

and will be interested in the asymptotics of the empirical spectral measure µ̂N :=
1
N

∑N
i=1 δλi(A) in the regime when p and N grows at the same rate that is p

N −→ τ ∈ (0,∞).

In random matrix theory, this is called the global regime.
The first interesting and well studied case is the so-called Wishart case, when g(x, y) = xT y and

f(x) = x. The matrix A is now just the empirical covariance matrix of the vectors X1, . . . , XN .
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If the entries of Y are i.i.d., then it is well known (see [42]) that µ̂N converges almost surely to
the Marcenko-Pastur distribution with parameter τ :

dµMP,τ (x) :=

(
1− 1

τ

)
1τ>1δ0 +

1

2πxτ

√
(b− x)(x− a)1[a,b]dx, (5.4)

where a, b := (1±
√
τ)2. In this model, Xi represents the p features of the species i and Aij is

a way to measure the similarity of species i and j. Note that these convergence hold for more
general random vectors Y, not necessarily with i.i.d. entries, for example when Y is uniformly
distributed on the unit sphere in Rp.

We will now study the case of a regular (differentiable) enveloppe f that does not depend on
the dimension p of the features. There are several papers studying this problem, in particular [43–
46]. We present now a general result, found in [43], which can be seen as a transference principle.

Theorem 5.3. Let a :=E(g(Xi, Xj)) for i 6= j and b :=E(g(Xi, Xi)). Assume that Var g(Xi, Xj) =
O(1/p) and

∀δ > 0,P
(
max
i 6=j
|g(Xi, Xj)− E(g(Xi, Xj))|> δ

)
= o(1).

Assume that f is differentiable at a and continuous at b. Then, if we denote by G the matrix with entries

Gij :=

{
g(Xi, Xj), if i 6= j,

0, otherwise,

and A is defined in (5.3), then A has the same limiting spectral distribution as the matrix

B := (af ′(a)− f(a) + f(b))IN + f ′(a)G.

In particular, when Y has i.i.d. entries or is uniform on the sphere and g(x, y) = xT y, then the
asymptotic spectral distribution of A is a linear transformation of µMP,τ .

Let us now give a few ideas of the proof. The main idea is to perform a Taylor expansion of the
function f around a (or b) and to use the concentration hypotheses we have made on the quantities
g(Xi, Xj) to justify that the two matrices have indeed the same global asymptotic regime.

More precisely, let us define the matrix

C := (f(a)− af ′(a))JN + (af ′(a)− f(a) + f(b))IN + f ′(a)G,

with IN the identity matrix and JN the N ×N matrix whose entries are all one’s.
Let us remark that with this description, one can also identify that possible outliers, arising

from the rank one deformation (f(a)− af ′(a))JN . We know that they can be of crucial
importance for stability.

For z ∈C \ R, let mA(z) :=
∫

1
z−xdµN (x) the trace of the resolvant of the matrix A (also called

the Stieltjes transform µN ) and mC(z) the trace of the resolvant of the matrix C. To show that the
two sequences of matrices have the same limiting spectral measure, it is enough to prove (see [43]
for the details) that mA(z)−mC(z) converges to zero for all z such that =z > 0. By Cauchy-
Schwarz inequality and then using that =z > 0, there exists a constant Cz (depending only on z)
such that

|mA(z)−mC(z)|2 ≤
1

N

N∑
i=1

∣∣∣∣ 1

z − λi(A)
− 1

z − λi(C)

∣∣∣∣2

≤Cz
1

N

N∑
i=1

|λi(A)− λi(C)|2 .
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Now, by Hoffman-Wielandt inequality (see e.g. [47]), we have that

|mA(z)−mC(z)|2 ≤Cz
1

N

∑
i,j

∣∣Aij − Cij∣∣2 .
We now go to the comparison of A and C entrywise. For i 6= j, using the regularity of f at point
a=E(f(g(Xi, Xj))), we have

Aij = f(g(Xi, Xj)) = f(a) + f ′(a)(g(Xi, Xj)− a) + o(g(Xi, Xj)− a)

=Cij + o(g(Xi, Xj)− a),

and the rest is controlled using the concentration hypothesis on g(Xi, Xj) (see [43, lemma 1] for
more details), whereas

Aii = f(b) + o(f(g(Xi, Xj))− b) =Cii + o(f(g(Xi, Xj))− b).

To end this review of the mathematical literature on kernel matrices, we want to mention two
interesting results. The first one can be stated in the same framework (5.3) as above. In [44], the
authors show that, considering an envelope f depending on the dimension p of the features, it is
possible to construct an example such that the unenveloped model converges to the Marcenko-
Pastur law but the enveloped model converges to a limiting measure which is not a simple
linear transformation of the Marcenko-Pastur distribution. In [48], with motivations from neural
networks, the authors considered a somehow different kernel matrix. Their starting point is two
matrices X of size N0 ×M and W of size N0 ×N1 with i.i.d. entries with distribution ν1 and
ν2 respectively, having both a second moment. The matrix W can be interpreted as a matrix of
weights and X a matrix of features. They form a new N1 ×m matrix R with entries

Rij := f

(
WX√
n0

)
and finally consider the empirical covariance matrix associated to R given as the N1 ×N1 matrix

M :=
1

m
RR∗.

In both examples, the limiting measures are described through a functional equation satisfied by
their respective Stieltjes transform.

It is not clear to us whether these mathematical results can be helpful for the study of ecological
systems.
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