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ABSTRACT. Approximate Message Passing (AMP) algorithms are a family of iterative algo-
rithms based on large random matrices with the special property of tracking the statistical
properties of their iterates. They are used in various fields such as Statistical Physics, Machine
learning, Communication systems, Theoretical ecology, etc.

In this article we consider AMP algorithms based on non-Symmetric random matrices with
a general variance profile, possibly sparse, a general covariance profile, and non-Gaussian en-
tries. We hence substantially extend the results on Elliptic random matrices that we developed
in [GHN24]. From a technical point of view, we enhance the combinatorial techniques developed
in Bayati et al. [BLM15] and in [Hac24].

Our main motivation is the understanding of equilibria of large food-webs described by
Lotka-Volterra systems of ODE, in the continuation of the works of [Hac24], Akjouj et al.
[AHM*24] and [GHN24], but the versatility of the model studied might be of interest beyond
these particular applications.

1. INTRODUCTION

Approximate Message Passing (AMP) refers to a class of iterative algorithms that are built
around a large random matrix, producing at each step a high-dimensional R™-valued random
vector (n » 1) whose elements’ empirical distribution can be identified as n goes to infinity. These
algorithms take the following form

't = Why(a') — {corrective term},

where x! = (z!) is the nx 1 vector at iteration ¢, W is a nxn random matrix, and hy(z') = (he());
is a vector based on the so-called activation function h; : R — R. The corrective term, known as
the Onsager term, is carefully defined to facilitate the description of the statistical properties of
! as n — 0.

In the fields of machine learning and statistical estimation, AMP algorithms were originally
developed for studying compressed sensing and sparse signal recovery problems [DMMO09, BM11].
They have since found applications across various fields, including high-dimensional estimation
[DAM17, LM19], communication theory [BK17, RGV17], statistical physics [Mon21], theoretical
ecology [AHM ™24, Hac24, GHN24]|, etc. AMP algorithms have undergone extensive recent devel-
opments and the goal of this article is to extend the AMP framework to general non-symmetric
random matrices W.

In general, the random matrix model W may differ depending on the considered application,
and most of AMP algorithms focus on symmetric matrices. For instance, in the problem of low-
rank information extraction from noisy data matrix, the goal is to estimate the n x 1 signal x*
from noisy observations

(1) Y = Vaz*(z*)T + W,
where W is a random matrix. In [DM14] and [MV21], the authors develop an AMP algorithm
involving a symmetric matrix W = ﬁG where G is drawn from the Gaussian Orthogonal En-

semble (GOE(n)) to study the problem (1). More precisely, each entry Gi; ~ N(0,1 4+ 1;_;),
where 1(;—;y equals one if i = j and zero else, and all the entries on and above the diagonal are
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independent. The 1/4/n normalization factor is standard in Random Matrix Theory and has the
effect to ensure that the spectral norm of W is O(1).

In [JM13, BR22, GKKZ22, PKK23], the authors develop an AMP algorithm involving a sym-
metric random matrix W with a block-wise variance profile S to study the problem (1) in the case
of an inhomogeneous noise. More precisely, W is now written as

(2) W=%S@1/2®G,

where G ~ GOE(n) and S is a symmetric, deterministic, block-constant matrix of non-negative
elements. Matrix S has a finite number of rectangular blocks which dimensions scale with n, the
elements of S®/2 are the square roots of those of S, and ® is the Hadamard or entry-wise product.
In the recent paper [BHX23], Bao et al. consider an AMP algorithm based on Gaussian matrices
with a variance profile and provide non-asymptotic results.

Our main motivation to develop AMP algorithms associated to new matrix models comes from
theoretical ecology and the study of large Lotka-Volterra systems of ODEs. In such models, the
random matrix W is used to model the interactions between n living species that coexist within an
ecosystem, and the time evolution of the abundances is described by the multi-dimensional Lotka-
Volterra differential equation. In [AHM™*24], Akjouj et al. consider the GOE model for the matrix
of interactions, and use an AMP approach to describe the statistical properties of the equilibrium
point of the resulting Lotka-Volterra dynamical system when this equilibrium is globally stable.
Dealing with a more realistic interaction matrix model, [Hac24] considers a symmetric random
matrix with a variance profile as in (2), with the main difference that the variance profile matrix
S can be sparse. Including correlations between the elements of the interaction matrix is an
important feature in theoretical ecology. In this direction, a non-symmetric elliptic matrix W
is considered in [GHN24], where each entry pair (1/nW;;,/nWj;) is a standard two-dimensional
centered Gaussian vector with a covariance p € [—1,1], and where all the different pairs are
independent.

All these cases are particular cases of the model we study in this article.

1.1. The random matrix model. The model under investigation here combines an arbitrary
variance profile, possibly sparse, with a correlation profile. To this end, we first introduce the
notion of a T-correlated matrix. Let [n] = {1,--- ,n}.

Definition 1.1. Let T = (7i;)1<i,j<n be a symmetric n x n matriz with entries in [—1,1]. The
n X n random matriz X is T-correlated if

- Bvery entry X;; is centered random variable with variance 1.
- For (i,7) € [n]?, i < j, the covariance matriz of the pair (X;;, X;;) is

1 Tij
Tji 1 ’

- The random elements in the set {X;;, (Xij, Xji), (i,7) € [n]?, i < j} are independent.

Remark 1.2. Notice that the diagonal elements of T are not specified in this definition. A natural
convention could be to set T;; = 1, as it represents the correlation of X;; with itself, but their exact
values (as long as it is bounded) have no impact on the presented results.

Let X be a R™*"valued T-correlated matrix and S = (s;;); je[n] be a deterministic n x n
matrix with non-negative elements. The random matrix model considered in this paper is

(3) W =850 X = (/5 X))

1<i,j<n '

Notice that the entries need not to be Gaussian and contrary to (2), the normalization is embedded
into matrix S. We refer to S as the variance profile of matrix W and to T as its correlation profile.
Such a model is fairly general as it encompasses most of the classical random matrix models
(Wigner, Elliptic, Circular models) and many important features required in the applications
(sparsity, variance profile, etc.).
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1.2. A primer to Approximate Message Passing. For a random matrix W such that y/nW ~
GOE(n), an AMP algorithm starting at ° = (z¢,---,20)" using a set of Lipschitz activation
functions (ht)¢>o is given by the following recursion equation; for all ¢ > 0,

1 n
(4) o't = Why(x') — behe—y (z'™") where by = = ) hi(al),
n
1=1

with the convention that h_; = 0.

The crucial term in this recursion is the Onsager term, i.e. “ONS; := bsh;_q(x!~1)” that we
subtract from the power method iteration term at each step ¢. The effect of the Onsager term is
that for a fixed ¢ and as n — o0, it “cancels” the dependence due to the repeated use of matrix
W at each iteration:

!t = Why(Why_ (W ---) — ONS,_;) — ONS, .

With the correction of the Onsager term, the asymptotic behavior of «! is similar to the behavior
of &' generated with the “power method iteration” but with a new sampled independent random
matrix W at each step t, i.e.

= Wihy(&)  with e’ "X GOE(n).

Notice that in the latter case, it is easy to characterize the asymptotic behavior of the empirical

distribution p®" of the entries of the vector &' = (&),

Roughly speaking ,uwt ~ ,uit as n — o0. Beware however that the correlation between consecutive
iterations x! and x!*! differs from the correlation between iterates & and Z!*! which turn out
to be asymptotically decorrelated.

Given the iterates ! = (x}),---,2' = (z!) produced by (4), the main result associated to

AMP is the description of the limiting distribution of

(ml mt) 1 n
I EARE = gZ(S(m}’J;)
1=1

as n — o0 in terms of a multivariate Gaussian vector whose covariance matrix is described by the
Density Evolution Equations.

1.3. Density Evolution Equations. Density Evolution (DE) equations are a set of recursive
equations that define a sequence of deterministic, symmetric, positive semi-definite matrices, which
are central objects in the analysis of AMP algorithms. These matrices are covariance matrices
associated to multivariate normal distributions which describe the asymptotic behavior of the
AMP iterates (and their correlations) as n goes to infinity.

Given a set of activation functions h; : R — R and a initial constant vector ° = 201, € R”,
the Density Evolution equations associated to the AMP (4) with v/nW ~ GOE(n) is a sequence
of t x t matrices (R');en+ defined recursively as follows,

he (o)
1_ 2 t+1 _ | Pe(Z1)
R = (h,(.fCo)) and R =E o [ht(l'()) ht(Zl) tee ht(Zt)] y
hi(Zy)
where (71, -+, Z;) ~ N¢(0, R"). Notice that in particular, the variances o7 = E Z? satisfy a simple
recursion equation given by:
(5) o2 = h3(zo) and ot1 = Ehi(04€) where &~ N(0,1).

With the family of covariance matrices (R') at hand, we can express the limiting statistical prop-
erties of measure u(mlv'“ ") which captures both the asymptotic properties of the iterates ! and
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the dependence between the iterates !, -, x!:

xl . xt weak,L?
=) S N0 RY)

n—ao0

in probability (see [FVRS22] for sharper convergence results). Stated differently, for any test
functions ¢ : Rt - R and ¢ : R — R,

n n
(6) i;¢<x3’ owl) = Ee(Zy,- . Z)  and ii;wxﬁ) —— E(0:£) ,
where £ ~ N(0,1), L, stands for the convergence in probability and (ot):>o is a sequence of
positive numbers defined recursively by (5).

In [GHN24], we show that the DE equations used to study an AMP with an elliptic matrix do
not depend on the correlation coefficient, the latter being included in the formulation of the AMP
recursion, and more specifically in the Onsager term. In [Hac24], the case of a symmetric random
matrix with a general variance profile S is handled.

In the case of a general variance profile, the description of the asymptotic behavior of the
iterates becomes more involved and instead of having a multivariate Gaussian vector (Zy,- - , Z)
we have a family of n-dimensional vectors (Z L.z t).

In the following definition, we give a general description of the DE equations associated to a
variance profile matrix S. We now consider that the activation function depend on an additional
parameter 17 and we no longer express the dependence in ¢ using a subscript, it is now included in
the arguments of function h.

Definition 1.3. Let z° = (2¥) € R" and n = (n;) € R™ be two deterministic vectors, S =

(8ij)1<; e @ matriz with non-negative elements and h : R? x N — R an activation function.
J/1<1,j<n

a) Initialization. For any i€ [n], define the non-negative numbers HY and R} as

K2

HY := h2(z9,1,;,0) and R} = 2 Sin;-).
j=1

Let Z} ~ N(0,R}), assume that for all i € [n], the Z}’s are independent and set
Z' = (Z})ietn) -

2

b) Step 1. Let Z' = (Z-l)ie[n] be given and i € [n] be fixed. Let

K2

h(z2,m;,0 =
Hl1 =K [h((ZZl,?h', 1))] [h(x?,m,O) , h(Zil,m, 1)] and Rf = lein; .
o

Notice that the 1 x 1 upper left corner of R? coincides with R}. Let Z? be such that
7?2 = (2}, 22) ~ N2(0,R?), and such that for all i € [n], the Z?’s are independent. Set
Z? = (Z2).

K2

¢) Step t. Let the covariance matriz Rt € Rt and the R™ vectors Z*,--- | Z" be given, where
Zf = (Zila"' ’Zit) NM(O,RD s
and where all the Z!’s are independent for i € [n]. Let

h(xgan’uo)
Ht—E h(ZfL1777171>

?

h(Zt,m,t)

3

and RIT = Z?=1 sijH}. Notice that the t x t upper left corner of matriz RITY coincides

with Rt. Let Z!™' be such that
Zf+1 = (Zila 2227 e aZit+1) ~ M+1(07R§+1)
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FIGURE 1. The Gaussian matrix (Zl7 ‘e 7Zt)7 the notations Z' and Zf Rows

Z; = (Z!, t = 1) are independent. The correlations within each row are described
by the DE equations: Z! ~ N;(0, R!), see Definition 1.3.

and such that for all i € [n], the Zf“ s are independent. Set Z'*! = (Z!*1).

Consider the sequence of n-dimensional Gaussian random vectors (Zt) We denote

(z',---,2Z") ~DE (S, h,z° n,t) .

teN”

We also define Z; = (Z!)i=1. The sequences {Z;}icn) are centered, Gaussian, and independent.
The notations Z* and Zf are described in Fig. 1.

1.4. Main result (informal). As already mentioned, numerous studies [BLM15, PKK23, Hac24,
GHN24] have extended the AMP algorithm to cover more complex random matrix models W. For
each new matrix model, two key questions must be addressed:

a) How to define a proper Onsager term?

b) What are the associated DE equations ?
In this paper, we answer both questions for the matrix model described in Section 1.1. We show
that the DE equations are given by Definition 1.3; in particular they only depend on the variance
profile and not on the correlation profile. Let W be given by (3), h : R? x N — R an activation
function, %, € R" deterministic vectors and

V=(sos)®or,

where S and T are respectively the variance and correlation profiles of the random matrix W, and
(Z1,--+,Z;) be given by the DE equations. We identify a possible Onsager term as

h
ONS; = diag (Vng(Zt’ n,t)) h(x!= n,t —1),

and consider the AMP
't = Wh(x,n,t) — ONS,.
We shall prove that for any appropriate test function ¢ : R**! — R and uniformly bounded
sequence (Bi(n))ie[n] of real numbers, the following convergence holds true
150 [0 | o gm o 7] P
n Z:l {51‘ e @i, x;) — B @(ni,Zi)} ow 0,

where the Zf’s are defined in Definition 1.3. The formal assumptions and statement are provided
in Section 2.

t

Remark 1.4. As a consequence of the variance profile structure, each t-uple (x},--- , xt

) needs to

be compared to Zf in the convergence above, a situation substantially more complex than in (6).
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1.5. Motivation from theoretical ecology. The analysis of large ecological networks (food-
webs) and complex systems has garnered significant attention in recent years, with numerous
studies leveraging tools from random matrix theory [AT15, Bunl7, CN23|. In this perspective,
large Lotka-Volterra (LV) models [ABC*24] describe the dynamics of the vector of the species
abundances x(s) = (2;(s))e[n] for s € [0,00) in a series of coupled differential equations where the
interactions are encoded by a random matrix A whose entries A;;’s represent the effect of species
4 on species i. The more complex the matrix model A, the better the modeling of the network.
In a series of articles [AHM™*24, Hac24, GHN24], AMP algorithms were designed in this context
to analyze the statistical properties of the globally stable equilibrium @* (when it exists) of the
vector z(s), depending on the random matrix model (symmetric models in [AHM"24, Hac24],
elliptic model in [GHN24]). More specifically, let z € R™ be the solution of the fixed-point equation:

z=(A-1,)z"+1,, zt=2v0,

which can be shown to be unique under a condition on A (see [AHM"24] for details), then the
equilibrium x* is given by x* = z*. Extracting statistical information from z* is a non-trivial
task as the dependence of x* to A is highly non-linear. However this task can be performed by
designing a specific AMP algorithm.

In a foodweb, the effect j — i of species j on species i is a priori different from the effect i — j.
Moreover, recent empirical evidence [BSHM17] has shown that in a foodweb of size n a given
species only interacts with a small number K,, « n of other species. One may want to go one
step further in modelling foodwebs, and for instance consider block structures with subpopulations
with homogeneous statistical features [CMN24].

All these desirable features naturally motivate the study of non-Symmetric and possibly sparse
random matrices, with variance and correlation profiles. Such a model is at the heart of the AMP
developed in this article.

In a forthcoming work, we intend to design improved matrix models for foodwebs and to analyze
via AMP techniques the equilibria of associated large LV models.

1.6. Outline of the article. In Section 2 we formally state the assumptions and the main result
of the article, namely Theorem 2.1, together with examples, an extension to non-centered random
matrices, and open questions. The remaining sections are devoted to the proof of the main result
(see also Section 2.8 for a precise roadmap of the proof). In Section 3, we state a matrix AMP for
polynomial activation functions, see Theorem 3.3. Section 4 is the heart of the proof of Theorem
3.3. It is based on combinatorial techniques which build upon [BLM15] and [Hac24]. In Section 5
we generalize the previous AMP for more general functions, and relax the assumption that matrix
W should have null diagonal (an assumption made to handle the combinatorics in the proof of
Theorem 3.3).

1.7. Notations. Denote by |S| the cardinality of a set S. We often (but not systematically) use
bold letters for vectors @ = (a;)iern], & = (b5)je[r], ete. If @ = (ar) € R? and m = (my) € N? is a
multi-index, we denote by a™ = [ ,c[, a;™

Denote by 1,, (or 1 if the context is obvious) the n x 1 vector of ones and by 1,x, the matrix
loxp = lnlg where matrix AT stands for the transpose of A. For a € R", diag(a) stands for
the n x n diagonal matrix with diagonal elements the a;’s. If a € R™ is a vector, |al| stands for
its Euclidian norm and |al|,, := ||a|/+/n for its normalized Euclidian norm. If A is a matrix, |A|
stands for its spectral norm.

If f:R —Rand a= (a;)[, a vector, denote by f(a) = (f(ai))ie[n] with obvious general-
izations f(a,b) = (f(a;,b;)) for a,b € R™. Let f(z,y,t) a real function with (z,y,t) € R? x N,
denote by df = g—f Let a € R" and I < [n], then (a), = = . 1a; and (a); = ThZiEI a;. The

x n i€[n]
a’ of vector a = (ai)iern) and vectors @', - -+ ,a’ in R stand for

. . 1 e
empirical measures pu® and p® -

1 1 e 1
[y = - Z S, and pt ot = n Z 5(a},-~-7a5)7

i€[n] i€[n]
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where J, is the Dirac measure on R and §(,1,... 5¢), the Dirac measure on R!. Convergence in

probability is denoted by L,

2. AMP FOR GENERAL NON-SYMMETRIC RANDOM MATRICES

Assumptions are introduced in Section 2.2. The main result, Theorem 2.1, is stated in Section
2.3. In Section 2.5, we provide two examples, one focusing on the correlation profile, the second
on a sparse variance profile. In Section 2.6, we extend the AMP result to a non centered random
matrix model. Finally, we provide in Section 2.8 a detailed outline of the proof of the main
theorem.

2.1. The general framework of the AMP recursions. Let X be a n x n T-correlated matrix
and S a n x n matrix with non negative coefficients. Recall the definition of W = S©¥/2® X in
Eq. (3) and define matrix V as follows
n T\O1/2

(7) V= (Vij)i,j=1 = (SQS ) or.
Notice that E [W ® WT] =V.

Let h : R? x N — R be a measurable function such that for all (n,¢) € R x N, the derivative
Oh(-,m,t) exists almost everywhere!. We denote as 0h any measurable function that coincides with
this derivative almost everywhere. For @,n € R" and t € N, denote h(z,n,t) = (h(zi, i, t))e[n)-

Definition 2.1. Let X be a nxn T-correlated matriz following Definition 1.1, W,V given by (3),
(7), and ;e R™. Let h: R2xN — R a measurable function such that oh exists. Let z',.... 7t
be R™-valued Gaussian vectors defined in Def. 1.5. Define the R™-valued random sequence (z');=1
recursively as follows,

(8) wl = Wh(xo,n»0)7
't = Wh(z', n,t) — diag (VEOW(Z", m,t)) h(z* ", m,t —1) for t>1.

The following notation will be used in the sequel:
(9) (x'),., = AMP-Z (X, S,h,z°,m) , 2’ mpeR".

Remark 2.2. The parameter nn € R™ which is fized once for all in the recursions can be seen as
an extra degree of freedom in the design of the algorithm.

Remark 2.3 (versatility). Definition 2.1 generalizes many frameworks found in the literature.

a) For a symmetric matric X where T = 1,,x,, and S = 1"%, one gets the AMP in [BLM15].

b) By taking a sparse symmetric matriz S, one recovers the AMP in [Hac24].

¢) The elliptic AMP studied in [GHN24] is obtained by taking S = % and T = plyx, for
p € [—1,1]. In the latter, the AMP recursion writes

$t+1 =Wh (wtvnvt) - p<ah (xt’n’t)>nh (xt_l’n’t o 1) :

One can notice that the Onsager term is slightly different. We will come back to this later
in Section 2.4.

2.2. Assumptions. We present hereafter the assumptions that will be used in the sequel, some
of which already appeared in [Hac24].

Assumption A-1 (moments). Let T' = (7;j)1<i,j<n be a symmetric matric with 7,; € [—1,1] and
X a random T-correlated matriz following Definition 1.1. For every k = 1 there exists a positive
real number Ciom (k) > 0 such that for every n =1 and all i,j € [n]

(E15 )" < Conom®).

INotice that if h is Lipschitz with respect to the first variable, then it is differentiable almost everywhere by
Rademacher’s theorem.
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Assumption A-2 (variance profile). Let (K,,) a sequence of positive integers diverging to +o0 and
satisfying K,, < n. The deterministic n xn matriz S = (8i;)1<i j<n has non-negative elements and
satisfies the following: there exist positive constants Cegrq, Cs,cs > 0 such that for every n = 1
and all i,j € [n],

. Cs S
Hieln] : sij >0} < Cera K s sij < — and Zsie > cg.

The following technical assumption ensures that the spectral norm of the matrix W is almost
surely bounded by a constant as n goes to infinity.

Assumption A-3 (lower bound on the sparsity level). Let A-1 and A-2 hold for the random matriz
X and the variance profile S, and consider associated Ciom and (K,). There exist positive real
numbers v, C > 0 such that for every k,n =1

Cmom(k) < Cky/2 and Kn =>C log(’/v” (n) .

Remark 2.4 (on Assumption A-3). (a) The moment condition Cyom(k) < CkY/? is stan-
dard. For example, it is fulfilled with v = 1 for subGaussian entries.
(b) Assumptions A-2 and A-3 describe the sparsity level one can expect for matrix W. The
sequence K, is an upper bound of the number of non-vanishing elements of W per row. It
must be at least logarithmic in n (up to the power v v 1) but can be much smaller than n.
(c) As will appear later in Proposition 5.5, the logarithmic lower bound on K, and the upper
bound for the moments of X’s entries are technical conditions needed for bounding the
spectral norm of the random matriz W.

We also consider initial conditions for the initial vector ° and for the parameter vector n € R™.

Assumption A-4 (initial and parameter vectors). Let ° = (29) € R", n = (n;) € R" be

deterministic vectors and consider the sequences (x°),, and (n),. There exist two compact sets

Q. < R and @, < R such that
(20, ien], n=1} c Q. and {ni, ie[n], n=1} < Q,.

Assumption A-5 (Regularity of the activation functions). Let h: R? x N — R be a measurable
function. For every t € N, there exists a positive number L such that for every x,y,n e R,

|h(z,m,t) — h(y,n,t)] < Llz—y|.

For every t € N, there exists a continuous non-decreasing function x : Ry — Ry with x(0) = 0
and a compact set Q,) < R such that for every x € R and n,n' € Q,,

|7, t) = Az, 0, ) < (|ln—n'[) L+ [a]) -
Assumption A-6 (non degeneracy condition over h). Let h : R? x N — R be a measurable
function. There exist two compact sets Q, < R and Q, < R with the following properties:

(1) There exists a constant ¢ > 0 such that

inf h2(x,n,0 > c.
1€Q,,m1€Q, (z,7,0)

(2) For everyt > 1, there exist two positive real numbers cp(t), Dy(t) > 0 such that

Dh(t)
inf R (x,m,t)de = cn(t).
€€ J_D,, (1)

There are tight links between the assumptions. In particular, the parameter v of A-3 controls
the moments bounds (Chom (k)) given by A-1 and the sparsity level K, given by A-2, the compact
sets @, and Q, of A-5 and A-6 will be given by A-4.
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2.3. Main result. Recall the definition of a pseudo-Lipschitz function. A function f : R — R
is said to be pseudo-Lipschitz (PL) if there exists a constant L such that for all x,y € R? the
following inequality is satisfied:

[f(@) = fW)l < Lilz—yl 1+ |zl + [yl -
We are now in position to state our main result.

Theorem 2.1. Let Assumptions A-1 to A-6 hold true, with associated v, Q, and Q.. Consider
the AMP

(mt)t21 = AMP-Z (Xa Sa hv wO’ "1)

as defined in Definition 2.1, and the sequence of n-dimensional Gaussian random vectors (Zt)
defined by the DE equations in Definition 1.3:

(Zlv"’ aZt) ~ DE(S,}L,:L‘O,T’,t).

teN

Lett > 1 and B = (61(7”) € R"™ wuniformly bounded, i.e. sup, MaX;e[, |6Z(")\ < . For any
pseudo-Lipschitz test function ¢ : R™*1 — R, it holds that
P
*Zﬁ {QP i, T “---,LL'D—E[ (7717Z1" Zt)] - 0.

n—0o0

2.4. Alternative Onsager terms. It might be convenient to consider alternative Onsager terms
in the AMP recursion and replace the diagonal matrix diag(VEOh(Z",n,t)) by one of the two
following terms

(10) diag (Voh(z',m,t)) or diag (W@ W oh(z,n,1)) .

Depending on the context, it might be convenient to consider one of these three Onsager terms.

For example, the Onsager term built upon diag (W@ W Toh(xt, n,t)) is better suited for the
combinatorial arguments developed in Section 4 as it directly involves the entries of matrix W, and
the loss with respect to the original recursion should be asymptotically negligible since E(W ®
WT) = V. The Onsager term built upon diag (Voh(x?,n,t)) naturally appears in [AHM*24,
GHN24].

In this perspective we introduce new notations. Denote by

(11) (z'),o, == AMP-W (X, S, h,z° n)
the recursive procedure defined by
ml - Wh( » 1 ) )
z'Tl = Wh(z',n,t) — diag (W @ W oh(z!,n,t)) h(x'~!,n,t —1) for t=>1.
Similarly, denote by
(12) (x'),., = AMP (X, S, h,z",7m) ,
the recursive procedure defined by
wl = Wh( » 1, ) 5
't = Wh(xt, n,t) — diag (Voh(x!,n,t)) h(x! =1, n,t —1) for t=>1.
We believe that none of these three Onsager terms should change the general asymptotics of

the AMP. However, a complete proof of this fact is not yet established.

2.5. Examples of AMP. We provide hereafter two examples of matrix models where we work
out the specific AMP recursion and DE equations. Both matrix models are of practical interest,
with applications in fields such as theoretical ecology, where random matrices represent species
interaction matrices in large ecological systems (see [ABC24]).
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Blockwise correlated random matriz. This example generalizes the elliptic matrix model character-
ized by a single correlation coefficient p. Here, the matrix is allowed to have different correlation
coeflicients for each block. Let n = ny + ny, X a n x n matrix partitioned into four submatrices:
XD x(2) x (D and X 22 of respective sizes nq X ni1, n1 X na, na X n1, and ng X na:

x 1) x(12)
X={xen xe»)-

Let XD and X2 be (independent) elliptic random matrices with correlation coefficient py,
while each entry in X (*2) is correlated with its symmetrically corresponding entry in X 1) with a
coefficient py. All the entries of the random matrix X have variance 1 and satisfy A-1. Consider
the normalized version of X,

X
W=—.
vn
With our previous formalism, this model corresponds to choosing X as a T-correlated matrix and
W =S ©®X where S (variance profile) and T (correlation profile) are defined by

S _ 1n><n and T = pllnl X M1 p21n1 XMNo )
n p21n2><n1 pllnzxnz

Let rp := %, I} = {1,--- ,n1} and Iy = [n]\I1, assume that 7, — 7 € (0,1) and consider the
following framework: & = x¢1,, the activation function f : R — R is Lipschitz. Notice that f

satisfies A-5, neither depends on ¢ nor on some extra parameter 7).
Consider the recursion (z!);ey = AMP (X, S, f, :co). In particular,

Lo Wie!) - diag (V' (@) fla'),
where V = T'/n. The Onsager term can be simplified here by writing V f'(x!) as

1ot o rnp1<f/(mt)>111n1 (1 - Tn)p2<f( t)>l21n1
Vf (m ) B <Tnp2<f/($t)>[1 1712 (1 - rn)p1<f ( t)>121n2)
)
)

_ (Tnpllm El Tn)P21n1) (<f( ! ig)

{Fa
i) - [ (e BT ) () e s,

Tnp2ln, (1 - Tn)pllnz

Tnp21n2 1-— Tn)pl no

Thus

Notice that the Onsager term generalizes here the one obtained in the elliptic case (see Remark 2.3).
Not surprisingly (and as mentioned in [GHN24] in the elliptic case), the DE equations do not
depend on the correlation structure of X and reduce to

f(xo)
R' = o) eR™, R —E[TE) | [fw0) p(z0) - 1)) eREFDE0HD,
1(Zy)

where (Z1,-++,Z;) ~ Ny(0, R?). In this case, Theorem 2.1 implies that for any PL test function
¢ : Rt € R ur main theorem implies in this case that

Z] a" )%ESO(ZD?ZJ
zEn

Remark 2.5. This example can easily be generalized to K x K blocks and K correlation coefficients
P1, " PK-
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2.5.1. d-regular random matriz. In this example, we consider a symmetric matrix X where X;;
are independent centered random variables with variance 1 up to the symmetry, i.e. X is a T-
correlated random matrix where T = 1,,,,. Let Assumption 1 hold, let d = d,, = |C'log®” "V (n)]
where v > 0 is given by Assumption 3. Let A be the n x n adjacency matrix of a d-regular non
oriented graph, in particular

Hjeln] | Ay =1}l=d and [{ie[n]|Ay=1}|=d,

and consider the variance profile matrix S = éA. Let f : R — R a Lipschitz function (hence
satisfying Assumption 5) and set

1
W=5S0X-= EA@X, z° = 201, and  (z')en = AMP (X, S, f,2") .

Introducing the sets I := {j € [n] | Ax; = 1} and the n x 1 vector v = ({f'(z"))1, , k € [n]), the
recursion writes
2 = W)~ v fla').

Let us now simplify the Density Evolution equations defined 1.3 for this particular case. We
notice that HY = (h(xg))? =: H° does not depend on i, so R} = el 1H? = H := R which
is also independent of 7 and n. By induction, we can reduce DE equations to “asymptotic” DE
equations, meaning that they do not depend on n. In fact, if R € R*** is independent of 4,

consider (Z}, -, Z!) ~ Ny(0, RY), these n t-dimensional random vectors have the same law. Now
let i € [n] and consider the value of RIT!,
f(@o) f (o)
Rt = S 2w I [y gz o )= [T e sz o p]
L 1(2)
where (Z1,--+,Z) ~ N(0, RY), thus RE“ is also independent of ¢ and n and we recover the

“asymptotic” DE equations. Our main theorem implies in this case that

1 t
e Lz )

2.6. Extension to non-centered random matrices. We have considered so far an AMP al-
gorithm with a centered random matrix. We extend our AMP result to consider a non-centered
matrix model. More precisely, we add to our centered random matrix model a deterministic rank-
one perturbation - notice that our result could easily be generalized to any finite-rank perturbation.

Let W be a random matrix model as in Theorem 2.1, with variance profile S and correlation

profile T. Let u,v € R™ two deterministic vectors satisfying |lul|, |v]| = O(n~!). Consider the
following matrix model,
(13) A= uv' +W.

Before stating the AMP recursion based on matrix A, we adapt the Density Evolution equations
introduced in Definition 1.3. In this section, we shall use the notation h.(z,n) instead of h(z,n,t)
as simplification of the notations.

Definition 2.6. Let ' = (2)) e R", n = (n;) € R", u = (u;) € R" and v = (v;) € R" be
deterministic vectors, S = (s;;) a matriz with non-negative elements and h : R x N —» R

an activation function.

1<i,j<n

a) Initialization. For any i€ [n], define the positive numbers H?, R} and p1 as
9 n
HY = (ho(x?mi)) , R} = Z sinJQ and W1 = )\<v,h0(m07n)> .
j=1

Let Z} ~ N(0, R}), assume that for all i € [n], the Z}’s are independent and set
Z' = (Z})iepn) -

(2
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b) Step 1. Let i€ [n] be fived. Given Z}, let

T
Il

hO (33?7771) 0 ) 1 . .
i E [hl (le + Moui,m) [ho (:Ei,m) hi (Zi + Mouz,m)] 7

&,
I

Z sl-jH]1 and o = A\E [<v,h1 (Z1 + ulu,n)>] .

Let (Z},Z2) ~ Na(0, R2), denote by Z2 = (Z},Z2). Assume that for all i € [n], the Z%’s
are independent. Set Z* = (Z?).

¢) Step t. Let i€ [n] be fized. Given (Z*,---,Z%) and Zt = (Z},--- , Z1), let

ho (9, m;)
. hl(Zil + g, ;) 0 | .
H =E : [ho(z0,m)  ha(Z} + pawi,mi) - he(ZE + pwi,mi)] -
hi(Z§ + pei, 1)

Denote

Rt = Z Sz‘ngt‘ and per1 = AE[(v, hy (Z° + pew,m) )] -

Let (Z},Z2,--- ZY) ~ Niyp1 (0, RETY), denote by Z04Y = (21, 22,---, Z1). Assume
that for all i € [n], the Z* s are independent. Set Z'T = (Z!+1).

Consider the sequence of n-dimensional Gaussian random vectors (Zt)teN. We denote
(Zl, ‘e ,Zt) ~ DE (h,mO,S,t,u,v) .
We are now in position to state the AMP recursion.
(14) 't = Ahy(2' n) — diag (VE@ht(Zt + pu,m)) he_q (2= ),

where Z" and p! are defined as in Definition 2.6.
The following theorem describes the asymptotic behavior of ('), when n goes to infinity.

Theorem 2.2. Let Assumptions A-1 to A-6 hold true, with associated v, Q, and Q. Consider
the AMP sequence (x'); defined in (14). Consider the sequence n-dimensional Gaussian random
vectors (Zt)tGN and the scalars (ut): defined by the DE equations in Definition 2.6.

Lett > 1 and B = (Bin)) € R™ uniformly bounded, i.e. sup, maxep, \ﬂ(")| < . For any
pseudo-Lipschitz test function ¢ : R*1 — R, it holds that

,ZB {¢ Nin T l,"'7$§)—E[<P(77i7zi1+ului7" Z+Utuz)]} P, 0.

n—0o0

This theorem can be seen as a corollary to Theorem 2.1, the proof is provided in Appendix A.

2.7. Open questions.

(1) Currently, the sparsity level is of order log”¥!(n). Would it be possible to lower this level,
and to dissociate the sparsity assumption from the parameter v which is associated to the
moments of the matrix entries?

(2) Would it be possible to improve the convergence in probability in Theorem 2.1 to an
almost sure convergence?

(3) Our current assumptions over the entries of the matrix necessitate all the moments. Would
it be possible by truncation techniques to lower this assumption?

(4) Would it be possible to establish the counterpart of Theorem 2.1 for AMP schemes (11)
or (12)7
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2.8. Outline of the proof. Building on the methods developed in [BLM15] and [Hac24], we
start by analyzing a particular case of the Approximate Message Passing (AMP) algorithm with
polynomial activation functions (Section 3.1), which motivates the adoption of combinatorial tech-
niques. In our setting, the variance profile is non-symmetric, and the matrix contains correlations
between symmetric entries, necessitating modifications to the combinatorial approaches used in
both [BLM15] and [Hac24] to fit our case. The combinatorial heart of the proof is presented in
Section 4. We then use density arguments to extend the results to non-polynomial activation
functions that exhibit at most polynomial growth (Section 5.1).

It should be noted that the combinatorial methods in [BLM15] and [Hac24] rely on the assump-
tion of a zero-diagonal variance profile, i.e., S;; = 0 for all ¢ € [n], which simplifies the derivations.
We adopt this assumption in Sections 3.1, 3.2 and 5.1 and then lift it via a perturbation argu-
ment in Section 5.2. Unless otherwise specified, we assume that the matrix S has a zero-diagonal,
implying, without loss of generality, that the random matrix X also has a zero diagonal X;; = 0.

From polynomial to gen-
eral test functions with at
most polynomial growth.

[Lemma 3.2].
Matrix AMP-W
Polynomial activation Polynomial AMP-W
and test functions. Polynomial activation
Combinatorial argu- functions.
ments. Zero-diagonal assumption
Zero-diagonal assumption (A-T).
(A-7). [Section 3.1].
\[Section 3.2]. ) Diagonal perturbation
technique to lift (A-T7).
[Section 5.2].
(AMP-Z /
General activation func-
AMP-Z tions approximation by
Main theorem. polynomials.
[Theorem 2.1]. Full diagonal - we lift (A-
7).
L[Section 5.1].

FIGURE 2. Proof steps.

3. AMP AND MATRIX AMP FOR POLYNOMIAL ACTIVATION FUNCTIONS

We present hereafter the AMP algorithm for polynomial activation functions, a suitable frame-
work to establish the proof by combinatorial techniques, see [BLM15, Hac24]. In Section 3.1, we
state Theorem 3.1 for iterates that are R™-valued.

In Section 3.2, we state a result for iterates that are R™*%-valued, a more general result that
will imply Theorem 3.1. The extension to general pseudo-Lipschitz functions will be performed in
Section 5.1.

The following technical assumption (to be lifted in Section 5.2) will be used hereafter.
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Assumption A-7 (variance profile with vanishing diagonal). The deterministic n x n matriz
S = (8ij)1<i,j<n has non-negative elements with null elements on the diagonal:

Sy =0 for ie[n].

Remark 3.1. Assumption A-7 is very convenient to establish the statistical properties of the AMP
iterates for polynomial activation functions, as the proof relies on combinatorial techniques. The
fact that the diagonal of the variance profile S is zero substantially simplifies the combinatorics.
This assumption is relazed in Theorem 2.1 by means of perturbation arguments (see Section 5.2).

3.1. AMP for polynomial activation functions. Let d > 1 be a fixed positive integer inde-
pendent from n. For every integer ¢ > 1, consider a uniformly bounded triangular array of real
coefficients

(15) (ozg(i,t,n), (<d, ien], n= 1) with supmaxmax|ag(z t,n)| <.
n {<d i€[n]

The following function will play a key role in the sequel:
(16) p:Rx[n]xN — R,
d
(wyist) = pluit) = Y alist,n)u’

=1
Function p is a polynomial in v with degree bounded by d. It depends on n via the coefficients
ay(i,t,n). To lighten the notations, we drop the dependence of ay(i,t,n) in n and simply write
ay(i,t) and do not indicate the dependence of p in n.

Following Definition (11), let &% € R™ be deterministic and define

(jt)t>1 = AMP-W (X7 S, p, 530) , # e R ,

that is
(17) j:t+1 = Wp(fiit7 ) t) - dlag(W ©) WTap(jta " t))p(it_la ) t— 1);

where p(x, -, t) = [p(z;,i,t)]"_, and dp(z,-,t) = [Op(z;,i,t)]]_, for any = € R™.
We now present the AMP result for polynomial activation functions.

Theorem 3.1. Let A-1, A-2 and A-7 hold true. Let d > 1 be fized, (o) and p given by (15) a
(16). Let ° = (#) € R™. Assume that there exists a compact set Qz = R such that i € Q@
Consider

(),5, = AMP-W (X, S, p,&°) .

1 - « «
Let (Z ,---,Z ) ~ DE(S,p,&° t) and denote by Rf the covariance matriz of vector (Zil, e ,Zit).

Then for all t,m =1

(18) sup max vaifH < and supmax E|#}|™ < o0
n i€[n] n i€[n]
Givent = 1, let d' = 1 be fized and consider function 1, : Rt x [n] — R, a multivariate polynomial

with bounded degree:
wn(‘rlv"' 7$t7£): 2 ﬂ dlv" dt7 nxz )
dy 4 tdy<d’ ie[t]
with

sup sup sup |Bn(dy, -+ ,ds, £)] < o0.
nzl/e[n] di+--+di<d’

Let S < [n] be such that |S™| < CK,, where K, is given by A-2. Then,

1 L1 . St - P
(19a) © 3 {wn(x #,4) — Eqpp (2} ...,Zi,z)}mo, and
eSn)
1 21 ot 1 st P
(19D) E.Z {Q/Jn(xi,...7xi,z)—E¢n(Zi,...,Zi7z)}m(}.
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Remark 3.2. In this theorem, both the activation function and the test function used in the
convergence formulation are polynomials. The general case for the activation function will be
addressed later in Section 5.1. Regarding the test functions, we extend this result in the following
lemma to encompass general continuous functions that grow at most polynomially near infinity.
Notice also that Assumption A-3 is not needed when dealing with AMP sequences having polynomial
activation functions, this assumption is purely technical and is used when a comparison between
two AMP sequences is provided.

Remark 3.3. The interesting regime in (19a) is |S"™| ~ K,,. If |S™| « K,, then (19a) is trivial
in the sense that one can easily prove that both terms

1 1 ~ -

eS(n) ieSn)

converge to Z€7”02.

i
Lemma 3.2. Let #° and n satisfy A-4. Let (") ten and (Z )ien as in Theorem 3.1. Let t,m = 0
be fized integers and let ¢ : Q, x R" — R be a continuous function such that

lp(asur, - u) | < C (1 Jua[™ + -+ Jug[™)

For any sequence (5i(n) e R, i€ [n], n>1) such that sup, maxe[,] |Bz(n)| < o0, the following
convergence holds:

1 n . 5 1 n > > P

n—00
i€[n] i€[n]

Proof. Define the two t + 2 dimensional random measures u,, and v, as follows

1 - o
P = n Z 6(/31'»711:793/}»"'@5) and v, = L (50,7]9, Z91’ o ’Zé) )
i€[n]
where 8 ~ U ([n]) is independent. Consider the function ¥(3,n,x1, -+ ,x¢) = B (N, 1, , Tt),
and recall that (8;), (1;) and the covariance matrices (R!) are bounded, thus by some slight
modification to Lemma B.1 we get the desired result.
O

3.2. Matrix AMP for polynomial activation functions. In order to prove Theorem 3.1, we
need to study a matrix version of the AMP algorithm where the iterates &' are R"*%-valued ma-
trices, ¢ = 1 being a fixed integer. Using this framework, we only need to express the convergence
result in Theorem 3.1 using test functions acting only on the ¢! iterates instead of all previous
iterates. Consider the function

f1 (u, l, t)
(20) fiRTx [n] xN— R?, flu,l t) = ,
fq(u7 l,t)
where each component f, is a polynomial in u € R?, with degree bounded by d, written as

fr(u, l,t) = 2 ai(r 4, tut,

i=(i1, ,iq)EN?

i1t tig<d
(recall the notation u® = [ Lsepq uls). Given a deterministic n-uple (z9,...,z0) where ¥ is a
g-dimensional vector, the AMP iterates are recursively defined for ¢t > 1 as follows:
ofr
(21) 2T = ) Waefel(@l, 0t) = D) fulai it —1) ] Wwwﬁi(mz,e,t),
le[n] s€lq] Le[n] 636(.9)

2By |8(™| ~ K,, we mean that there exist ¢, C > 0 such that cK, < |S("| < CK, and by |S(| « K,, we
mean that |S(™|/K,, — 0.



16 GUEDDARI ET AL.

for r € [q] and f(-,-,—1) = 0. We denote such a sequence by
(mt)t>1 = AMP-W, (X, S, f, wo) , x e R,

DE Equations for matriz AMP. Similarly to the DE equations for standard AMP introduced in

Definition 1.3, we introduce here a (R?)"-valued sequence of Gaussian random vectors (U?)en»

defined by

oH’

ut=|
o)’

where {Uf}ie[n] are R?-valued independent Gaussian random vectors, U} ~ N (0, Q%) and the ¢ x ¢

matrices Q! are defined recursively in ¢ by

(22) Qi = > suBf(ULOO (UL LT for i€ [n],
£e[n]
with the convention that U® := 2°. We denote
(23) U' ~DE, (S, f,z°,t).
The following Theorem is the key component to the proof of Theorem 3.1.

Theorem 3.3. Let Assumptions A-1 and A-2 hold true and ¢ = 1 be fized. Let f be defined by
(20) and x° € R™*49. Assume that for each t = 1, there exists a constant C = C(t) > 0 such that

(24) |,

.....

WLl <O and  supmaxa] < oo
n i€[n]

Consider the iterative algorithm (z'),., = AMP-W, (X, S, f,2°), and let Q! and U" be defined
by (22)—(23). Then we have,

(25) vi>0,  supmax|Q] < co.
n 1€n
Moreover,
(26) Vt>0, YmeN’,  supmaxE|(x))™| < 0.

n i€[n]

Let ¢ : RY x [n] —> R be such that (-, 1) is a multivariate polynomial with a bounded degree
and bounded coefficients as functions of (I,n). Let S™ < [n] be a non empty set such that
|IS™| < CK,. Then,

1

(27a) — > W(ati) ~Ep(U,i) —— 0 and
" jestm e
1 t . t . P
(27b) - Ez[]] (], i) — E(U}, ) —— 0.

Remark 3.4. In this theorem, and particularly in the convergence described in (27b), the result
is not explicitly stated for all iterations from 1 to t, as was done in (19b). Consequently, Matriz
AMP can be interpreted as a more compact formulation of the “standard” AMP. This distinction
is further elucidated in the subsequent proof.

Proof of Theorem 3.1. Theorem 3.1 can be deduced from Theorem 3.3 by adequately choosing ¢
as well as a precise construction of the activation function f using the R-valued polynomials p.

Define the sequence (:I:t) 4>, as follows,

(28) (&'

We shall establish the convergence (19b) for each ¢ and prove that for all multivariate polynomials
1) we have

= AMP-W (X,p,&°,S) .

)iz

1 . .
- {qp(gzg,...,:zg,i)—Ezp(zg,...,zf,i)}Lo.
L noe
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~1 ~t
where (Z ,---,Z ) ~ DE(S,p,%°,t). To this end, let 7 > 0 be fixed and chose ¢ = 7, construct
the sequence ( t)1<t<T of R™*7-valued matrices such that

o= (i 0 - 0),
w?= (3} @ o 0),
ol = (&} @2 - ).

Now using the polynomials p, we construct the function f : R™ x [n] x N — R” such that for all
€[n] and 0 < ¢ <7 —1 we have
) . . T
f(malag) ( ( 17150) p(wz(1)77’a1) p(mi(£)7l7£) o - O) .
For £ = 7, we set
f(®,i,6) = (0 --- 0).
In order to apply apply Theorem 3.3, we show that the sequence (z!) is given by
(29) (x")i=1 = AMP-W. (X, S, f,2°).
Let ¢t € [ — 1]. By definition, for r € [7] and ¢ € [n] we have

Hl(r):{ z; fr<t+1,

3

i 0 ifr>t+1.
In addition, by Eq. (28) we know that
= Z Wigp(s'czfl,ﬁ,r -1) - Z Wigng&’p(ﬂ'czfl,E,r — 1)p(:ﬁ§72, iyr—2),
=
which implies that for r < 741,

27T (r) = Y Wap(aj(r — 1),6,r — 1)
Le[n]

= 3 WaWaidp(ap (r — 1), 6,7 — Dplal ™ r = 2),i,7 — 2) |
Le[n]

Z Wiep(xy (r—1),¢,r —1)
Le[n]

- Z T (s—1),i,s—1) Z WieWeiOp(ay (r — 1), 4,7 — 1)ds p—1 ,

se(t] Le[n]

T J T
Z WiZfr(l'[ag T Z fs a T Z WMWZ:& (S)f (ng,f, T) ’
Le[n] se(t] Le[n]

which is precisely the recursion in (29).
We can now apply the result of Theorem 3.3 to the sequence (z!), which implies that for all
polynomial test functions ¢ (.,¢) : R™ — R we have

721/; Eg(U7 i) —— 0, VYreN,
n—00
i€[n]
which yields
1 1 . P
(30) n§]¢($m7 7,?) ]Ew( )moa VTENa

where the UT is (n x 7)-dimensional random matrix with law DE,(S, f, %, 7), the latter is defined
n (23). Denote the columns of U™ by Z!,.-- Z7 € R", then it is clear that (Z!,---,Z7) ~
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DE(p, #°, 8, 7). The convergence in (30) becomes

1
= N (@l ali) —Ep(Z), - Z7,i) —— 0, VreN.
n

n—o0

with (Z1,---,Z7) ~ DE(S, p, 3% 7). Convergence (19b) is established. One can prove similarly
(19a), which concludes the proof of Theorem 3.1.
(]

4. PROOF OF THEOREM 3.3: A COMBINATORIAL APPROACH

Taking polynomial activation functions in Theorem 3.3 is fundamental, as all iterations ! can
be written as multinomials on the entries of the matrix W and the initial point’s coordinates
0

x7(s). This makes the analysis purely combinatorial. At the first and second iterations t = 1,2,

and given simple polynomial activation functions f,.(u,4,1) = f.(u,£,0) = u(1)™, one can write

zi(r) = Y] Wia()™,
Le[n]

xf(r) = Z WieWig, -+ Wig, (xgl (1)--- x?m(l))m — {Onsager}.
0,01, Lmeln]

We already notice that by the second iteration ¢t = 2, the exact expression for 27 as a multinomial
expansion in terms of the entries of matrix W becomes increasingly complex. We hence need to
find an alternative indexation scheme for the summation above, properly suited to extract the
desired information and establish Theorem 3.3. We follow the combinatorial approach initiated in
[BLM15]. This approach is based on the introduction of “non-backtracking” trees associated to
“non-backtracking” iterations.

4.1. Strategy of proof. To prove that the AMP iterations have the simple deterministic equiv-
alent described in Theorem 3.3 we first approximate the moments of ' € R™*? with the moments
of simpler objects z* called the “non-backtracking” iterations, these are generated with the same
matrix W used in the recursion (8), with a slightly different recursion scheme where the Onsager
term is removed.
E(x))™ ~ E(z))™, VYmeN?

this is done in (Proposition 4.5) section 4.5. We then show a universality property of the iterations
z! in (Proposition 4.2) section 4.3. More specifically, we show that if Z* is another non-backtracking
iteration sequence generated using another matrix W satisfying the same assumptions as W but
does not have the same distribution, then

E(zh)™ ~ E(Z)™, VmeNZ

This means that we can reduce our problem to an AMP constructed using a Gaussian matrix.
Hence, without loss of generality we can suppose that W is Gaussian. Moreover, we approximate
the non-backtracking iterations z! with another non-backtracking iterations y*, but this time, in

the recursion formula of y?, at each step ¢ we independentally pick a new random matrix W?* Ew
which is Gaussian,
St
E(Z)™ ~ E(y)™, VmeN?.
this is done in (Proposition 4.4) section 4.4. &' is now reduced to its simplest form y’. Finally,

we show in (Proposition 4.7) section 4.6 that
E(yH)™ ~ E(UH™, Vm e N

which is relatively easy given that y' are Gaussian. This finishes the proof of Theorem 3.3.

The proof of all these steps follows the combinatorial approach described in both [BLM15] and
[Hac24] and thus we begin by presenting the framework of “non-backtracking” trees in section 4.2.
Notice that that the key difference between prior research and our approach is that the matrix W
is no longer symmetric, and exhibits some correlations between its entries.
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4.2. Description of the tree structure. The proof of Theorem 3.3 follows a combinatorial
approach which aims at studying the moments of the AMP iterates. In order to simplify the ex-
pression of these moments, we use planted and labeled trees to index the sums in these expressions.
We first define planted trees and then describe its labeling.

Definition 4.1 (Planted trees). We recall the following definition from graph theory.

o A rooted tree T = (V(T),E(T)) at o € V(T), where V(T) and E(T) denote respectively
the set of vertices and edges, is said to be panted if the root o has degree 1.

o We consider that all the edges are oriented towards the root, we say that v e V(T) is the
parent of u if the edge (u — v) is in E(T), in this case, we use the notation w(u) = v, we
also say that u is a child of v.

o We denote by L(T) the set of leaves of T, i.e. vertices v € V(T) with no children.

e Given a vertex ve V(T), we denote by |v| its distance to the root o.

e Finally, we define a path starting at vy and ending at vy, as a sequence of vertices (vi,va, -+ , V)
such that v; = w(v;y1) for allie [k —1].

We fix a integer d, ¢ € N, throughout this proof we consider the class of planted trees (7, 0) of
depth at most ¢ such that for each vertex v, v can have at most d children.
We denote
Nid ={(a1, -+ ,aq) EN?, a3+ +a, <d},

where ¢ is also a fixed integer.

Definition 4.2 (Labeled and planted trees). We now describe the labeling of the trees. A labeling
of a tree T, is a triplet of functions (¢,r,c) such that

:V(T)—[n], r:V(T)\{c}—lq], c¢:L(T)— Nid'

e For each vertex ue V(T), £(u) is called the type of u.

o For each vertex ue V(T') except the root, r(u) is called the mark of u.

e For each vertex w € V(T') which is not a leaf, we denote by u[i] the number of children
of u that have mark i € [q]. We use the same notation to describe c(u) for u € L(T);
c(u) = (u[l],--- ,ulq]) e NZ,. In what follows, this notation is used instead of c(u).

e For a non-mazimal leaf u € L(T), i.e. such that |u| is less than the depth of T, we set
u[l] =---ul[g] =0.

We denote by 7't the set of planted and labeled trees, with depth t at most.

Non-backtracking trees. One class of planted and labeled trees that is particularly adapted to our
specific study, is the class of trees satisfying the non-backtracking condition, we recall here the
definition that can be found in [BLM15]. A non-backtracking tree is a planted and labeled tree T
such that for each path (u3 = o,ug- -+ ,ux) in T the types (¢(u;), €(uir1), £(uit2)) are distinet for
each i € [k — 2]. We denote the class of these trees as 7*. In addition, we introduce the following
classes of trees, for given integers i, j and r, we denote by,

. 7?_,] (r)  T* the subset of trees in T* for which the type of the root is i, the type of the
child v of the root satisfies £(v) ¢ {7, j}, and the mark of v is r(v) = r.
e T!(r) © T! the subset of trees in 7T for which the type of the root is i, the type of the

child v of the root satisfies £(v) # 4, and the mark of v is r(v) = r.

We can already use these trees to create the following objects. For a matrix W e R™*™, a vector
2 € R"™ and a family of real numbers a = {ov,(r, €, s) | € NZ, (r, £, s) € [q] x [n] x [t]}, we define,

W(T) = H Wiwyew)
(u—v)eE(T)
F(Taaat) = H Ay [1],...,ulq] (T(U),E(U),t* |u‘) )
(’U,*)’U)GE(T)

o(T) = [ ] (@uw(s)™ .

veL(T) s€[q]
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To better illustrate the concepts previously defined, we present a simple example of a tree and
demonstrate how it indexes the tree quantities W, I', and x.

a {2
T . W(T) = War WiaWi3W31 W32 W3e,
b {1}[1] D(T, e, 3) = ap2(1,1,2)0,0(2, 2, 1)1 (2,3,1)
x as1(2,1,0)00.4(1,2,0)a.5(1,6,0),
1342 £(T) = (22(1))°(2(2)) (1 (1) :
) %

d >3<x1<§>>

1 .
AN

1]

g {6}[1](1,3) x (22(1))%(x2(2))" (26(1)) " (26(2))
{2}[1](0,4)

FiGURE 3. Example of a tree T € 73 for parameters ¢ = 2, d = 4, t = 3 and
n = 6. The types are written between braces, the marks are between brackets and
leafs info is between parentheses. In this example, T" is not a non-backtracking
tree because of the two paths (a < b« ¢) and (b — d < e).

4.3. Non-backtracking iterations. The non-backtracking iterations (2!);, are defined recur-
sively similarly to (z'); but minus the Onsager term and with a slight change in the contributing
terms from the previous iteration. Recall that the purpose of having the Onsager term is to
eliminate components that induce non-Gaussian behavior in the iterates in the high dimensional
regime. Basically, non-backtracking iterations evolve purposefully getting rid of parts that are
source non-Gaussian behavior. In particular we do not need to have a corrective term.

Given any i,j € [n] with ¢ # j, we initialize the non-backtracking sequence with z?aj = x¥.
We then define recursively z';ilj using the previous iterations as follows
(31) Zfii (r) = Z Wi@fr(zz—da& t), Vre [q]7
te[n]\{5}
the case | = i is excluded because W;; = 0. In addition, we also define the vectors (z!); by
(32) 2 = Y Wiefe(zhi 0t), Vre[q].
Le[n]

We provide here a non-recursive formulation of zf_,j and z! described as sums indexed by trees
in T}, ;(r) and T (r).
Lemma 4.1 (Lemma 1 of [BLM15]). For all integers t € N, 1,5 € [n] and r € [q], we have,
Zr) = > WD, a,t)a(T),
TeT,;(r)
()= > W(DI(T, a,t)x(T).

TeTr(r)

Here x(T) := x°(T), we drop the superscript from this notation.

Note that this lemma is purely structural, the proof is not impacted by our specific variance
and correlation profiles.
To simplify the notations in the following proofs we introduce the following sets,

(33) K={(@i,j)e[n] x[n], s; >0} and C={(i,j)€[n]x[n], 7;#0}.
We also define the row and column sections of K,

(34) Ki={jen], si;j >0} and K’ ={ie[n], sy >0}.
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The next proposition shows that in the large dimensional regime, the moments of a vector z!
issued from the non-backtracking iterations depend for large n only on the first two moments of
the elements of W.

Proposition 4.2 (adaptation of Proposition 1 of [BLM15]). Let X be a random matriz satisfying
A-1, with distribution not necessarily identical to its analogue X. Assume that W fulfills A-2.
Let W be the matriz constructed similarly to W, but with the X;; replaced with the X;;. Starting

with the set of R?1—valued vectors {zl_,J7 i,j €[n], i # j} given as z?_,] =z deﬁne the vectors

zt € RY by the recursion (31) and the equation (32), where W is replaced with w. Then, for each
t>1 and each m € N9,

m = m 1
Proof. Without loss of generality, we restrict the proof to the case where the multi-index m

satisfies
0 ifs#r,
m ifs=r,

m(s) - |

for some integer m > 0. By Lemma 4.1, we have

E(z(r)™ = > (H [(Ty, a,t)) E lﬂ W(Tk)] [ [=@).
(r) \k=1

Ti,eo, T €T (r k=1

For a tree T and j,¢ € [n], define
Gei (T) = {(u — v) € E(T), (£L(u),£(v)) = (4,0} -

Based on the definition of W(T'), @¢;(T") counts the number of edges in the tree T' that represent
the (¢, j) matrix entry W;;. We also define ¢;, for j < £ as

©je(T) = Gje(T) + (1),
this quantity represents the total number of edges in the tree T" that represent either W, or Wy;.
We know that there is an integer constant Crp = Cg(d,t, m) that bounds the total number of
edges in the trees T4, ..., T,, € T;*(r), thus

t
Z ZQszTk CE:ijlfll'

ke[m] i<t

Cg is simply the maximum number of edges in the m-tuple of trees T1,--- ,T,,. Given an integer
w € [Cg], recall that K is introduced in (33), define

Ailp) = {(Tl, o T), T € TE(r) for all k € [m],

Vi<t D ep(Tr) # 1,

ke[m]
Vil Y, Fie(Th) >0 = (4,1) € K,
ke[m]
DD e(Th) :M}o
ke[m] j<¢

Since the elements of W beneath the diagonal are centered and independent, then,

Cg m m m
6 B =S Y (nmm) (nx<n>) £ [n wm] |
k=1 k=1 k=1

p=1 (T, T )eAi (1)

Notice that the contributions of the m—uples of trees in the set

(T, Tm) € Aip), V5 <€, >0 o(Ti)jee{0,2} ¢,

ke[m]
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are the same for E(z!(r))™ and E(z!(r))™ by the assumptions on the matrices W and W. Three
cases can be considered for a couple of indices (j,¢) where j < £ and >} 1,,,) $(Tk)je = 2,

e Wj, is represented two times in the trees = contribution equal to s]g,
e Wy; is represented two times in the trees = contribution equal to sy,
e Wj, and Wy, are both represented in the trees = contribution equal to ,/5;,5¢;7;¢.

Notice that in all three cases the contributions do not depend on the distributions of the entries
of the matrix W but only on the first and second moments. Thus, defining the set

(36) B = (T Ty e Ay, 35 <6 Y] T > 3},
ke[m]

the proposition can be proven if we prove that for all u € [CE], the real number

b = Z (H D(Ti, e 1) ) (ﬁwm)) E Lﬁ W(Tw]

(Tl yees 'm )EA (H)

satisfies

1
=0 .
< < VE, >
Using the bounds (24) provided in the statement of Theorem 3.3, it is clear that [ [, I'(T%, o, t)
and [}, x(T%) are bounded as n goes to infinity.

Since there exists a constant C' such that [EW3,| < CK, */2 for each integer s > 0 by A-1 and
A-2, for each (T, ..., T,) € A;(1), we have

_ H‘EWZk 1Pt Tk)WZk 1Pei (Tk)

Jj<t

E ﬁ W(Ty)
k=1

b

<[] (w2 i (B 20 -
Jj<t

CK—% <o 2 Pie(T)+Pes (Tk)

< < CK;M2%,

To complete the proof, we shall show that
v =
(37) )Ai(u)‘ —0 (ka7 ) -

Given an m-uple (T1,...,T,,) € Ai(u) of trees, we construct a graph G = G(Ty,...,Ty,) by
identifying the types of the vertices in all these trees. The marks as well as the orientation of the
edges are ignored. G is then a rooted and labeled graph whose root is the vertex obtained by
merging the roots of the trees T, ..., T, (remember that they all have the same type 7).

The number of edges of G is
|B(G) = D) 1y, o100
Jj<t
Remember that when ), ¢(T%);¢ > 0, this sum is greater than 2, so

Vi < ¥, Z@ Ti)je = 21& ©(Tk)je>0s

we also know that for some j < ¢ we have > ©(Tk)j¢ = 3. Consequently,

AE@-V+3 < 3 oo

j<tl k=1
thus,

-1
1E(G)| < “T

Note that since G is connected, as being obtained through the merger of planted trees with the
same root’s type,
V(G| < [EG)]+1,
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which gives
HveV(G), v#o} < (u—1)/2.
Also, by construction, G satisfies the following property:
(u—wv)e E(G) = L(u) € Ky,
where K; is defined in (34). And by A-2, this implies that G satisfies the following property: for
any fixed labeled vertex v € V(G) if (u — v) € E(G) then u can be labeled by at most CK,
different values.
We shall denote as G the set of rooted, undirected and labeled graphs G such that
e (G is connected,
o (o) =i, [B(G)| < (n—1)/2,
e for any fixed labeled vertex v € V(G) if (u,v) € E(G) then u can be labeled by at most
CK,, different values.

We denote as R* the set of all the elements of G! but without the labels. Given a graph G € G,
let us denote as G = U(G) € R* the unlabeled version of G. With these notations, we have

(38) ‘A(u)] -y X ‘{(Tl,...,Tm)e,Zi(u), G(T,...,Ty) :G} .
GeRH  GeGh :
U(G)=G

For each graph G, it is clear that

(39) H(Tl, L Tw) e Ai(p), G(Th,..., Th) = G}( < C,
where C' = C(d, t,m) is independent of G. Our goal now is to show that
(a0 {Gegt, UG) = G| < CRY",

which is simply the number of all possible labelings of a graph G under the constraints described
above. To see this, consider a breadth first search ordering of the vertices of the graph vy = o <
v1 < --+ < Yy gy -1 that begins at the root o, this ordering has the property of visiting each
vertex once and that each new vertex is connected to an already visited vertex, i,e.

o {vg =001, - av|V(C¥)|—1} =V(G), B
o Vj=1,--- 3k < j such that (v; — v;) € E(G).
Now, starting with v; and by induction, after fixing the label of v;_;, one can see that v; can only
be labeled in at most C'K,, possible ways. So the number of all possible labelings of G is bounded
by CK) D < o2
Furthermore, it is easy to check that

IRF| < C.
Getting back to equality (38), and using this last inequality along with inequalities (40) and (39),
we obtain inequality (37), and the proposition is proved. O
Notice that for a tuple of trees (T4, - ,T,,) satisfying the following condition
Vi<t Y eie(Tk) € {0,2},
ke[m]

if there exists a pair (j,¢) such that >} ., Fje(Tk) = 1 and (j, ) € C, i.e. 7j; # 0, then
E[[i, W(Tk)] = 0. Consider the following subset A; (1) of A; () defined

(41) Ast) = {(T1, . T) € As(),
Vi<t Y @ie(Ti) € {0,2},
ke[m]

Vjaév Z Sajl(Tk) =1 = (]76) € C}
ke[m]
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If (T4, ,T,) € A; (1) then the graph G = G(Ty,--- ,T,,) constructed by merging the trees has
exactly /2 edges, and that can be seen by writing

D ea(Te) =2 Igm om0,

k=1
(@) =215y, on(T0 = Z ZW Ty) = /2.

<l ]<l

Define the set of graphs Q;L analogously to G! with the difference that we replace the requirement
|E(G)| < (1 —1)/2 with |E(G)| = u/2. We can then write

Cg Cg
(42) EZ0)™ = 3 v+ ) &
p=1 p=1

where

43 xu= ), D, > (ﬁ Tk,at)<li[ Tk>ElﬁW(Tk)1.

GeRM GeGH: (T1, Ty )eA; (u):
U(G)=G G(Ti, ,Tm)=G

Recalling that |,| = (’)(K;l/Q), we focus on the y,. To that end, we further decompose the first
sum on the unlabeled graphs G € R* above into a sum on the graphs which are trees and a sum
on the graphs which are not trees, i.e., those that contain a cycle. Let us denote respectively the
corresponding sums by XE and XET, and write

Xp=Xp+Xn -
We show in the following lemma that the contribution of the term X,IIIT is negligible.

Lemma 4.3. Consider the same framework as in Proposition 4.2. We have
1
X;T =0(1) and Xﬁ/T =0 () .

Proof. In the proof of Proposition 4.2, we have already got that [E[[ ", W(T}))]| is bounded by
CK, " / 2, so we only need to study the quantity

HGG G', U(G) = c‘:}

in the case where G is a tree and where G in not a tree. Recall that for a given G € Gf the graph
G is connected and we have |E(G)| = p/2 so |V (G)\{o}| < p/2 with the equality if and only if G
is a tree. So repeating the same argument as in Proposition 4.2 we find that

‘{G6Q57U(G)=G}’<OK5/2 and ‘{Ge@f7U(G):G})<CK5/2—17

)

in the case of G being a tree and not a tree respectively. Multiplying by CK,* /2 yields to the
desired result. O

4.4. Approximation of the non-backtracking iterations. For each n, let us now consider an

i.i.d. sequence (Wt)t:(),l,__, of n x n matrices such that Wt = £ W We define the vectors and
y! recursively in ¢ similarly to what we did for the vectors z l_,J and z!, with the difference that
we now replace the matrix W with the matrix W at step t. More pre(nsely, we set ylHJ = z¥ for

cach 1,7 € [n] with i # j. Given {y}_; | i,j € [n], i # j}, we set

(44) ytir) = ) Wihh(yins 6t), i # .
Le[n]\{7}

yz%j

Also,
(45) t+1 Z EfT yl—»w E’ t)
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We introduce here a similar quantity to W(T') for a given labeled tree which is adapted to the
computations related to the iterations y!. We define W (T, ¢) by
W _ t—|ul
W)= [ Wi
(u—v)eE(T)
where we recall that |u| denotes the distance of the vertex w to the root o in the tree T
We can prove similar structural identities for yf and y;_,; as what we did with the iterates z} and

zf ;. In fact, we have

Yo, = Y WTON(T (D),
TeT}!, (r)

i—j

> W(THI(T, e, t)z(T).
TeT}(r)

Proposition 4.4. Let (') and (y') two sequences defined in (32) and (45) respectively, then for
each t = 1 and each m € N, we have that for each i € [n],

1
E(zH)™ —E(y))™| = 0O .
’ (zz) (yz) | m
Proof. We follow the same strategy of proof as in Proposition 4.2. For simplicity let us fix m(r) =
m for a certain r € [q]. We have

p=1 (T17 . m)e«AZ(H)

As in the case of (z!), we can also decompose this sum into a sum over trees ( T,.) in the set
). The contrlbutlon of

Ai(10) (defined in (36)) and trees that are in the set A;(p) (defined in (41)

m-tuples of trees in /L(u) is of order K;l/Q, so we may focus on m-tuples of trees in Ai(u). Recall
the definition of a graph G € G! as the merger of trees (T1,--- ,T,,) where we identify vertices u
that have the same label £(u). As in the previous proof, we further partition these graphs into
trees and graphs that contain at least a cycle. The latter have a contribution of order K, ! so we
may focus on the contribution of graphs G that are trees. Write

= > > > (ﬂr Ty, t) <’f[1x(Tk)> ]ELm W (T

GeR'  GeGl: (Tv, T )eAi(n): =1
G1satreeU(G) =G G(Ti,,Tm)=G

The proof of this proposition will be completed if we can show that XZ = )’(::.

First, notice that the terms [ ;" | I'(T%, @, t) and [[;", x(T}) are the same in the expressions
of X (defined in (43)) and ;.. So it suffices study the term E [T, W(Tx)]. Two cases can be
studied, whether this term is zero or non-zero.

Consider any m-tuple of trees (T1,--- ,T,) € A;(n), if

E lﬁ W(Tk)] 0,
k=1

then for every matrix entry (¢, 7) which is represented in the trees Ti,-- - , T, there exist exactly
two edges (a — b) and (¢ — d) such that {¢(a),f(b)} = {¢(c),4(d)} = {i,j}, in addition |a| = ||
otherwise E [[ T W(T})] = 0, we then obtain a second moment of W which means that

E lﬁ W(Tk)l —E lﬁ W(Tk)l .
k=1 k=1

Now suppose for the sake of contradiction that

lﬂ (Tr)| =0 and Ellﬁ Tk] ,
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we show that in this case the graph G = G(T1,- - ,T},) is not a tree which is a contradiction.
There exists a matrix entry (7,j) with ¢ < j which is represented in the trees (71, - ,T},) by two
edges (a — b) and (¢ — d) such that vertices a and ¢ do not have the same distance to the root o,
i.e. |a| > |c| for example. This is because E [[T;—, W (T}))] = 0 and because 7;; # 0, s;; # 0 and
sj; # 0. Three possible cases can be considered:

e (a — b) and (¢ — d) exist on the same path of a certain tree: by the non-backtracking
condition, these edges should be separated by at least one vertex say e of label k ¢ {i, j},
ie.

.>aqa—>b—o>e—>---—>c—>d---—> o0,
As for the graph G, this means that starting from a vertex of label ¢ we should pass
through a vertex of label k ¢ {7, j} and then return to the vertex of label ¢ which creates
a cycle.
e (a — b) and (¢ — d) exist in two different trees say T} and T, respectively:

cm @b o (T})
% —>¢c—> d—---—o0 (TQ)

First notice that the labels of the vertices in each of these two paths are different: if two
vertices on the same path have the same label say k& then due to the non-backtracking
condition they should be separated by at least two other vertices which result in a cycle in
the graph G. Recall that the roots oy, and op, are identified in the graph G’ which means
that in G there exist a path from the vertex £(b) to o and another path from £(d) to o,
these two paths are distinct as they have different lengths which is a consequence of the
condition |a| < |¢|. In addition £(b) and £(d) are either equal or linked in G, this creates
a cycle in the graph.

e (a — b) and (¢ — d) exist in two different paths of the same tree: similar to the previous
case.

O

4.5. Approximation of the AMP iterations. Let us now establish the relationship between
AMP iterates (x?); and the non-backtracking iterations (z%);. We see in the following proposition
that the moments of &' can be approximated by the moments of zt.

Proposition 4.5. For each t > 1 and each m € N9, we have that for each i € [n],

tym tym 1
|E(x}) E(zH)™ =0 <m> .

In order to prove this proposition we need the following structural lemma that connects z!(r)
to 2L(r) for i € [n], r € [¢] and t € N. Consider U! (resp. U}) the set of unmarked trees of the
set T.' (resp. T;'). We can consider that these sets are constructed by identifying the trees with
the same structure and labels. Denote also by ¢/ the map that assigns to a tree T' its unmarked
version T := U(T). The two equations in Lemma 4.1 can be reformulated as:

2t (r) = Z W(T)D(T, 7 t)a(T),

g
Teuf_)j

2H(r) = 2 W (T)D(T, 7, t)a(T),
Teu?

where W(T') and x(T) are invariant with respect to the marking of the tree, and
(T, r,t) := > D(T,a,t), VI el
TeTt(r) : U(T)=T
Consider B! < U* to be the set of trees T such that for each (u — v) € E(T) we have £(u) # £(v),
in addition at least one of the following conditions holds,

e there exists a backtracking path of length 3: a path a — b — ¢ — d such that £(a) = ¢(c)
and £(b) = £(d),
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e there exists a backtracking star: a — b — ¢ and @’ — b — ¢ such that ¢(a) = ¢(a’) = {(c).

Lemma 4.6. For each t,r,t there exists a f(.,t,r) such that T(T, r, t) = O(1) uniformly in T and
wh(r) = z{(r) + Y, W(T)T(T,r,t)x(T).
TeB!

Proof. We prove this lemma by induction on ¢. The cases t = 0,1 are simple, suppose that ¢t > 2,
and that the equation is valid for ¢. Recall the AMP recursion given by,

t+1 Z Wzéfr xe Z Z MWszs ) z(s)fr(xz)

=1

Here we omit the dependence of f on ¢ and t, i.e. f.(zf,¢,¢) = fr(x}). Recall that f, is a
multivariate polynomial, so by Taylor’s expansion at z}_,;, we can write

fr(xg) = frlzin) + Z (IE(S) - ZE—»z(S)) (%(s)fr(ZLi)

s€(q]

(s qqxs»“ . |
+ D] H D* fi(z04),

ko kiteotkg>2

(46)

where for k € N? and € R? we denote by D¥ the following differential operator

kit Hhag(a)
oD alg)

Let eb(r) := ZTeB; W (T)T(T,r,t)x(T), by the induction hypothesis we have

D¥*g(z) =

wy(r) = z(r) + eg(r)
= ZE_)Z-(T) + ZZi(T) + ez(r)7

where we use the notation zj ;(r) := W fr(2 =1). Plugging this equation into (46) gives

Fr(@h) = fr(zing) + 35 (2h4() + €4(5)) Quo) Jr(261)

s€(q]

coy |l

kot kiteetkg>2 | s=1

(47) )+eA>)“ S
r(20—i),

Now, multiplying by W, on both sides and summing over ¢ gives the following

D Waeke(ah) = 27 )+ )0 Wae (2h(s) + €h(5)) Duo) fr(2ii)

te[n] Le[n],s€(q]

(48) o (ah(s) +ells)
+ > Wie [ 1] ( & 3 !Z ) D" fy(204)-

Le[n], ki+-+kq=2 s=1

The first term is obtained by the definition of z/*!(r), see Eq (32). The second term can be
decomposed into the two following sums,

Z WieWei fr (2150 Qo) fr(2ln) + D0 Wieeh(8)0u(s) fr(2hs)-

Le[n],selq] Le[n],s€(q]
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Now subtracting the Onsager term from both sides of Eq (48) gives the following

) = 2PN = Y WaWa (Fr(2l )0 fr(xh) = £r(2100) 00 r(220)
Le[n],selq]
(49) + L Wieeh(s)Ou(s) fr(2ios)

Le[n],s€lq]

o (e +el(s)”
+ > Wie | ] ] -

te[n], ky+-+ky>2 s=1

D* fr(z04) -

Denote by Sp, So and S3 respectively, the three terms in the right hand side of the previous
equation except zf“(r). One wants to prove that these three terms can be written as sums over
trees in 7' € BiT! of terms having the form,

W (T, r, t)=(T),

where f‘(T, r,t) is obtained by construction, the exact form of this term is not important, we only
need it to be bounded as n goes to infinity.

The term S,

The second term is given by the following formula,
SZ = Z Wzlez(s)al(s)fr('zzﬁz)
Le[n], s€lq]
The terms in this sum are given by
ef(s) = Y, W(T)D(T,s,t)a(T),
TeB}

az(s) fr(zé—n') = Z Ay, kg (T’ 67 t)ks (zé—n (S))ks_l H (Zz—n (u))ku ;

kyt-tkg<d u€[q]\{s}

with

Zpi(w) = >, W(D)I(T, u,t)z(T).
Teut

L—1i
S5 can thus be interpreted as a sum over trees T' € Bf“ constructed as follows:
e The root o has a type equal to i, and o has a child, say o, of type . This is due to Wyy.
e The vertex o is the root of a tree in B.. This is due to the term e}(s).
e The root’s child o is also the root of kq + --- + (ks — 1) + --- + k, additional trees in
Uj_,;. This is due to the term dys fr(2¢—i). Note that in total, o has at most d >
ki4+---+(ks—1)+ -+ kg + 1 children.

By construction, we can easily see that 7 is in Bf“.

The term S;

The first term is given by the following formula,

Si= >, WiWe (f(2l 0w fr(@h) = Fr(220) 00 fr(2h2)) -
Le[n],selq]

Doing a Taylor expansion of the polynomial g : (z,2') = f.(2)0)fr(x’) around (zf;lé,zg_,i)

gives

o) +ef T (u . 2b (uw) + el (u .
S1 = Z WieWo; 2 ﬁ (Zu (u) +e€; ((JZ)+ kg)f,z( )+ ej( ))

te[n]se[q] lil+k[>1 | u=1

DY g2, ).
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S1 can be seen as a sum, up to multiplication factors, of the following terms

WaWei I (52 ) + e§-1<u>)j’“ (24 4 (u) + ef(w) ™ (255(w) ™ (2hoi(w)™

u=1

with the constraint that >? _ (j, + ku) = 1. To show that S; can be seen a sum of trees T'
belonging to Bf“, two cases should be considered, either it exists a v such that j, > 1 or k,, > 1.

e If there exists a u such that j, > 1, we construct a tree in B'*! as follows:

— The root o has a type equal to ¢, and o has a child, say o, of type £. This is due to
Wie.

— The vertex o is the root of trees in U4} _,, which is due to the multiplication by z}__,(u).

— The vertex o has a child, say ¢, of type 4, which is due to Wy;.

— The vertex ¢ is the root of trees in U/}, which is due to 2!~} (u).

Now because j,, = 1, at least one of the following holds:

— The vertex ¢ is the root of trees in B!™*, which obviously results in a tree 7' € BT,

— The vertex ¢ is has a child of type ¢, which creates a backtracking path of length 3
of types £ — i — £ — i which also results in a tree 7 € BI™'. This child is the root
of a tree in U!;. And this is due to the term zle.

e If there exists a u such that k, > 1, we repeat the same argument. This time, the
multiplication by zj ;(u) gives a backtracking star [i, i — ¢ — ], which results in a tree
Te Bf“. Otherwise, the multiplication by e} (u) adds a tree in B} which obviously results
in a final tree T' belonging to Bf“.

The term S3

The third term is given by the following formula,

o () +el()
S3 = Z Wi 1_[ o

Le[n], ki+-+kq=2 s=1

Dkf?“(zﬁ—»i)~

Similarly to the interpretation of Sy as a sum of trees in Bf“, we can repeat the same arguments
for S3. The terms that have e!(s) as a multiplication factor naturally results in trees belonging
to BiT!. In the other case, notice that the constraints ki + --- + k, > 2 implies that a term of
the form Wigz ;(s)2} ;(s") always exists, this term produces a backtracking star and thus the final
tree T belongs to Bf“.

By studying the tree terms, we proved the existence of a I'(T,¢,t + 1) such that

et ) =2 Y W(TT(T, vt + D)a(T).

2
t+1
TeB;

Where T'(T',t,t + 1) is a function of I'(T't,t) and the activation functions’ coefficients. It remains
to check that I'(T,¢,¢ + 1) = O(1). This can be easily verified, and its proof will be omitted. O

Remark 4.3. The previous proof is a non-Symmetric adaptation of the techniques developed in
[BLM15] and [Hac24] in the symmetric case. Instead of terms W7 in the symmetric case, we
handle their counterparts Wi yWy; in the non-Symmetric case and properly interpret them as edges
of a tree. Accordingly, we rely on an Onsager term based on matric W @ W instead of W2,

Finally, we can prove Proposition 4.5 by repeating the same arguments used in the proof of
Proposition 4.2.



30 GUEDDARI ET AL.

Proof of Proposition 4.5. We can restrict ourselves to the case of m(r) = m and m(s) = 0 for
s # r. The m-th power of zl(r) is given by

E (zi(r))" —E (zf(r)" =E | 2l(r) + 2 W(T)T(T,r, t)x(T) | —E (25 (r))"
TeB!
ey Y kv
TveB! Ta, , TmeBlUT!(r) i=1

The key observation here is to notice that the graph obtained by merging the trees (71, - ,T),)
has an edge which is the result of the fusion of at least three edges, and this is because 77 has
a backtracking path or a backtracking star. This implies a bound on the number of edges of the
resulting graph.

O

4.6. End of proof of Theorem 3.3. We now show that the sequence of Gaussian vectors (U")
defined in (23) by the Density Evolution equations approximate the iterations (y*) defined in (44)
and (45) where the matrices (W?!);ey are independent and Gaussian.

Proposition 4.7. Let W be a random matriz defined in (3) and satisfying assumptions A-1 and
A-2, suppose in addition that W is gaussian. Let (W?')en be a sequence of independent copies of
W. Then for each multi-index m € N? and each integer t > 0 we have

e[ [(49)™] - E[W))™] — o

Remark 4.4. Recall that the random matriz (U}, ,UL)T € R"*4 is defined such that (U});eqn
are independent and such that Uf ~ N(0, Q%) where (Q%): is a sequence of k x k covariance matrices
defined recursively by
Qi = > suE [f(UL 60 f(UL61)T]
¢e[n]
In particular, the law of U does not depend on our correlation profile.
We also recall that the iterations yt are defined by y?_,j =29 and

yztié = Z Wz'téf(yé—»iv l t)
te[n]\{5}
which implies that the conditional distribution ofyfilj given Fy := o{WO, .- W} is N (0, Hf;”l)
where (Hfj)t 1 a sequence of q X q covariance matrices defined for each t € N* by the following
recursion
HfjJrl = Z SME [f(yﬁ—»za ga t)f(yg—na Ea t)T:I .
Le[n]\{s}

We therefore notice that the conditional distribution of y'™}

- i—]
the matrix W with a random symmetric matric W having the same variance profile as W. By
doing so, we can directly apply the result in [Hac24, Proposition 15].

given Fy is unchanged if we replace

Combining the previous results we get the following convergence for each multi-index m

max |E [(mf)m] —E [(Uf)m]} — 0.

i€[n]

We can then use the triangular inequality to get this same result for any multivariate polynomial
with bounded coefficients instead considering only the monomial X™.

Proposition 4.8. Let v : R?x [n] — R such that ¢(.,¢) is a multivariate polynomial with bounded
degree and bounded coefficients. Then for each subset S™ of [n] with |S™)| — oo, it holds that

1 > Efal, )] - E[¢U},4)] — 0.

(n)
|S " ‘ ieS(n)
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Finally, in order to get the convergence in probability stated in Theorem 3.3, we only need to
show that the following variance

(50) Var

) wz,i)] —0
™ ies(n)
converges to zero. The proof of this convergence is similar to the proof of [Hac24, Proposition 17]
and thus is be omitted.

The proof of Theorem 3.3 follows then from Proposition 4.8 and the convergence in (50).

5. AMP WITH GENERAL ACTIVATION FUNCTIONS AND NON-ZERO DIAGONAL MATRIX

5.1. AMP for general activation functions. Now that we have proved the AMP convergence
result for polynomial activation functions in Theorem 3.1, we can generalize this result for non
polynomial activation functions by approximation arguments. In other words we complete the
proof of our main Theorem 2.1 still assuming that the matrix model has a zero diagonal (X;; = 0).
We start this section with an approximation of the activation function h by polynomials in
order to use the convergence results of polynomial AMP.
Lemma 5.1. Let h be an activation function satisfying A-5 and let (Zl, e ,Zt) ~ DE (S, h, 20, t).
Let e > 0 be a (small) real number, then there exists a set of functions (pe(-,-,t))i™5* such that for
each n e Q,, pe(.,n,t) is a polynomial and

E (h(ZfaT]Zat) _pe(Zfan’iat))Q <e and |]E (ah(Zzty’r]ht) - ape(Zfan’Lat)H <€,

fort =0, tmayx with the convention that Z° = x° deterministic. In addition, let éﬁ’“a" be the
1 it
covariance matriz of the i-th row of (Z N1 ) ~ DE (pe,:co, S, t), then there exists d(e) such

that §(e) — 0 when e — 0 and
| Rim — Rtm|| < 8(e), Vi€ [n].

In order to prove this lemma, we need to show that the variances of Z! are bounded away from
zero. To that end, we use Assumptions A-4, A-5 and A-6.

Lemma 5.2. Let S be a matriz satisfying A-2, ° an n-dimensional vector satisfying A-4, h a
function satisfying A-5 and A-6. Following the notations of Definition 1.3 let (Z1,~~~ ,Zt) ~
DE (h,z°,S,t) and recall the definition of the covariance matriz Rt € R'™*. Then for every t € N
there exist two constant C' = C(t) > 0 and ¢ = ¢(t) > 0 such that

(1) The spectral norms of the covariance matrices are bounded
vneN, Yie[n], |Rl <C.
(2) The variances of Z! are bounded away from zero
vneN, Vie[n], RL(tt)=c

The proof of this technical lemma is given in Appendix F. The proof of the first part of
Lemma 5.1 relies on the polynomial density Lemma C.1 and the fact that the variances of Z!
are bounded from above and also bounded away from zero which is detailed in Lemma 5.2. The
second part uses the same proof technique described in the proof of Lemma 5.6. An immediate
consequence of this approximation is that the covariance matrices ]éf“‘“ are also bounded.

Let (&') the AMP sequence considered in Theorem 3.1. The following lemma allows us to
replace the “random” formulation of the Onsager term by a deterministic equivalent, i.e.

diag (W O W op. (&, -, t)) with diag <V(7pe(:i't, - t)) .

Lemma 5.3. For each t € N there exists a constant C that does not depend on n such that:
4

E 2 (W”le - V;j) ﬁpe(fv;,nj,t) < C/Ki for all i € [n]

Jjeln]
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where ‘/ij = Tij\/w =E [W”WJZ]

The proof of this lemma is provided in Appendix D.

The following lemma gives the desired comparison of two sequences (z!) and (&') defined by
(51) (z') = AMP-Z (X, S,h,2% m) and (&) = AMP-W (X, S,p.,z°,n),

where p. is the polynomial approximation of the function kA by an error margin e in the sense of
Lemma 5.1.

Lemma 5.4. Fiz tyay > 0. Let (x?) and (&) be two AMP sequences defined as in Eq. (51), then
there exists §(e) — 0 as e — 0 such that the following holds for each t =1, -+  tmax,

lz* — &[0 < d(e) + 02(1) and |[A(x") — pe(E")]ln < d(e) + 0p(1),

where op(1) SN
n—0oo0

Using this Lemma, we are now able to prove the AMP convergence result for general activation
functions.

Proof of Theorem 2.1 in the zero-diagonal case . Let ¢ : Rimax — R be a pseudo-Lipschitz func-
tion and denote x; = (xll, e 7x§“‘a")T and &; = (:Ezl, e ,icfma")T, without loss of generality we
omit the scalars 3; and the parameters 7; by considering that ¢ depends also on the index i. We

have

LN el = X (o) — pl@) + - ) (0l@) — p(Z) + - D) (o) — p(Z0).

i€[n] i€[n] i€[n] i€[n]

The pseudo-Lipschitz property of ¢ implies that

1 . C . .
— [ 2] (@) — (@) < = D @ — & (1+ ||| + || &)
n n i€[n]

i€[n]

tmax tmax tmax
<O Yl =& ) [ 1+ 2l + D120 )| -
t=1 t=1 t=1

By Lemma 5.4 we have Y ,™%*||z! — &'||, < §(e) + op(1), and by Theorem 3.1 applied to the test
function x — x2 we get ||#']|,, < C + op(1) which also implies that ||z¢||,, < C + op(1), finally we
have

% N (@) — p(E:)] < d(e) + op(1).

i€[n]
By Theorem 3.1, we have that
1 } o
- D (e(@:) = o(Z) = 0p(1).
i€[n]

And finally by using Lemma 5.1 we get

n 3 0(Zi) —p(Z)| < d(e),

i€[n]
which concludes the proof of our main theorem. O
In order to provide a comparison between the two AMP sequences in (51), we need the bound-

edness of the spectral norm of W, a technical yet very important condition. This condition is
enforced by A-3 that controls the sparsity level of the random matrix.

Proposition 5.5. Let A-1, A-2 and A-3 hold true. Then the following bound holds true with
probability one,

sup||W|| < .

n=1
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The proof of this proposition is due to a result of [BVH16] and is provided in Appendix E. In
the following paragraph we give the sketch of proof of Lemma 5.4.

Proof of Lemma 5.4. The proof is basically an induction argument in which we use Lemma 5.1,
Lemma 5.3 and the AMP convergence result for polynomial activation functions. The base case
(t = 1) is easy. Suppose now that the result is valid for all s = 1,--- ,¢ and let us prove that it
also holds for s = t + 1. By the triangular inequality, we can write

e+t — & <[Wlh() — pe(@)]
+ |[diag (VEOR(ZY)) h(a' ") — diag (W © W ape(&")) pe(@' ) ln-

The first term is directly handled by the induction hypothesis as well as the bound on the spectral
norm of W (see Proposition 5.5 ). Let us now show that the second term, which corresponds to
the normalized distance between the two Onsager terms, can also be bounded by d(e) + op(1).
Using the triangular inequality, this term is less than |A™M ||, +||A®) ||, +[|A®||,+[|A®)|,,, where

AD = diag (v (Eah(zt) _ E(?p@(zt))) h(z'™1),
A® — diag (VEdp.(Z ) (h(x' ™) — pe(&' 1)),

(
A® = diag (V (Eope(Z") — ope(@)) ) pe(@ ),
AW —dlag( V—-W oW )op. (& ))pe( £ ).

For [|[AM)]|,,. We bound |[V(Edh(Z*) — Edp.(Z ))]i| by

(52) [VEOh(Z') — VEK(Z')]; < Ce+6(e),

‘[VIE&h(Zt) — VEdp.(Z));

where the last inequality is due to Lemma 5.1. The normalized norm of h(z‘~!) can be controlled
using the Lipschitz property of h and the result of Lemma 3.2.

For ||[A®)||,,. We bound the real numbers [VE(?pe(Zt)]i using inequality (52) and we conclude
using the induction hypothesis.

For ||A®)],,. We use Theorem 3.1-(19a) to show that [V(E&p@(zt) — Ope(E))]: 2,0 for
n—aoo0
any sequence (i) less than (n). We then use the bounds (18) to show that E||A®)||,, — 0.
n—

For ||[A®]||,,. Finally, we use Lemma 5.3 to show that ||A®),, LOO» 0.

Using all these bounds we finally get
(53) |zt — &, < d(e) + op(1).
Now, it remains to show that
Ih(x"*h) = pe(@ )l < de) + op(1).
Using Lipschitz property of h as well as the bound (53), we get
Ih(2™) = pe(@ ) n < a(e) +op(1) + [A(ET) = pe(@ ™)

Let o(z) = (h(x) — pe(x))? a continuous function with at most polynomial growth at infinity, we
write

1

(@) = pe@HIE =

~t4+1 “t+1
> (@) —Be(Z) + EIEZ) - pe(Z2)I2,
i€[n]

by Lemma 3.2 the first term converges to 0 in probability, and by Lemma 5.1 the second term is
bounded by e. O



34 GUEDDARI ET AL.

5.2. The non-zero diagonal matrix model. We have been working so far with a matrix .S with
vanishing diagonal (S;; = 0), under A-7. In [Hac24] and [BLM15], this assumption simplifies the
combinatorial derivations since it prevents the appearance of loops in the combinatorial structures.

In this section, we lift Assumption A-7 and prove that Theorem 2.1 holds for random matrices
with non zero diagonal elements. We proceed with a perturbation argument.

Consider a matrix X that satisfies A-1. Let S = (s;;)1<i,j<n be the variance profile matrix
satisfying A-2 where the diagonal entries s;; are non necessarily zero. Finally, define the matrix
W as in Eq. 3, i.e.

Wij = \/g'inj .
Let ° and 1 two n dimensional vectors satisfying A-4, and h a function satisfying A-5 and A-6.
Consider the sequence defined by

(') o = AMP-Z (X, S, h,x", 1) .

We remind below the iteration expression:
't = Wh (z',n,t) — diag (VE [0h(Z",n,t)]) h(z" ', m,t — 1),
where V = (vi;) = (75./54;55:) and (Z*,---, Z") ~ DE (h,2°, S, t).
In order to proceed, define S to be equal to S except the diagonal elements that we set to zero;
8ij = (L —di5)si; -

Define matrix W by VIN/'Z-J- = /5i;X;;, and the R"-valued sequences (Z'),.y by

teN *

(&), = AMP-Z (X, 3, h,mo,n) :
where the iterations are given by

@ = Wh (2!, n,t) — diag (VIE [ah(zt,n,t)]) W@t —1).

~ ~ o~ O1/2 - - -
Here V = (S@ ST) OT = ((1—6;;)vy;) and (2", ,Z') ~ DE (h, 0,3, t).
Since this sequence is generated using a matrix model with vanishing diagonal, we can apply
the AMP result proven so far, i.e. for every uniformly bounded sequence (f;);e[n) and every PL
test function ¢ : Rfmaxtl & R we have

1 . .
— D Biplmiy B E) = Bp(ni, 2o 2 = 0L
]

n—oo
i€[n

In order to prove the same convergence result for (?):;en, we prove that ! is a small pertur-
bation of ! as n grows to infinity.

Lemma 5.6. For cach i € [n] and t < tmax recall that R (respectively RY) is the covariance
matriz of Zt = [Z},---, ZHT (respectively Zt). Then |Rt — Rt|| converges to 0 as n grows to
infinity.
Proof. We prove this result by induction on ¢. For ¢t = 1 we write:
= 2 2 2
R% - Rzl = Z Sit (h($87’r}@70)) - Z Sit (h('rgvnfa O)) = Sis (h(x?7n170)) .
Le[n] Le[n] : €+

Hence
C

n

— 0.
n—0

(R}—R} <

Suppose now that for all s < t the quantity || RS — R?|| converges to zero and let us now prove that
this convergence also holds at iteration step ¢ 4+ 1. To this end, we must study the (¢ + 1, s+ 1)-th
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entry of the (t + 1) x (t + 1) of the covariance matrices Ri™' and R!™'. We have
(54) RIFMt+1,s+1) =Rt + 1,5 +1)
= Z Sie (E [h(Zéun@7t)h(Zz7nZ7S)] _E[h(zéﬂnfut)h(zz7nf7s)j|)
Le[n] : £+
+ s [h(Zf7 A VAN TS s)] )

Using the fact that E [h(ZZ-S,m7 5)2] is bounded by a constant that depends only on ¢ and using
Cauchy-Schwartz inequality, we have

C
}SiiE [h(Zt i, )h(Z:anS)“ < Ki :

In order to bound the first term of the right hand side of Eq. (54), first notice that since h is
Lipschitz then H : (z1,23) — h(x1)h(z2) is PL, i.e. there exists C > 0 such that

Yo,y e R [H(z) — H(y)| < Cllo —yl2 (1 + llz]l2 + [lyll2) -
Let %2 € R?*? and X2 € R?*? be the covariance matrices of the vectors Z;° = (Z¢, Z§) and
Zp° = (Z%, Z}) vespectively. Then given & ~ N3 (0, I5) we can write
E[H(z) - HZ)|| = [E[H50) - HS)]|
<Cl|z - SIE [ligll2 (1 + 112

)] -

Using Lemma 5.2 it is easy to see that the factor

B [lell (1+ 12671 + 12°15)]

is bounded by a constant depending only on ¢,,,x. Now using the induction hypothesis we obtain
the following inequality:
IS - 5l < 122 - £ < | B} — RY[V? ——0
n—o0
Here we used the fact that the matrix squared root is 1/2-Ho6lder continuous on the set of symmetric
positive matrices, the proof in in Appendix G. Note that by A-2 we have s;; < CsK,, !, plugging
this into (54) gives the desired result. O

Remark 5.1. Notice that we can also specify the convergence rate of |RE — RY|| to 0. In fact we
can show that

c

IR! — R < I

Proof of Theorem 2.1 in the general case. We begin by proving the following convergence by
induction on ¢,

(55) |z — &', —— 0.

n—o0

For t = 1, knowing that the 2¥’s live on a compact Q, we get

c /3" X2
56 1 12 W_W 2 _ i 2< i=1“%41
0@ = IOV - WEE = Y s 2 (=),
thus ||zt — &2 L 0. Now assume that this holds for all s € {1,--- ,¢} and let us show that
—00

it is also satisfied for t+1,1ie.
- P
||xt+1 _ wt—HHn 0.
n—o0
Let us write the difference between x**! and &t*?,
wt-ﬁ-l _ £~Bt+1 _ Wh(mt) _ Wh(ét)

+ diag (VE[0h(2")]) ha' ") — diag (VE [on(Z")] ) n(@' "),
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We first show that
P

[Wh(a) — Wh(@)ll —— 0.
We have
(57) [Wh(z') = Wh(Z")[ln <[|(W = W)R(E") [0 +|W (h(z") — h(E"))]].

Using the fact that the Z! are bounded by a constant C' = C(t) independent of n we can directly
see that the first term of (57) converges to zero. For the second term, we use the bound on ||IW||
(see Proposition 5.5) as well as the Lipschitz property of h and the induction hypothesis.

Now let us study the term

(58) diag (VE [oh(Z")]) h(a'~") - diag (VE [on(2")|) n@' ).
This term can be decomposed as follows

ding (v~ V)E [h(2")]) h(a')

+ diag (VE|on(2") - on(2")|) na' )

+ diag (VE [0n(Z")]) (h(='") = h(@'"))

= A1+ Ag + As.
I7

Using the Lipschitz property of h we can bound ||As||Z as follows:

|1 As]ln = \ ding (VE[on(2")]) (h(a'~") — n(@'")) Hn

Hdlag(VIE[ah zt])H A1) = h(E )|

Cmax{E‘&h (Z}) ‘}Ha}t Lz,

jE

Recall that max{ )&h Zt ‘} is bounded by C' = C(t), using the induction hypothesis we prove

]G’I’L

that || As|ln ——> 0.
n—0o0

In order to bound the first term ||A;]|,,, notice that V' — V is a diagonal matrix whose entries
are bounded by C/K,,, thus

|aiag (v~ V)E[on(z")])|| < —max{mah (Zh]} = o( n)

K., ic[n]

where the last equality is by the boundness of r_n[a)]( {E |6h(Z §)|} Now write
1E(N

h(z'™') = (h(z'") — h(@' ")) + hE'),
by the induction hypothesis we clearly see that |[h(zt=1) — h(&1)|, —— 0, in addition we
n—0o0

. 2 _ 2
know that ||h(z!1)||2 — IEHh(Zt_l) —2 ., 0 so by bounding E Hh(Zt_l)H we get that the

n mn—o0

probability of |h(x!~1)||,, not being bounded converges to 0. Finally ||Aq]], 20
n— o0
diag (V]E [ah(zt) - ah(zt)])

get ||Az]l, —% 5 0. To sum up, we have proved that the difference between the two Onsager
n—0o0

by C'/K,, and finally

For ||Az]|,, we use Lemma 5.6 to bound ‘

terms (58) has a normalized norm converging to 0. Finally, we have proved (56) by induction,
i.e. &' asymptotically approximates x! in terms of normalized norm. Now we are able to use

the convergence result of the sequence (Z!); to prove the convergence of &' as n grows to oo.
1

. . . T .
Let ¢ : Rfmax — R be a pseudo-Lipschitz function and denote x; = (xl e ,xf‘“a") and x; =
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~ . T . . .
(w%, e ,:E’;‘“‘“‘) , and without loss of generality we omit the scalars 8; and the parameters 7; by

considering that ¢ depends also on the index i. We have

> el@i) - (@)

=:0; + 06, + O653.

—

N o(2h) - (2}

<7

Using the pseudo-Lipschitz property of ¢ we get the following

C & - -
O1< Dl — @il (1+ [l + (1]
=1

C tmax % n 9 %
< Dol =22 )Y (@l + il
t=1 i=1
C tmax tmax %
S - (Z l* — 50t||> (ﬂ + 2 2t ? + |56t||2>
n t=1 t=1

tmax tmax tmax
<C{ 2l =& ) (1+ Dl n+ X 1] | -
t=1 t=1 t=1

Then, by using (56) we get ©1 LOO» 0. The term ©4 converges to 0 in probability by Theorem 2.1

applied with zero diagonal matrix model. As for ©3 we use the pseudo-Lipschitz property of ¢ as
well as Lemma 5.6. This ends the proof for Theorem 2.1.

APPENDIX A. PROOF OF THEOREM 2.2

We prove here the AMP result for non-centered matrices described in Theorem 2.2.
We follow the general idea described in [FVRS22], which is to reduce the problem to an AMP
with centered random matrix model and apply Theorem 2.1. To this end, write the following,

' = A (v, hi(x',m)) u+ Why(x',m) — diag (VEOh,(Z" + prw,n)) by1(z' 1, n)
= py1u + Why(z!,n) — diag (VIE(?ht(Zlt + i, 77)) ht_l(a:tfl, n) + dry1u,

where §; := )\<'v, hy_q(xt1, 77)> — p¢. One should think of §;11u as an error term, we will show

later that this term has a negligible effect. Define now the following sequence (g}t) as follows,

teN
=2 and ¢ i=ax'—ju fort>1,
this sequence satisfies the following recursion,
(59) gt = Wi (§',v,m) — diag (V]E&gt(Zt,'v, 77)) gt_l(g]t_l,v,'r]) + 04110,
where the function g;(x,v,n) with parameters v and 7 is given by,
ge(z,v,m) == he(z + Av,m) VzeR.

One can clearly see that this function satisfies the same assumptions as h;. Now define the following
AMP algorithm (y?)sen by

0 — 0
(60) {y R . :
Yy =Wy’ v,m) — diag (VEIG(Z",v,m)) gi—1(y" " v.m) ,
where
(z',---.2" ~ﬁ(h,x075,t,u,v) ,
in the sense of Definition 2.6. A key observation is that

(z',---,Z") ~DE (g,2°,5,t) .
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Hence Theorem 2.1 applies for the recursion (60) and yields that for any pseudo-Lipschitz test
function ¢ : R**! — R it holds that

1 ¢ P
In order to prove our result, it suffices to show that the error term d;11u in Eq. (59) is negligible
and that for all ¢ one has y* ~ §'. To this end, we want to prove by induction on ¢ that,

(62) 5 ——0 and 7" — vl L 0, forall t>1
n—00 —00

For t = 1, we have d; = 0 and §' = y'. Suppose that (62) is true for ¢, and let us prove that this
remains true for ¢t + 1 as well. Let us begin with d;,1. We have the following

Sea1 = A D) vi (9:(3)) — Egi(2)))
i€[n]
=X D0 i (9@ = 9ewh)) + X D i (9e(wh) — Egu(Z)))
i i€[n]

=T, +15.
Using the Lipschitz property of the function g; as well as the induction hypothesis, namely, ||g* —

vt L 50 we directly get that T} —% 0. As for the second term, To —£ 5 0is a direct
n—o0 n—o0 n—o0

application of Theorem 2.1, i.e. Eq. (61).

~t+1 t+1H

It remains to show that ||g » ——> 0. Using the recursive definition of (g"), and
n—o0

(y"), in (59) and (60) we can write the following;

g =yt =W (9:(9) — 9:(y")) — diag (VEIg:(Z")) (9:-1(5° 1) = ge1(y*™ 1)) + Srpau.

The normalized norm of the first term can be easily handled using the Lipschitz property of the
function g; as well as the induction hypothesis, we also use Proposition 5.5 which ensures the
boundness of the spectral norm [|[I¥]|. As for the second term, we similarly show that the quantity
lge—1(¥*) — gi—1(y*~")||n vanishes, in probability. It remains to show that ||diag (VEdg:(Z"))||
is bounded as n goes to infinity, this clearly holds as dg; is the derivative of a Lipschitz function
and thus is bounded.

Finally, we have proved that ||gttt —gy'*!||

n —% , 0 which ends the induction argument. Using
n—o0

(62) and the AMP result of the sequence (y'), we directly deduce an AMP result of the sequence
("),

APPENDIX B. ELEMENTS OF PROOF OF LEMMA 3.2

Lemma B.1. Let (m,) and (c2) be two bounded sequences and let (vy,) be the sequence of Gaussian
measures with means m,, and variances o2. Let (uy,) be any sequence of probability measures such
that the following holds for each k € N,

(63) Jzkdun - Jxkdun — 0.

n—oo

Then for any continuous function v : R — R such that |p(x)] < C(1 + |z|™) for some constant
C > 0 and some integer m we have

(64) J’L/) Yy, — Jw dz/n—>0

Proof. First, it is sufficient to show that from any subsequence of (n) we can extract a further
subsequence such that the convergence in (64) holds along this subsequence. So without loss of
generality we only prove that if (63) holds along the sequence (n) then there exists a subsequence
of (n) along which (64) holds.

The sequence of probability measures (v,,) is tight because (m,,) and (¢2) are bounded, thus we
can extract a subsequence of (n), which also be denoted as (n), such that (v,) converges weakly
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to a probability measure v. Consider now the moment generating function @, of v, defined on
R as follows,

o, (1) = Jemdyn(x) = exp(mnt + 02t%/2), teR.
This function can be viewed as a restriction to the real line of the following holomorphic function

o, (2) = Je”dun(x) = exp(mpz + 022%/2), zeC.

Notice that the sequence (®,, ) is uniformly bounded on compact sets of C, thus there exists a
holomorphic function ® and a subsequence of (n) such that (®,, ) converges uniformly to ® on
compact sets. This implies the pointwise convergence of the moment generating function (®,,, (t))
to ®(t) so by a convergence result in [Cur42, Theorem 3] and the uniqueness of the weak limit, we
get ®(t) = ®,(¢t). The convergence of (¥, (t)) to ®,(¢) implies the convergence of the moments,
and by (63) we get

k k
(65) Jm dpiy, — Jx dv,

we also know that ®, characterizes v [Cur42, Theorem 1], thus v is determined by its moments,

0 (un) converges weakly to v. Let ¢ be a function as in the lemma and let X,, and X be random

variables with distributions p,, and v respectively, we want to prove that E[¢(X,,)] —— E[¢(X)],
n—o0

this follows from the convergence in distribution of (¢(X,,)) to ¥(X) and the uniform integrability
of (¢¥(X,,)). The latter is due the following observation

supE [(¢(X,,))?] < C? SlelgE [(1+|Xn|™)?] =C? sueqN)f(l + |z|™)2dpn (z) < 0.

neN

The last inequality is due to the convergence of the moments (65). O

Remark B.1. Results of Lemma B.1 can be extended to probability measures i on R¢ by Cramér—Wold
theorem, i.e. considering the push-forward probability measure p; by the map x — {(x,t) for each
te Re.

Remark B.2. We can also extend Lemma B.1 to the case where (uy) and (vy,) are sequences of
random probability measure and where we replace both two convergence statements by convergence
in probability formulations. The proof follows from the subsequence criterion [Kal02, Lemma 3.2].

APPENDIX C. POLYNOMIAL APPROXIMATION

The following lemma states a basic density result of polynomial functions in the Hilbert space
L?(u) where 1 is a Gaussian measure. The polynomial approximation is shown to hold uniformly
on certain sets of Gaussian measures (fy)oecs-

Lemma C.1. [Hac24] Let Q < R a compact set and h : R x Q — R a function satisfying the
following properties. (i) There exists a fized number L > 0 such that uniformly in n e Q,

h(z.n) —h(y.m)] < Llz—yl,  V¥(z.y) R
(ii) There exists a continuous non-decreasing function k : R™ — R* with x(0) = 0 such that
h(@,n) = bz, )| < wlln—n))(@+]al),  VoeR, ¥(nn)e Q.

Let 0 < omin < 0max and € > 0 be fized, and & ~ N(0,1).
There exists a function g. : R x Q@ — R such that for every ne Q, x — g.(x,n) is a polynomial,
and uniformly in n € Q and o € [Omin, Tmax],

E (h(0€,m) — g-(0€,m)° <& and [Ed,h(c€,n) — Edug-(0€,m)| < e .

Proof. Let § > 0 and consider a J-covering of the compact set Q with balls centered in {1} rex]-
Fix k € [K] and consider the function z — h(x,n;). By the density of polynomials in the space
L2(N(0,02,,)), there exists a polynomial z +— g.(x, ;) such that

3
]E (h(a'maxf’ 77k) - gE (Umaxé.a nk'))2 < 1 .
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Let n € Q and 7y, such that |n —nx| < d and put g-(z,n) := g-(x,nx) for such . By the properties
of function h, we have
E (h(omax§; 1) — ge(0maxS, 77))2 < 2E (M(omax§sn) — h(omaxé, ﬁk))Q
+2E (h(Jmaxfa nk) - gs(amava nk))z 9
€

< 2L%R()E (1 + omaxlé])’ + 5

Using the properties of k we can choose § > 0 small enough so that
E (h(amaxfa 77) — g (Umaxga 77))2 <€
Let 0 € [Omin, Omax], denote ¢(x) := h(z,n) — g-(x,n). A change of variable yields

Ep(0f)’ < TCEp(opad)? < e
Omin Omin
By Stein’s integration by parts lemma we also have
1 1 Uma.x
[Ee' (0] = —Elp(cd)] < —VEp(ef)® < o )3\@,

which concludes the proof. O

APPENDIX D. PROOF OF LEMMA 5.3

Proof of Lemma 5.3. In this proof, we use the framework introduced in Section 4.2. Let us put
Dj = 6p(§:§, n;,t) as a simplification of the notations, the expectation can be developed as follows,

4

4
E|| Y WuWi=Vijp; | |= >, E l(ﬂ (Wi Wi — Vijﬁ) pjlpjzpjapj4]
je[n] J1,J2,J3,a€[n] (=1

= Z E@(jlijaj3aj4)7

J1,92,43,Ja€[n]
with p; having the following form

d—1
. N
pi= > (L+Oaujt) (&),
£=0
notice now that by using Lemma 4.6, we can easily see p; as a sum over unmarked trees with root
type j, with depth at most ¢ and with each vertex having at most d — 1 children, the weight of
the trees (i.e. the terms W (T'), T'(T) and z(T')) are the same as in Lemma 4.6.

p= Y WIR(D)(T).

Tel}
Thus, the quantity ¢(j1, j2,J3,ja) above can be written as a sum over trees as follows:

@(j17j27j37j4) = Z w(T17T27T3uT4>7
_f(T1,_T27T§7T4)C:

(66) uji Xu.;Q XZ’{;a ><L{;4

4
(T, To, Ts, Ta) o= | | (Wag, Wi = Vi, ) W(T)T(T0)(Ty) .

=1

In the case where 71, jo2, j3 and j4 are distinct, the above sum can interpreted as a sum over trees
having the structure described in Figure 4. these are trees having a root of type 4, this root has
four children of types ji, jo, j3 and j4, each one of these four vertices has a child of type ¢ and is
also the planted root of a tree of length t — 1. Let us denote by S; the set of all these trees. Let
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FIGURE 4. Tree structure.

T € S; a tree parameterized by (T1,Ts, T3,Ty) € Z:l;l X Z:l;2 X 1:1;3 X 5{;4 and let x4 be the number of
edges of T, i.e.

4
p=8+ Y |E(Ty)

=1
Following the proof of Proposition 4.2, we know that
(67) E(Ty, T, T3, Ta)| < OK, 2,

Let us now compute the number of non vanishing contributions in ¢(j1,j2,J3,J4). A term
E(T1, T2, T3, Ty) vanishes if there exists an ¢ = 1,2,3,4 such that neither the edge (i — j)
nor (jp — i) belongs to set of edges of the trees Ti,---,Ty or if there exists another edge in
Ty,--- ,Ty which occurs once, in other words, if we consider the graph G obtained by identifying
the vertices of the same type in T then T has a non vanishing contribution if all the edges are
covered in G at least twice and the edges {(¢,7¢) | £ =1,--- ,4} at least three times, then:

p=2(E(G)|—4)+3x4=2E(G)| +4.
Notice that G is a connected graph (there exists a path from any vertex of G to i), then
V(@) < |EG)|+1<p/2—1.

The vertices except {i, j1, j2, j3, ja} can have arbitrary types from a set of at most CK,, types, so
we get
E(j1, j2, 3, Ja)| < CK#PELPT170 = OKS,

In addition, we have (i") < COK? choices for quadruples (j1, j2, j3, j4) with distinct elements,

this means that

Z ‘Ew(jlaj2aj37j4)‘ < CK;z

J1,J2,33,J4€[n]
distinct

A similar argument can be used to analyze the other cases where ji, jo, j3, j4 are not necessarily
distinct.
O

APPENDIX E. PROOF OF PROPOSITION 5.5
We begin by decoupling the entries of our random matrix W using triangular inequality twice
1 1 1 1
EIWIP)" < @I+ 1L < @IUIP)"? + 7).,
where U and L are n x n triangular matrices corresponding to the upper part (including diagonal)
and lower part of W respectively. Notice that U can be seen as an n x n random matrix with
independent entries having the following variance profile
37%, _ Sij 1f’L < j
Y 0  otherwise.
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Following the notations of [BVH16] we define

1/2 1/2
01 = Inax (Z 5ij> s 02 = Inax (Z 5ij> s Oy = INAX 4/Sjj .
? J i<J

Jj=i 1<

Now using the results of [BVH16] we get

1/2log(n)
(Bl 2= < 01 + 09 + 0 (log(n)) PY D2

(log(n))Pv1
<1 .
<1+ K,
Using assumption A-2 we get (E[U|[?!s(™ )1/2 tos(m) < C and with a similar treatment to L we

finally get (E||W||21°g(" )1/2 tog(m) < C. Using Markov’s inequality,

1
P[|[W] = Ce] < ok
Finally, using Borel-Cantelli’s lemma we get

P [sup||W|| < oo] =1

APPENDIX F. PROOF OF LEMMA 5.2

We prove both results by induction on ¢. The proof of the first item is very similar to [Hac24,
Lemma 1] and thus will be omitted. Let us now prove the second item. For ¢ = 1 we have

RI(1,1) = >, su (h(:::?,m,O))2 > infpen infiepn) (A(2?, ni, 0))2 Y/—1 Sie, using assumptions A-2,
A-4 and A-6-(1) we get the result. Suppose now that that exists ¢ > 0 such that

VneN,Vie [n], o,:=1/Rit, t) = ¢

Let £ ~ N(0,1), we can write

n

REJrl(t + Lt + 1) = Z SiﬁE (h(Zlfvnfv Z SME U@f Ne,s ))

>E( 0*5 77*7 ZSM7

where (o,,7,) is such that E (h(0,&, ns, 1))° = mingep,) E (h(oe, ne,t))°. Let D > 0 be as in A-6-
(2), using the induction hypothesis and the previous result we can see that 0 < ¢ < 0, < C, using
this gives the following

B (o 0) = — = | (hane.t)” exp(—a?/202)da

1 2 2 /o 2
— h(xz,n.,t))" exp(—z* /207 )dx
T )y (1ot (s 202)

exp(—D?/20?) f )
i Sl b4 h(z, 0., 1)) dx
el IRPRGCRO)

_D2/9.2
exp(=D7/2¢7) inf J (h(z, 1)) dx .
[-D,D]

\Y

\%

>
C\ 27 nEQ,

Finally assumption A-6-(2) gives the result.
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APPENDIX G. HOLDER CONTINUITY OF THE SQUARED ROOT

Lemma G.1. The function X — X2 is %-H(')'lder continuous on ST (the set of symmetric
positive matrices).

Proof. Let A, B € 8%, it suffices to show the following inequality,

|A - B|* < [|A* - B?|.

Let A be an eigenvalue of A — B such that |A| = ||4 — B||, then there exists u € R” of norm 1 such

that

(A— B)u = \u.

We can write the following

A? -B?=(A-B)*+B(A—-B)+ (A - B)B,

taking the quadratic form of this matrix at u gives

|A? — B?|| = u'" (A% — B?)u = \* + 2\u' Bu.

We can assume without loss of generality that A > 0, having that « Bu > 0 gives

|A% — B?|| = \> + 2 \u' Bu > \* = |A - B|*.

This result is used in the proof of Lemma 5.6.
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