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Abstract. Approximate Message Passing (AMP) algorithms are a family of iterative algo-

rithms based on large random matrices with the special property of tracking the statistical
properties of their iterates. They are used in various fields such as Statistical Physics, Machine

learning, Communication systems, Theoretical ecology, etc.
In this article we consider AMP algorithms based on non-Symmetric random matrices with

a general variance profile, possibly sparse, a general covariance profile, and non-Gaussian en-

tries. We hence substantially extend the results on Elliptic random matrices that we developed
in [GHN24]. From a technical point of view, we enhance the combinatorial techniques developed

in Bayati et al. [BLM15] and in [Hac24].

Our main motivation is the understanding of equilibria of large food-webs described by
Lotka-Volterra systems of ODE, in the continuation of the works of [Hac24], Akjouj et al.

[AHM`24] and [GHN24], but the versatility of the model studied might be of interest beyond

these particular applications.

1. Introduction

Approximate Message Passing (AMP) refers to a class of iterative algorithms that are built
around a large random matrix, producing at each step a high-dimensional Rn-valued random
vector (n " 1) whose elements’ empirical distribution can be identified as n goes to infinity. These
algorithms take the following form

xt`1 “ Whtpx
tq ´ tcorrective termu ,

where xt “ pxtiq is the nˆ1 vector at iteration t,W is a nˆn random matrix, and htpx
tq “ phtpx

t
iqqi

is a vector based on the so-called activation function ht : R Ñ R. The corrective term, known as
the Onsager term, is carefully defined to facilitate the description of the statistical properties of
xt as n Ñ 8.

In the fields of machine learning and statistical estimation, AMP algorithms were originally
developed for studying compressed sensing and sparse signal recovery problems [DMM09, BM11].
They have since found applications across various fields, including high-dimensional estimation
[DAM17, LM19], communication theory [BK17, RGV17], statistical physics [Mon21], theoretical
ecology [AHM`24, Hac24, GHN24], etc. AMP algorithms have undergone extensive recent devel-
opments and the goal of this article is to extend the AMP framework to general non-symmetric
random matrices W .

In general, the random matrix model W may differ depending on the considered application,
and most of AMP algorithms focus on symmetric matrices. For instance, in the problem of low-
rank information extraction from noisy data matrix, the goal is to estimate the n ˆ 1 signal x‹

from noisy observations

(1) Y “
?
λx‹px‹qJ `W ,

where W is a random matrix. In [DM14] and [MV21], the authors develop an AMP algorithm
involving a symmetric matrix W “ 1?

n
G where G is drawn from the Gaussian Orthogonal En-

semble (GOEpnq) to study the problem (1). More precisely, each entry Gij „ N p0, 1 ` 1pi“jqq,
where 1pi“jq equals one if i “ j and zero else, and all the entries on and above the diagonal are
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independent. The 1{
?
n normalization factor is standard in Random Matrix Theory and has the

effect to ensure that the spectral norm of W is Op1q.
In [JM13, BR22, GKKZ22, PKK23], the authors develop an AMP algorithm involving a sym-

metric random matrix W with a block-wise variance profile S to study the problem (1) in the case
of an inhomogeneous noise. More precisely, W is now written as

(2) W “
1

?
n
Sd1{2 dG ,

where G „ GOEpnq and S is a symmetric, deterministic, block-constant matrix of non-negative
elements. Matrix S has a finite number of rectangular blocks which dimensions scale with n, the
elements of Sd1{2 are the square roots of those of S, and d is the Hadamard or entry-wise product.
In the recent paper [BHX23], Bao et al. consider an AMP algorithm based on Gaussian matrices
with a variance profile and provide non-asymptotic results.

Our main motivation to develop AMP algorithms associated to new matrix models comes from
theoretical ecology and the study of large Lotka-Volterra systems of ODEs. In such models, the
random matrixW is used to model the interactions between n living species that coexist within an
ecosystem, and the time evolution of the abundances is described by the multi-dimensional Lotka-
Volterra differential equation. In [AHM`24], Akjouj et al. consider the GOE model for the matrix
of interactions, and use an AMP approach to describe the statistical properties of the equilibrium
point of the resulting Lotka-Volterra dynamical system when this equilibrium is globally stable.
Dealing with a more realistic interaction matrix model, [Hac24] considers a symmetric random
matrix with a variance profile as in (2), with the main difference that the variance profile matrix
S can be sparse. Including correlations between the elements of the interaction matrix is an
important feature in theoretical ecology. In this direction, a non-symmetric elliptic matrix W
is considered in [GHN24], where each entry pair p

?
nWij ,

?
nWjiq is a standard two-dimensional

centered Gaussian vector with a covariance ρ P r´1, 1s, and where all the different pairs are
independent.

All these cases are particular cases of the model we study in this article.

1.1. The random matrix model. The model under investigation here combines an arbitrary
variance profile, possibly sparse, with a correlation profile. To this end, we first introduce the
notion of a T -correlated matrix. Let rns “ t1, ¨ ¨ ¨ , nu.

Definition 1.1. Let T “ pτijq1ďi,jďn be a symmetric n ˆ n matrix with entries in r´1, 1s. The
nˆ n random matrix X is T -correlated if

- Every entry Xij is centered random variable with variance 1.
- For pi, jq P rns2, i ă j, the covariance matrix of the pair pXij , Xjiq is

ˆ

1 τij
τji 1

˙

.

- The random elements in the set tXii, pXij , Xjiq, pi, jq P rns2, i ă ju are independent.

Remark 1.2. Notice that the diagonal elements of T are not specified in this definition. A natural
convention could be to set τii “ 1, as it represents the correlation of Xii with itself, but their exact
values (as long as it is bounded) have no impact on the presented results.

Let X be a Rnˆn–valued T -correlated matrix and S “ psijqi,jPrns be a deterministic n ˆ n
matrix with non-negative elements. The random matrix model considered in this paper is

(3) W “ Sd1{2 dX “
`?
sijXij

˘

1ďi,jďn
.

Notice that the entries need not to be Gaussian and contrary to (2), the normalization is embedded
into matrix S. We refer to S as the variance profile of matrixW and to T as its correlation profile.
Such a model is fairly general as it encompasses most of the classical random matrix models
(Wigner, Elliptic, Circular models) and many important features required in the applications
(sparsity, variance profile, etc.).
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1.2. A primer to Approximate Message Passing. For a random matrixW such that
?
nW „

GOEpnq, an AMP algorithm starting at x0 “ px0, ¨ ¨ ¨ , x0qJ using a set of Lipschitz activation
functions phtqtě0 is given by the following recursion equation; for all t ě 0,

(4) xt`1 “ Whtpx
tq ´ btht´1pxt´1q where bt “

1

n

n
ÿ

i“1

h1
tpx

t
iq ,

with the convention that h´1 ” 0.
The crucial term in this recursion is the Onsager term, i.e. “ONSt :“ btht´1pxt´1q” that we

subtract from the power method iteration term at each step t. The effect of the Onsager term is
that for a fixed t and as n Ñ 8, it “cancels” the dependence due to the repeated use of matrix
W at each iteration:

xt`1 “ WhtpWht´1pW ¨ ¨ ¨ q ´ ONSt´1q ´ ONSt .

With the correction of the Onsager term, the asymptotic behavior of xt is similar to the behavior
of x̃t generated with the “power method iteration” but with a new sampled independent random
matrix W t at each step t, i.e.

x̃t`1 “ W thtpx̃
tq with

?
nW t i.i.d.

„ GOEpnq .

Notice that in the latter case, it is easy to characterize the asymptotic behavior of the empirical

distribution µx̃t

of the entries of the vector x̃t “ px̃tiq,

µx̃t

“
1

n

n
ÿ

i“1

δx̃t
i
.

Roughly speaking µxt

« µx̃t

as n Ñ 8. Beware however that the correlation between consecutive
iterations xt and xt`1 differs from the correlation between iterates x̃t and x̃t`1 which turn out
to be asymptotically decorrelated.

Given the iterates x1 “ px1i q, ¨ ¨ ¨ ,xt “ pxtiq produced by (4), the main result associated to
AMP is the description of the limiting distribution of

µpx1,¨¨¨ ,xt
q :“

1

n

n
ÿ

i“1

δpx1
i ,¨¨¨ ,x

t
iq

as n Ñ 8 in terms of a multivariate Gaussian vector whose covariance matrix is described by the
Density Evolution Equations.

1.3. Density Evolution Equations. Density Evolution (DE) equations are a set of recursive
equations that define a sequence of deterministic, symmetric, positive semi-definite matrices, which
are central objects in the analysis of AMP algorithms. These matrices are covariance matrices
associated to multivariate normal distributions which describe the asymptotic behavior of the
AMP iterates (and their correlations) as n goes to infinity.

Given a set of activation functions ht : R Ñ R and a initial constant vector x0 “ x01n P Rn,
the Density Evolution equations associated to the AMP (4) with

?
nW „ GOEpnq is a sequence

of tˆ t matrices pRtqtPN‹ defined recursively as follows,

R1 “ phpx0qq
2

and Rt`1 “ E

»

—

—

–

htpx0q

htpZ1q

¨ ¨ ¨

htpZtq

fi

ffi

ffi

fl

“

htpx0q htpZ1q ¨ ¨ ¨ htpZtq
‰

,

where pZ1, ¨ ¨ ¨ , Ztq „ Ntp0, R
tq. Notice that in particular, the variances σ2

t “ EZ2
t satisfy a simple

recursion equation given by:

(5) σ2
0 “ h20px0q and σ2

t`1 “ Eh2t pσtξq where ξ „ N p0, 1q .

With the family of covariance matrices pRtq at hand, we can express the limiting statistical prop-

erties of measure µpx1,¨¨¨ ,xt
q which captures both the asymptotic properties of the iterates xt and
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the dependence between the iterates x1, ¨ ¨ ¨ ,xt:

µpx1,¨¨¨ ,xt
q weak,L2

ÝÝÝÝÝÑ
nÑ8

Ntp0, R
tq

in probability (see [FVRS22] for sharper convergence results). Stated differently, for any test
functions φ : Rt Ñ R and ψ : R Ñ R,

(6)
1

n

n
ÿ

i“1

φpx1i , ¨ ¨ ¨ , xtiq
P

ÝÝÝÑ
nÑ8

EφpZ1, ¨ ¨ ¨ , Ztq and
1

n

n
ÿ

i“1

ψpxtiq
P

ÝÝÝÑ
nÑ8

Eψpσtξq ,

where ξ „ N p0, 1q,
P

ÝÑ stands for the convergence in probability and pσtqtě0 is a sequence of
positive numbers defined recursively by (5).

In [GHN24], we show that the DE equations used to study an AMP with an elliptic matrix do
not depend on the correlation coefficient, the latter being included in the formulation of the AMP
recursion, and more specifically in the Onsager term. In [Hac24], the case of a symmetric random
matrix with a general variance profile S is handled.

In the case of a general variance profile, the description of the asymptotic behavior of the
iterates becomes more involved and instead of having a multivariate Gaussian vector pZ1, ¨ ¨ ¨ , Ztq

we have a family of n-dimensional vectors pZ1, ¨ ¨ ¨ ,Zt
q.

In the following definition, we give a general description of the DE equations associated to a
variance profile matrix S. We now consider that the activation function depend on an additional
parameter η and we no longer express the dependence in t using a subscript, it is now included in
the arguments of function h.

Definition 1.3. Let x0 “ px0i q P Rn and η “ pηiq P Rn be two deterministic vectors, S “

psijq1ďi,jďn a matrix with non-negative elements and h : R2 ˆ N Ñ R an activation function.

a) Initialization. For any i P rns, define the non-negative numbers H0
i and R1

i as

H0
i :“ h2px0i , ηi, 0q and R1

i :“
n
ÿ

j“1

sijH
0
j .

Let Z1
i „ N p0, R1

i q, assume that for all i P rns, the Z1
i ’s are independent and set

Z1
“ pZ1

i qiPrns .

b) Step 1. Let Z1
“ pZ1

i qiPrns be given and i P rns be fixed. Let

H1
i “ E

„

hpx0i , ηi, 0q

hpZ1
i , ηi, 1q

ȷ

“

hpx0i , ηi, 0q , hpZ1
i , ηi, 1q

‰

and R2
i “

n
ÿ

j“1

sijH
1
j .

Notice that the 1 ˆ 1 upper left corner of R2
i coincides with R1

i . Let Z2
i be such that

Z⃗2
i :“ pZ1

i , Z
2
i q „ N2p0, R2

i q, and such that for all i P rns, the Z⃗2
i ’s are independent. Set

Z2
“ pZ2

i q.

c) Step t. Let the covariance matrix Rt
i P Rtˆt and the Rn vectors Z1, ¨ ¨ ¨ ,Zt be given, where

Z⃗t
i :“ pZ1

i , ¨ ¨ ¨ , Zt
i q „ Ntp0, R

t
iq ,

and where all the Z⃗t
i ’s are independent for i P rns. Let

Ht
i “ E

»

—

—

—

–

hpx0i , ηi, 0q

hpZ1
i , ηi, 1q

...
hpZt

i , ηi, tq

fi

ffi

ffi

ffi

fl

“

hpx0i , ηi, 0q hpZ1
i , ηi, 1q ¨ ¨ ¨ hpZt

i , ηi, tq
‰

and Rt`1
i “

řn
j“1 sijH

t
j . Notice that the t ˆ t upper left corner of matrix Rt`1

i coincides

with Rt
i. Let Zt`1

i be such that

Z⃗t`1
i :“ pZ1

i , Z
2
i , ¨ ¨ ¨ , Zt`1

i q „ Nt`1p0, Rt`1
i q
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`

Z1, ¨ ¨ ¨ ,Zt
˘

“

Z1
1 Z2

1 ¨ ¨ ¨ Zt
1

Z1
2 Z2

2 ¨ ¨ ¨ Zt
2

...
...

...

Z1
i Z2

i ¨ ¨ ¨ Zt
i

...
...

...

Z1
n Z2

n ¨ ¨ ¨ Zt
n

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Ñ Z⃗t
i P Rt

Ó

Zt
PRn

Figure 1. The Gaussian matrix pZ1, ¨ ¨ ¨ ,Zt
q, the notations Zt and Z⃗t

i . Rows
Zi “ pZt

i , t ě 1q are independent. The correlations within each row are described

by the DE equations: Z⃗t
i „ Ntp0, R

t
iq, see Definition 1.3.

and such that for all i P rns, the Z⃗t`1
i ’s are independent. Set Zt`1

“ pZt`1
i q.

Consider the sequence of n-dimensional Gaussian random vectors
`

Zt
˘

tPN. We denote
`

Z1, ¨ ¨ ¨ ,Zt
˘

„ DE
`

S, h,x0,η, t
˘

.

We also define Zi “ pZt
i qtě1. The sequences tZiuiPrns are centered, Gaussian, and independent.

The notations Zt and Z⃗t
i are described in Fig. 1.

1.4. Main result (informal). As already mentioned, numerous studies [BLM15, PKK23, Hac24,
GHN24] have extended the AMP algorithm to cover more complex random matrix modelsW . For
each new matrix model, two key questions must be addressed:

a) How to define a proper Onsager term?
b) What are the associated DE equations ?

In this paper, we answer both questions for the matrix model described in Section 1.1. We show
that the DE equations are given by Definition 1.3; in particular they only depend on the variance
profile and not on the correlation profile. Let W be given by (3), h : R2 ˆ N Ñ R an activation
function, x0,η P Rn deterministic vectors and

V “
`

S d SJ
˘d1{2

d T ,

where S and T are respectively the variance and correlation profiles of the random matrix W , and
pZ1, ¨ ¨ ¨ ,Ztq be given by the DE equations. We identify a possible Onsager term as

ONSt “ diag

ˆ

V E
Bh

Bx
pZt,η, tq

˙

hpxt´1, η, t´ 1q ,

and consider the AMP

xt`1 “ Whpxt,η, tq ´ ONSt .

We shall prove that for any appropriate test function φ : Rt`1 Ñ R and uniformly bounded

sequence pβ
pnq

i qiPrns of real numbers, the following convergence holds true

1

n

n
ÿ

i“1

!

β
pnq

i φpηi, x
1
i , ¨ ¨ ¨ , xtiq ´ β

pnq

i φpηi, Z⃗
t
i q

)

P
ÝÝÝÑ
nÑ8

0 ,

where the Z⃗t
i ’s are defined in Definition 1.3. The formal assumptions and statement are provided

in Section 2.

Remark 1.4. As a consequence of the variance profile structure, each t-uple px1i , ¨ ¨ ¨ , xtiq needs to

be compared to Z⃗t
i in the convergence above, a situation substantially more complex than in (6).
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1.5. Motivation from theoretical ecology. The analysis of large ecological networks (food-
webs) and complex systems has garnered significant attention in recent years, with numerous
studies leveraging tools from random matrix theory [AT15, Bun17, CN23]. In this perspective,
large Lotka-Volterra (LV) models [ABC`24] describe the dynamics of the vector of the species
abundances xpsq “ pxipsqqiPrns for s P r0,8q in a series of coupled differential equations where the
interactions are encoded by a random matrix A whose entries Aij ’s represent the effect of species
j on species i. The more complex the matrix model A, the better the modeling of the network.

In a series of articles [AHM`24, Hac24, GHN24], AMP algorithms were designed in this context
to analyze the statistical properties of the globally stable equilibrium x‹ (when it exists) of the
vector xpsq, depending on the random matrix model (symmetric models in [AHM`24, Hac24],
elliptic model in [GHN24]). More specifically, let z P Rn be the solution of the fixed-point equation:

z “ pA´ Inq z` ` 1n , z` “ z _ 0 ,

which can be shown to be unique under a condition on A (see [AHM`24] for details), then the
equilibrium x‹ is given by x‹ “ z`. Extracting statistical information from x‹ is a non-trivial
task as the dependence of x‹ to A is highly non-linear. However this task can be performed by
designing a specific AMP algorithm.

In a foodweb, the effect j Ñ i of species j on species i is a priori different from the effect i Ñ j.
Moreover, recent empirical evidence [BSHM17] has shown that in a foodweb of size n a given
species only interacts with a small number Kn ! n of other species. One may want to go one
step further in modelling foodwebs, and for instance consider block structures with subpopulations
with homogeneous statistical features [CMN24].

All these desirable features naturally motivate the study of non-Symmetric and possibly sparse
random matrices, with variance and correlation profiles. Such a model is at the heart of the AMP
developed in this article.

In a forthcoming work, we intend to design improved matrix models for foodwebs and to analyze
via AMP techniques the equilibria of associated large LV models.

1.6. Outline of the article. In Section 2 we formally state the assumptions and the main result
of the article, namely Theorem 2.1, together with examples, an extension to non-centered random
matrices, and open questions. The remaining sections are devoted to the proof of the main result
(see also Section 2.8 for a precise roadmap of the proof). In Section 3, we state a matrix AMP for
polynomial activation functions, see Theorem 3.3. Section 4 is the heart of the proof of Theorem
3.3. It is based on combinatorial techniques which build upon [BLM15] and [Hac24]. In Section 5
we generalize the previous AMP for more general functions, and relax the assumption that matrix
W should have null diagonal (an assumption made to handle the combinatorics in the proof of
Theorem 3.3).

1.7. Notations. Denote by |S| the cardinality of a set S. We often (but not systematically) use
bold letters for vectors a “ paiqiPrns, b “ pbjqjPrks, etc. If a “ paℓq P Rq and m “ pmℓq P Nq is a
multi-index, we denote by am “

ś

ℓPrqs a
mℓ

ℓ .

Denote by 1n (or 1 if the context is obvious) the nˆ 1 vector of ones and by 1nˆp the matrix

1nˆp “ 1n1
J
p where matrix AJ stands for the transpose of A. For a P Rn, diagpaq stands for

the n ˆ n diagonal matrix with diagonal elements the ai’s. If a P Rn is a vector, }a} stands for
its Euclidian norm and }a}n :“ }a}{

?
n for its normalized Euclidian norm. If A is a matrix, }A}

stands for its spectral norm.
If f : R Ñ R and a “ paiqiPrns a vector, denote by fpaq “ pfpaiqqiPrns with obvious general-

izations fpa, bq “ pfpai, biqq for a, b P Rn. Let fpx, y, tq a real function with px, y, tq P R2 ˆ N,
denote by Bf “

Bf
Bx . Let a P Rn and I Ă rns, then xayn “ 1

n

ř

iPrns ai and xayI “ 1
|I|

ř

iPI ai. The

empirical measures µa and µa1,¨¨¨ ,at

of vector a “ paiqiPrns and vectors a1, ¨ ¨ ¨ ,at in Rn stand for

µa “
1

n

ÿ

iPrns

δai
and µa1,¨¨¨ ,at

“
1

n

ÿ

iPrns

δpa1
i ,¨¨¨ ,a

t
iq ,
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where δx is the Dirac measure on R and δpx1,¨¨¨ ,xtq, the Dirac measure on Rt. Convergence in

probability is denoted by
P

ÝÑ.

2. AMP for general non-Symmetric random matrices

Assumptions are introduced in Section 2.2. The main result, Theorem 2.1, is stated in Section
2.3. In Section 2.5, we provide two examples, one focusing on the correlation profile, the second
on a sparse variance profile. In Section 2.6, we extend the AMP result to a non centered random
matrix model. Finally, we provide in Section 2.8 a detailed outline of the proof of the main
theorem.

2.1. The general framework of the AMP recursions. Let X be a nˆn T -correlated matrix
and S a n ˆ n matrix with non negative coefficients. Recall the definition of W “ Sd1{2 d X in
Eq. (3) and define matrix V as follows

(7) V “
`

Vij
˘n

i,j“1
“
`

S d SJ
˘d1{2

d T .

Notice that E
“

W dWJ
‰

“ V .

Let h : R2 ˆ N Ñ R be a measurable function such that for all pη, tq P R ˆ N, the derivative
Bhp¨, η, tq exists almost everywhere1. We denote as Bh any measurable function that coincides with
this derivative almost everywhere. For x,η P Rn and t P N, denote hpx,η, tq “ phpxi, ηi, tqqiPrns.

Definition 2.1. Let X be a nˆn T -correlated matrix following Definition 1.1, W , V given by (3),
(7), and x0,η P Rn. Let h : R2ˆN Ñ R a measurable function such that Bh exists. Let Z1, ¨ ¨ ¨ ,Zt

be Rn-valued Gaussian vectors defined in Def. 1.3. Define the Rn-valued random sequence pxtqtě1

recursively as follows,

(8)

#

x1 “ Whpx0,η, 0q ,

xt`1 “ Whpxt,η, tq ´ diag
`

V EBhpZt,η, tq
˘

hpxt´1,η, t´ 1q for t ě 1 .

The following notation will be used in the sequel:

(9)
`

xt
˘

tě1
“ AMP-Z

`

X,S, h,x0,η
˘

, x0,η P Rn .

Remark 2.2. The parameter η P Rn which is fixed once for all in the recursions can be seen as
an extra degree of freedom in the design of the algorithm.

Remark 2.3 (versatility). Definition 2.1 generalizes many frameworks found in the literature.

a) For a symmetric matrix X where T “ 1nˆn and S “
1nˆn

n , one gets the AMP in [BLM15].
b) By taking a sparse symmetric matrix S, one recovers the AMP in [Hac24].

c) The elliptic AMP studied in [GHN24] is obtained by taking S “
1nˆn

n and T “ ρ1nˆn for
ρ P r´1, 1s. In the latter, the AMP recursion writes

xt`1 “ W h
`

xt,η, t
˘

´ ρ
@

Bh
`

xt,η, t
˘D

n
h
`

xt´1,η, t´ 1
˘

.

One can notice that the Onsager term is slightly different. We will come back to this later
in Section 2.4.

2.2. Assumptions. We present hereafter the assumptions that will be used in the sequel, some
of which already appeared in [Hac24].

Assumption A-1 (moments). Let T “ pτijq1ďi,jďn be a symmetric matrix with τij P r´1, 1s and
X a random T -correlated matrix following Definition 1.1. For every k ě 1 there exists a positive
real number Cmompkq ą 0 such that for every n ě 1 and all i, j P rns

´

E |Xij |
k
¯1{k

ď Cmompkq .

1Notice that if h is Lipschitz with respect to the first variable, then it is differentiable almost everywhere by

Rademacher’s theorem.
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Assumption A-2 (variance profile). Let pKnq a sequence of positive integers diverging to `8 and
satisfying Kn ď n. The deterministic nˆn matrix S “ psijq1ďi,jďn has non-negative elements and
satisfies the following: there exist positive constants Ccard, CS , cS ą 0 such that for every n ě 1
and all i, j P rns,

|tj P rns : sij ą 0u| ď CcardKn , sij ď
CS

Kn
and

n
ÿ

ℓ“1

siℓ ě cS .

The following technical assumption ensures that the spectral norm of the matrix W is almost
surely bounded by a constant as n goes to infinity.

Assumption A-3 (lower bound on the sparsity level). Let A-1 and A-2 hold for the random matrix
X and the variance profile S, and consider associated Cmom and pKnq. There exist positive real
numbers ν, C ą 0 such that for every k, n ě 1

Cmompkq ď C kν{2 and Kn ě C logpν_1q
pnq .

Remark 2.4 (on Assumption A-3). (a) The moment condition Cmompkq ď C kν{2 is stan-
dard. For example, it is fulfilled with ν “ 1 for subGaussian entries.

(b) Assumptions A-2 and A-3 describe the sparsity level one can expect for matrix W . The
sequence Kn is an upper bound of the number of non-vanishing elements of W per row. It
must be at least logarithmic in n (up to the power ν _ 1) but can be much smaller than n.

(c) As will appear later in Proposition 5.5, the logarithmic lower bound on Kn and the upper
bound for the moments of X’s entries are technical conditions needed for bounding the
spectral norm of the random matrix W .

We also consider initial conditions for the initial vector x0 and for the parameter vector η P Rn.

Assumption A-4 (initial and parameter vectors). Let x0 “ px0i q P Rn, η “ pηiq P Rn be
deterministic vectors and consider the sequences px0qn and pηqn. There exist two compact sets
Qx Ă R and Qη Ă R such that

tx0i , i P rns , n ě 1u Ă Qx and tηi , i P rns , n ě 1u Ă Qη .

Assumption A-5 (Regularity of the activation functions). Let h : R2 ˆ N Ñ R be a measurable
function. For every t P N, there exists a positive number L such that for every x, y, η P R,

|hpx, η, tq ´ hpy, η, tq| ď L |x´ y| .

For every t P N, there exists a continuous non-decreasing function κ : R` Ñ R` with κp0q “ 0
and a compact set Qη Ă R such that for every x P R and η, η1 P Qη,

ˇ

ˇhpx, η, tq ´ hpx, η1, tq
ˇ

ˇ ď κ
`
ˇ

ˇη ´ η1
ˇ

ˇ

˘

p1 ` |x|q .

Assumption A-6 (non degeneracy condition over h). Let h : R2 ˆ N Ñ R be a measurable
function. There exist two compact sets Qx Ă R and Qη Ă R with the following properties:

(1) There exists a constant c ą 0 such that

inf
xPQx,ηPQη

h2px, η, 0q ě c .

(2) For every t ě 1, there exist two positive real numbers chptq, Dhptq ą 0 such that

inf
ηPQη

ż Dhptq

´Dhptq

h2px, η, tqdx ě chptq .

There are tight links between the assumptions. In particular, the parameter ν of A-3 controls
the moments bounds pCmompkqq given by A-1 and the sparsity level Kn given by A-2, the compact
sets Qη and Qx of A-5 and A-6 will be given by A-4.
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2.3. Main result. Recall the definition of a pseudo-Lipschitz function. A function f : Rd Ñ R
is said to be pseudo-Lipschitz (PL) if there exists a constant L such that for all x,y P Rd the
following inequality is satisfied:

|fpxq ´ fpyq| ď L ∥x ´ y∥ p1 ` ∥x∥ ` ∥y∥q .

We are now in position to state our main result.

Theorem 2.1. Let Assumptions A-1 to A-6 hold true, with associated ν, Qη and Qx. Consider
the AMP

pxtqtě1 “ AMP-Z
`

X,S, h,x0,η
˘

as defined in Definition 2.1, and the sequence of n-dimensional Gaussian random vectors
`

Zt
˘

tPN
defined by the DE equations in Definition 1.3:

pZ1, ¨ ¨ ¨ ,Zt
q „ DEpS, h,x0,η, tq .

Let t ě 1 and β “ pβ
pnq

i q P Rn uniformly bounded, i.e. supn maxiPrns |β
pnq

i | ă 8. For any

pseudo-Lipschitz test function φ : Rt`1 Ñ R, it holds that

1

n

ÿ

iPrns

β
pnq

i

␣

φ
`

ηi, x
1
i , ¨ ¨ ¨ , xti

˘

´ E
“

φ
`

ηi, Z
1
i , ¨ ¨ ¨ , Zt

i

˘‰( P
ÝÝÝÑ
nÑ8

0 .

2.4. Alternative Onsager terms. It might be convenient to consider alternative Onsager terms
in the AMP recursion and replace the diagonal matrix diagpV EBhpZt,η, tqq by one of the two
following terms

(10) diag
`

V Bhpxt,η, tq
˘

or diag
`

W dWJBhpxt,η, tq
˘

.

Depending on the context, it might be convenient to consider one of these three Onsager terms.
For example, the Onsager term built upon diag

`

W dWJBhpxt,η, tq
˘

is better suited for the
combinatorial arguments developed in Section 4 as it directly involves the entries of matrixW , and
the loss with respect to the original recursion should be asymptotically negligible since EpW d

WJq “ V . The Onsager term built upon diag pV Bhpxt,η, tqq naturally appears in [AHM`24,
GHN24].

In this perspective we introduce new notations. Denote by

(11)
`

xt
˘

tě1
:“ AMP-W

`

X,S, h,x0,η
˘

,

the recursive procedure defined by
#

x1 “ Whpx0,η, 0q ,

xt`1 “ Whpxt,η, tq ´ diag
`

W dWJBhpxt,η, tq
˘

hpxt´1,η, t´ 1q for t ě 1 .

Similarly, denote by

(12)
`

xt
˘

tě1
:“ AMP

`

X,S, h,x0,η
˘

,

the recursive procedure defined by
#

x1 “ Whpx0,η, 0q ,

xt`1 “ Whpxt,η, tq ´ diag pV Bhpxt,η, tqqhpxt´1,η, t´ 1q for t ě 1 .

We believe that none of these three Onsager terms should change the general asymptotics of
the AMP. However, a complete proof of this fact is not yet established.

2.5. Examples of AMP. We provide hereafter two examples of matrix models where we work
out the specific AMP recursion and DE equations. Both matrix models are of practical interest,
with applications in fields such as theoretical ecology, where random matrices represent species
interaction matrices in large ecological systems (see [ABC`24]).
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Blockwise correlated random matrix. This example generalizes the elliptic matrix model character-
ized by a single correlation coefficient ρ. Here, the matrix is allowed to have different correlation
coefficients for each block. Let n “ n1 ` n2, X a n ˆ n matrix partitioned into four submatrices:
Xp11q, Xp12q, Xp21q, and Xp22q, of respective sizes n1 ˆ n1, n1 ˆ n2, n2 ˆ n1, and n2 ˆ n2:

X “

ˆ

Xp11q Xp12q

Xp21q Xp22q

˙

.

Let Xp11q and Xp22q be (independent) elliptic random matrices with correlation coefficient ρ1,
while each entry in Xp12q is correlated with its symmetrically corresponding entry in Xp21q with a
coefficient ρ2. All the entries of the random matrix X have variance 1 and satisfy A-1. Consider
the normalized version of X,

W “
X

?
n
.

With our previous formalism, this model corresponds to choosing X as a T -correlated matrix and
W “ S dX where S (variance profile) and T (correlation profile) are defined by

S “
1nˆn

n
and T “

ˆ

ρ11n1ˆn1
ρ21n1ˆn2

ρ21n2ˆn1
ρ11n2ˆn2

˙

.

Let rn :“ n1

n , I1 “ t1, ¨ ¨ ¨ , n1u and I2 “ rnszI1, assume that rn Ñ r P p0, 1q and consider the

following framework: x0 “ x01n, the activation function f : R Ñ R is Lipschitz. Notice that f
satisfies A-5, neither depends on t nor on some extra parameter η.

Consider the recursion pxtqtPN “ AMP
`

X,S, f,x0
˘

. In particular,

xt`1 “ Wfpxtq ´ diag
`

V f 1pxtq
˘

fpxt´1q,

where V “ T {n. The Onsager term can be simplified here by writing V f 1pxtq as

V f 1pxtq “

ˆ

rnρ1xf 1pxtqyI11n1 ` p1 ´ rnqρ2xf 1pxtqyI21n1

rnρ2xf 1pxtqyI11n2
` p1 ´ rnqρ1xf 1pxtqyI21n2

˙

“

ˆ

rnρ11n1
p1 ´ rnqρ21n1

rnρ21n2 p1 ´ rnqρ11n2

˙ˆ

xf 1pxtqyI1
xf 1pxtqyI2

˙

.

Thus

xt`1 “ Wfpxtq ´

„ˆ

rnρ11n1
p1 ´ rnqρ21n1

rnρ21n2 p1 ´ rnqρ11n2

˙ˆ

xf 1pxtqyI1
xf 1pxtqyI2

˙ȷ

d fpxt´1q,

Notice that the Onsager term generalizes here the one obtained in the elliptic case (see Remark 2.3).
Not surprisingly (and as mentioned in [GHN24] in the elliptic case), the DE equations do not

depend on the correlation structure of X and reduce to

R1 “ f2px0q P R1ˆ1 , Rt`1 “ E

»

—

—

–

fpx0q

fpZ1q

¨ ¨ ¨

fpZtq

fi

ffi

ffi

fl

“

fpx0q fpZ1q ¨ ¨ ¨ fpZtq
‰

P Rpt`1qˆpt`1q,

where pZ1, ¨ ¨ ¨ , Ztq „ Ntp0, R
tq. In this case, Theorem 2.1 implies that for any PL test function

φ : Rt P R ur main theorem implies in this case that

1

n

ÿ

iPrns

φpx1i , ¨ ¨ ¨ , xtiq
P

ÝÝÝÑ
nÑ8

EφpZ1, ¨ ¨ ¨ , Ztq .

Remark 2.5. This example can easily be generalized to KˆK blocks and K correlation coefficients
ρ1, ¨ ¨ ¨ , ρK .
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2.5.1. d-regular random matrix. In this example, we consider a symmetric matrix X where Xij

are independent centered random variables with variance 1 up to the symmetry, i.e. X is a T -

correlated random matrix where T “ 1nˆn. Let Assumption 1 hold, let d “ dn “ tC logpν_1q
pnqu

where ν ą 0 is given by Assumption 3. Let A be the n ˆ n adjacency matrix of a d-regular non
oriented graph, in particular

|tj P rns | Aij “ 1u| “ d and |ti P rns | Aij “ 1u| “ d ,

and consider the variance profile matrix S “ 1
dA. Let f : R Ñ R a Lipschitz function (hence

satisfying Assumption 5) and set

W “ S dX “
1

d
AdX , x0 “ x01n and pxtqtPN “ AMP

`

X,S, f,x0
˘

.

Introducing the sets Ik :“ tj P rns | Akj “ 1u and the n ˆ 1 vector v “ pxf 1pxtqyIk , k P rnsq, the
recursion writes

xt`1 “ Wfpxtq ´ v d fpxt´1q .

Let us now simplify the Density Evolution equations defined 1.3 for this particular case. We
notice that H0

i “ phpx0qq2 “: H0 does not depend on i, so R1
i “

ř

jPIi
1
dH

0
i “ H0 :“ R1 which

is also independent of i and n. By induction, we can reduce DE equations to “asymptotic” DE
equations, meaning that they do not depend on n. In fact, if Rt

i P Rtˆt is independent of i,
consider pZ1

i , ¨ ¨ ¨ , Zt
i q „ Ntp0, R

t
iq, these n t-dimensional random vectors have the same law. Now

let i P rns and consider the value of Rt`1
i ,

Rt`1
i “

ÿ

jPIi

1

d
E

»

—

—

–

fpx0q

fpZ1
i q

¨ ¨ ¨

fpZt
i q

fi

ffi

ffi

fl

“

fpx0q fpZ1
i q ¨ ¨ ¨ fpZt

i q
‰

“ E

»

—

—

–

fpx0q

fpZ1q

¨ ¨ ¨

fpZtq

fi

ffi

ffi

fl

“

fpx0q fpZ1q ¨ ¨ ¨ fpZtq
‰

where pZ1, ¨ ¨ ¨ , Ztq „ Ntp0, R
tq, thus Rt`1

i is also independent of i and n and we recover the
“asymptotic” DE equations. Our main theorem implies in this case that

µx1,¨¨¨ ,xt P
ÝÝÝÑ
nÑ8

LpZ1, ¨ ¨ ¨ , Ztq.

2.6. Extension to non-centered random matrices. We have considered so far an AMP al-
gorithm with a centered random matrix. We extend our AMP result to consider a non-centered
matrix model. More precisely, we add to our centered random matrix model a deterministic rank-
one perturbation - notice that our result could easily be generalized to any finite-rank perturbation.

Let W be a random matrix model as in Theorem 2.1, with variance profile S and correlation
profile T . Let u,v P Rn two deterministic vectors satisfying ∥u∥, ∥v∥ “ Opn´1q. Consider the
following matrix model,

(13) A “ λuvJ `W.

Before stating the AMP recursion based on matrix A, we adapt the Density Evolution equations
introduced in Definition 1.3. In this section, we shall use the notation htpx, ηq instead of hpx, η, tq
as simplification of the notations.

Definition 2.6. Let x0 “ px0i q P Rn, η “ pηiq P Rn, u “ puiq P Rn and v “ pviq P Rn be
deterministic vectors, S “ psijq1ďi,jďn a matrix with non-negative elements and h : R2 ˆ N Ñ R
an activation function.

a) Initialization. For any i P rns, define the positive numbers H0
i , R

1
i and µ1 as

H0
i :“

`

h0px0i , ηiq
˘2
, R1

i :“
n
ÿ

j“1

sijH
0
j and µ1 :“ λ

@

v, h0px0,ηq
D

.

Let Z1
i „ N p0, R1

i q, assume that for all i P rns, the Z1
i ’s are independent and set

Z1
“ pZ1

i qiPrns .
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b) Step 1. Let i P rns be fixed. Given Z1
i , let

H1
i “ E

„

h0
`

x0i , ηi
˘

h1
`

Z1
i ` µ0ui, ηi

˘

ȷ

“

h0
`

x0i , ηi
˘

h1
`

Z1
i ` µ0ui, ηi

˘‰

,

R2
i “

n
ÿ

j“1

sijH
1
j and µ2 “ λE

“@

v, h1
`

Z1
` µ1u,η

˘D‰

.

Let pZ1
i , Z

2
i q „ N2p0, R2

i q, denote by Z⃗2
i “ pZ1

i , Z
2
i q. Assume that for all i P rns, the Z⃗2

i ’s

are independent. Set Z2
“ pZ2

i q.

c) Step t. Let i P rns be fixed. Given pZ1, ¨ ¨ ¨ ,Zt
q and Z⃗t

i “ pZ1
i , ¨ ¨ ¨ , Zt

i q, let

Ht
i “ E

»

—

—

—

–

h0px0i , ηiq
h1pZ1

i ` µ1ui, ηiq
...

htpZ
t
i ` µtui, ηiq

fi

ffi

ffi

ffi

fl

“

h0px0i , ηiq h1pZ1
i ` µ1ui, ηiq ¨ ¨ ¨ htpZ

t
i ` µtui, ηiq

‰

.

Denote

Rt`1
i “

n
ÿ

j“1

sijH
t
j and µt`1 “ λE

“@

v, ht
`

Zt
` µtu,η

˘D‰

.

Let pZ1
i , Z

2
i , ¨ ¨ ¨Zt`1

i q „ Nt`1p0, Rt`1
i q, denote by Z⃗t`1

i “ pZ1
i , Z

2
i , ¨ ¨ ¨ , Zt`1

i q. Assume

that for all i P rns, the Z⃗t`1
i ’s are independent. Set Zt`1

“ pZt`1
i q.

Consider the sequence of n-dimensional Gaussian random vectors
`

Zt
˘

tPN. We denote

`

Z1, ¨ ¨ ¨ ,Zt
˘

„ ĄDE
`

h,x0, S, t,u,v
˘

.

We are now in position to state the AMP recursion.

(14) xt`1 “ Ahtpx
t,ηq ´ diag

`

V EBhtpZ
t

` µtu,ηq
˘

ht´1pxt´1,ηq,

where Zt and µt are defined as in Definition 2.6.
The following theorem describes the asymptotic behavior of pxtqtPN when n goes to infinity.

Theorem 2.2. Let Assumptions A-1 to A-6 hold true, with associated ν, Qη and Qx. Consider
the AMP sequence pxtqt defined in (14). Consider the sequence n-dimensional Gaussian random
vectors

`

Zt
˘

tPN and the scalars pµtqt defined by the DE equations in Definition 2.6.

Let t ě 1 and β “ pβ
pnq

i q P Rn uniformly bounded, i.e. supn maxiPrns |β
pnq

i | ă 8. For any

pseudo-Lipschitz test function φ : Rt`1 Ñ R, it holds that

1

n

ÿ

iPrns

β
pnq

i

␣

φ
`

ηi, x
1
i , ¨ ¨ ¨ , xti

˘

´ E
“

φ
`

ηi, Z
1
i ` µ1ui, ¨ ¨ ¨ , Zt

i ` µtui
˘‰( P

ÝÝÝÑ
nÑ8

0 .

This theorem can be seen as a corollary to Theorem 2.1, the proof is provided in Appendix A.

2.7. Open questions.

(1) Currently, the sparsity level is of order logν_1
pnq. Would it be possible to lower this level,

and to dissociate the sparsity assumption from the parameter ν which is associated to the
moments of the matrix entries?

(2) Would it be possible to improve the convergence in probability in Theorem 2.1 to an
almost sure convergence?

(3) Our current assumptions over the entries of the matrix necessitate all the moments. Would
it be possible by truncation techniques to lower this assumption?

(4) Would it be possible to establish the counterpart of Theorem 2.1 for AMP schemes (11)
or (12)?
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2.8. Outline of the proof. Building on the methods developed in [BLM15] and [Hac24], we
start by analyzing a particular case of the Approximate Message Passing (AMP) algorithm with
polynomial activation functions (Section 3.1), which motivates the adoption of combinatorial tech-
niques. In our setting, the variance profile is non-symmetric, and the matrix contains correlations
between symmetric entries, necessitating modifications to the combinatorial approaches used in
both [BLM15] and [Hac24] to fit our case. The combinatorial heart of the proof is presented in
Section 4. We then use density arguments to extend the results to non-polynomial activation
functions that exhibit at most polynomial growth (Section 5.1).

It should be noted that the combinatorial methods in [BLM15] and [Hac24] rely on the assump-
tion of a zero-diagonal variance profile, i.e., Sii “ 0 for all i P rns, which simplifies the derivations.
We adopt this assumption in Sections 3.1, 3.2 and 5.1 and then lift it via a perturbation argu-
ment in Section 5.2. Unless otherwise specified, we assume that the matrix S has a zero-diagonal,
implying, without loss of generality, that the random matrix X also has a zero diagonal Xii “ 0.

Matrix AMP-W
Polynomial activation
and test functions.
Combinatorial argu-
ments.
Zero-diagonal assumption
(A-7).
[Section 3.2].

Polynomial AMP-W
Polynomial activation
functions.
Zero-diagonal assumption
(A-7).
[Section 3.1].

AMP-Z
General activation func-
tions approximation by
polynomials.
Full diagonal - we lift (A-
7).
[Section 5.1].

AMP-Z
Main theorem.
[Theorem 2.1].

From polynomial to gen-
eral test functions with at
most polynomial growth.
[Lemma 3.2].

Diagonal perturbation
technique to lift (A-7).
[Section 5.2].

Figure 2. Proof steps.

3. AMP and Matrix AMP for polynomial activation functions

We present hereafter the AMP algorithm for polynomial activation functions, a suitable frame-
work to establish the proof by combinatorial techniques, see [BLM15, Hac24]. In Section 3.1, we
state Theorem 3.1 for iterates that are Rn-valued.

In Section 3.2, we state a result for iterates that are Rnˆq-valued, a more general result that
will imply Theorem 3.1. The extension to general pseudo-Lipschitz functions will be performed in
Section 5.1.

The following technical assumption (to be lifted in Section 5.2) will be used hereafter.
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Assumption A-7 (variance profile with vanishing diagonal). The deterministic n ˆ n matrix
S “ psijq1ďi,jďn has non-negative elements with null elements on the diagonal:

Sii “ 0 for i P rns .

Remark 3.1. Assumption A-7 is very convenient to establish the statistical properties of the AMP
iterates for polynomial activation functions, as the proof relies on combinatorial techniques. The
fact that the diagonal of the variance profile S is zero substantially simplifies the combinatorics.
This assumption is relaxed in Theorem 2.1 by means of perturbation arguments (see Section 5.2).

3.1. AMP for polynomial activation functions. Let d ě 1 be a fixed positive integer inde-
pendent from n. For every integer t ě 1, consider a uniformly bounded triangular array of real
coefficients

(15)
´

αℓpi, t, nq , ℓ ď d , i P rns , n ě 1
¯

with sup
n

max
ℓďd

max
iPrns

|αℓpi, t, nq| ă 8 .

The following function will play a key role in the sequel:

p : R ˆ rns ˆ N Ñ R ,(16)

pu, i, tq ÞÑ ppu, i, tq “

d
ÿ

ℓ“1

αℓpi, t, nquℓ .

Function p is a polynomial in u with degree bounded by d. It depends on n via the coefficients
αℓpi, t, nq. To lighten the notations, we drop the dependence of αℓpi, t, nq in n and simply write
αℓpi, tq and do not indicate the dependence of p in n.

Following Definition (11), let x̌0 P Rn be deterministic and define
`

x̌t
˘

tě1
“ AMP-W

`

X,S, p, x̌0
˘

, x̌0 P Rn ,

that is

(17) x̌t`1 “ Wppx̌t, ¨, tq ´ diag
´

W dWJBppx̌t, ¨, tq
¯

ppx̌t´1, ¨, t´ 1q,

where ppx, ¨, tq “ rppxi, i, tqs
n
i“1 and Bppx, ¨, tq “ rBppxi, i, tqs

n
i“1 for any x P Rn.

We now present the AMP result for polynomial activation functions.

Theorem 3.1. Let A-1, A-2 and A-7 hold true. Let d ě 1 be fixed, pαℓq and p given by (15) and
(16). Let x̌0 “ px̌0i q P Rn. Assume that there exists a compact set Qx̌ Ă R such that x̌0i P Qx̌.
Consider

`

x̌t
˘

tě1
“ AMP-W

`

X,S, p, x̌0
˘

.

Let p qZ
1
, ¨ ¨ ¨ , qZ

t
q „ DEpS, p, x̌0, tq and denote by qRt

i the covariance matrix of vector
´

qZ1
i , ¨ ¨ ¨ , qZt

i

¯

.

Then for all t,m ě 1

(18) sup
n

max
iPrns

} qRt
i} ă 8 and sup

n
max
iPrns

E|x̌ti|
m ă 8 .

Given t ě 1, let d1 ě 1 be fixed and consider function ψn : Rt ˆrns Ñ R, a multivariate polynomial
with bounded degree:

ψnpx1, ¨ ¨ ¨ , xt, ℓq “
ÿ

d1`¨¨¨`dtďd1

βnpd1, ¨ ¨ ¨ , dt, ℓq
ź

iPrts

xdi
i ,

with
sup
ně1

sup
ℓPrns

sup
d1`¨¨¨`dtďd1

|βnpd1, ¨ ¨ ¨ , dt, ℓq| ă 8 .

Let Spnq Ă rns be such that |Spnq| ď CKn where Kn is given by A-2. Then,

1

Kn

ÿ

iPSpnq

!

ψnpx̌1i , . . . , x̌
t
i, iq ´ Eψnp qZ1

i , . . . ,
qZt
i , iq

)

P
ÝÝÝÑ
nÑ8

0 , and(19a)

1

n

ÿ

iPrns

!

ψnpx̌1i , . . . , x̌
t
i, iq ´ Eψnp qZ1

i , . . . ,
qZt
i , iq

)

P
ÝÝÝÑ
nÑ8

0 .(19b)
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Remark 3.2. In this theorem, both the activation function and the test function used in the
convergence formulation are polynomials. The general case for the activation function will be
addressed later in Section 5.1. Regarding the test functions, we extend this result in the following
lemma to encompass general continuous functions that grow at most polynomially near infinity.
Notice also that Assumption A-3 is not needed when dealing with AMP sequences having polynomial
activation functions, this assumption is purely technical and is used when a comparison between
two AMP sequences is provided.

Remark 3.3. The interesting regime in (19a) is |Spnq| „ Kn. If |Spnq| ! Kn then (19a) is trivial
in the sense that one can easily prove that both terms

1

Kn

ÿ

iPSpnq

ψn

`

x̌1i , ¨ ¨ ¨ , x̌ti, i
˘

and
1

Kn

ÿ

iPSpnq

E
”

ψn

´

qZ1
i , ¨ ¨ ¨ , qZt

i , i
¯ı

converge to zero2.

Lemma 3.2. Let x̌0 and η satisfy A-4. Let px̌tqtPN and p qZ
t
qtPN as in Theorem 3.1. Let t,m ě 0

be fixed integers and let φ : Qη ˆ Rt Ñ R be a continuous function such that

|φpα, u1, ¨ ¨ ¨ , utq| ď C p1 ` |u1|m ` ¨ ¨ ¨ ` |ut|
mq .

For any sequence pβ
pnq

i P R , i P rns , n ě 1q such that supn maxiPrns |β
pnq

i | ă 8, the following
convergence holds:

1

n

ÿ

iPrns

β
pnq

i φpηi, x̌
1
i , . . . , x̌

t
iq ´

1

n

ÿ

iPrns

β
pnq

i Eφpηi, qZ
1
i , . . . ,

qZt
i q

P
ÝÝÝÑ
nÑ8

0.

Proof. Define the two t` 2 dimensional random measures µn and νn as follows

µn “
1

n

ÿ

iPrns

δpβi,ηi,x̌1
i ,¨¨¨ ,x̌

t
iq and νn “ L

´

βθ, ηθ, qZ
1
θ , ¨ ¨ ¨ , qZt

θ

¯

,

where θ „ U prnsq is independent. Consider the function ψpβ, η, x1, ¨ ¨ ¨ , xtq “ βφ pη, x1, ¨ ¨ ¨ , xtq,
and recall that pβiq, pηiq and the covariance matrices pRt

iq are bounded, thus by some slight
modification to Lemma B.1 we get the desired result.

□

3.2. Matrix AMP for polynomial activation functions. In order to prove Theorem 3.1, we
need to study a matrix version of the AMP algorithm where the iterates x̌t are Rnˆq–valued ma-
trices, q ě 1 being a fixed integer. Using this framework, we only need to express the convergence
result in Theorem 3.1 using test functions acting only on the tth iterates instead of all previous
iterates. Consider the function

(20) f : Rq ˆ rns ˆ N ÝÑ Rq , fpu, l, tq “

¨

˚

˝

f1pu, l, tq
...

fqpu, l, tq

˛

‹

‚

,

where each component fr is a polynomial in u P Rq, with degree bounded by d, written as

frpu, ℓ, tq “
ÿ

i“pi1,¨¨¨ ,iqqPNq

i1`¨¨¨`iqďd

αipr, ℓ, tqu
i ,

(recall the notation ui “
ś

sPrqs u
is
s ). Given a deterministic n-uple px0

1, . . . ,x
0
nq where x0

i is a

q-dimensional vector, the AMP iterates are recursively defined for t ě 1 as follows:

(21) xt`1
i prq “

ÿ

ℓPrns

Wiℓfrpxt
ℓ, ℓ, tq ´

ÿ

sPrqs

fspxt´1
i , i, t´ 1q

ÿ

ℓPrns

WiℓWℓi
Bfr

Bxpsq
pxt

ℓ, ℓ, tq ,

2By |Spnq| „ Kn, we mean that there exist c, C ą 0 such that cKn ď |Spnq| ď CKn and by |Spnq| ! Kn, we

mean that |Spnq|{Kn Ñ 0.
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for r P rqs and fp¨, ¨,´1q ” 0. We denote such a sequence by
`

xt
˘

tě1
“ AMP-Wq

`

X,S, f,x0
˘

, x0 P Rnˆq .

DE Equations for matrix AMP. Similarly to the DE equations for standard AMP introduced in
Definition 1.3, we introduce here a pRqq

n
-valued sequence of Gaussian random vectors pU tqtPN‹

defined by

U t “

»

—

–

pU t
1qJ

...
pU t

nqJ

fi

ffi

fl

,

where tU t
i uiPrns are Rq-valued independent Gaussian random vectors, U t

i „ N p0, Qt
iq and the qˆq

matrices Qt
i are defined recursively in t by

(22) Qt`1
i “

ÿ

ℓPrns

siℓEfpU t
ℓ , ℓ, tqfpU t

ℓ , ℓ, tq
J for i P rns,

with the convention that U0 :“ x0. We denote

(23) U t „ DEq

`

S, f,x0, t
˘

.

The following Theorem is the key component to the proof of Theorem 3.1.

Theorem 3.3. Let Assumptions A-1 and A-2 hold true and q ě 1 be fixed. Let f be defined by
(20) and x0 P Rnˆq. Assume that for each t ě 1, there exists a constant C “ Cptq ą 0 such that

(24)
ˇ

ˇαi1,...,iq pr, l, tq
ˇ

ˇ ď C, and sup
n

max
iPrns

›

›x0
i

›

› ă 8 .

Consider the iterative algorithm pxtqtě1 “ AMP-Wq

`

X,S, f,x0
˘

, and let Qt
i and U t be defined

by (22)–(23). Then we have,

(25) @t ą 0 , sup
n

max
iPrns

}Qt
i} ă 8.

Moreover,

(26) @t ą 0 , @m P Nq , sup
n

max
iPrns

E|pxt
iq

m| ă 8.

Let ψ : Rq ˆ rns Ñ R be such that ψp¨, lq is a multivariate polynomial with a bounded degree
and bounded coefficients as functions of pl, nq. Let Spnq Ă rns be a non empty set such that
|Spnq| ď CKn. Then,

1

Kn

ÿ

iPSpnq

ψpxt
i, iq ´ EψpU t

i , iq
P

ÝÝÝÑ
nÑ8

0 and(27a)

1

n

ÿ

iPrns

ψpxt
i, iq ´ EψpU t

i , iq
P

ÝÝÝÑ
nÑ8

0 .(27b)

Remark 3.4. In this theorem, and particularly in the convergence described in (27b), the result
is not explicitly stated for all iterations from 1 to t, as was done in (19b). Consequently, Matrix
AMP can be interpreted as a more compact formulation of the “standard” AMP. This distinction
is further elucidated in the subsequent proof.

Proof of Theorem 3.1. Theorem 3.1 can be deduced from Theorem 3.3 by adequately choosing q
as well as a precise construction of the activation function f using the R-valued polynomials p.
Define the sequence

`

x̌t
˘

tě1
as follows,

(28)
`

x̌t
˘

tě1
“ AMP-W

`

X, p, x̌0, S
˘

.

We shall establish the convergence (19b) for each t and prove that for all multivariate polynomials
ψ we have

1

n

ÿ

iPrns

!

ψpx̌1i , . . . , x̌
t
i, iq ´ Eψp qZ1

i , . . . ,
qZt
i , iq

)

P
ÝÝÝÑ
nÑ8

0 .
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where p qZ
1
, ¨ ¨ ¨ , qZ

t
q „ DEpS, p, x̌0, tq. To this end, let τ ą 0 be fixed and chose q “ τ , construct

the sequence pxtq1ďtďτ of Rτˆτ -valued matrices such that

x1
i “

`

x̌1i 0 ¨ ¨ ¨ 0
˘J
,

x2
i “

`

x̌1i x̌2i ¨ ¨ ¨ 0
˘J
,

...

xτ
i “

`

x̌1i x̌2i ¨ ¨ ¨ x̌τi
˘J
.

Now using the polynomials p, we construct the function f : Rτ ˆ rns ˆ N Ñ Rτ such that for all
i P rns and 0 ď ℓ ď τ ´ 1 we have

fpx, i, ℓq “
`

ppx0i , i, 0q ppxip1q, i, 1q ¨ ¨ ¨ ppxipℓq, i, ℓq 0 ¨ ¨ ¨ 0
˘J
.

For ℓ ě τ , we set

fpx, i, ℓq “ p0 ¨ ¨ ¨ 0q .

In order to apply apply Theorem 3.3, we show that the sequence pxtq is given by

(29) pxtqtě1 “ AMP-Wτ

`

X,S, f,x0
˘

.

Let t P rτ ´ 1s. By definition, for r P rτ s and i P rns we have

xt`1
i prq “

"

x̌ri if r ď t` 1 ,
0 if r ą t` 1 .

In addition, by Eq. (28) we know that

x̌ri “
ÿ

ℓPrns

Wiℓppx̌r´1
ℓ , ℓ, r ´ 1q ´

ÿ

ℓPrns

WiℓWℓiBppx̌r´1
ℓ , ℓ, r ´ 1qppx̌r´2

i , i, r ´ 2q,

which implies that for r ď τ ` 1,

xτ`1
i prq “

ÿ

ℓPrns

Wiℓppxτℓ pr ´ 1q, ℓ, r ´ 1q

´
ÿ

ℓPrns

WiℓWℓiBppxτℓ pr ´ 1q, ℓ, r ´ 1qppxτ´1
i pr ´ 2q, i, r ´ 2q ,

“
ÿ

ℓPrns

Wiℓppxτℓ pr ´ 1q, ℓ, r ´ 1q

´
ÿ

sPrts

ppxτ´1
i ps´ 1q, i, s´ 1q

ÿ

ℓPrns

WiℓWℓiBppxτℓ pr ´ 1q, ℓ, r ´ 1qδs,r´1 ,

“
ÿ

ℓPrns

Wiℓfrpxτℓ , ℓ, τq ´
ÿ

sPrts

fspxτ´1
i , i, τ ´ 1q

ÿ

ℓPrns

WiℓWℓi
B

Bxpsq
frpxτℓ , ℓ, τq ,

which is precisely the recursion in (29).
We can now apply the result of Theorem 3.3 to the sequence pxtq, which implies that for all

polynomial test functions ψp., ℓq : Rτ Ñ R we have

1

n

ÿ

iPrns

ψpxτ
i , iq ´ EψpUτ

i , iq
P

ÝÝÝÑ
nÑ8

0, @τ P N ,

which yields

(30)
1

n

ÿ

iPrns

ψpx̌1i , ¨ ¨ ¨ , x̌τi , iq ´ EψpUτ
i , iq

P
ÝÝÝÑ
nÑ8

0, @τ P N ,

where the Uτ is pnˆτq-dimensional random matrix with law DEqpS, f,x0, τq, the latter is defined
in (23). Denote the columns of Uτ by Z1, ¨ ¨ ¨ , Zτ P Rn, then it is clear that pZ1, ¨ ¨ ¨ , Zτ q „
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DEpp, x̌0, S, τq. The convergence in (30) becomes

1

n

ÿ

iPrns

ψpx̌1i , ¨ ¨ ¨ , x̌τi , iq ´ EψpZ1
i , ¨ ¨ ¨ , Zτ

i , iq
P

ÝÝÝÑ
nÑ8

0, @τ P N .

with pZ1, ¨ ¨ ¨ , Zτ q „ DEpS, p, x̌0, τq. Convergence (19b) is established. One can prove similarly
(19a), which concludes the proof of Theorem 3.1.

□

4. Proof of Theorem 3.3: A combinatorial approach

Taking polynomial activation functions in Theorem 3.3 is fundamental, as all iterations xt can
be written as multinomials on the entries of the matrix W and the initial point’s coordinates
x0i psq. This makes the analysis purely combinatorial. At the first and second iterations t “ 1, 2,
and given simple polynomial activation functions frpu, ℓ, 1q “ frpu, ℓ, 0q “ up1qm, one can write

x1i prq “
ÿ

ℓPrns

Wiℓx
0
ℓp1qm,

x2i prq “
ÿ

ℓ,ℓ1,¨¨¨ ,ℓmPrns

WiℓWiℓ1 ¨ ¨ ¨Wiℓm

`

x0ℓ1p1q ¨ ¨ ¨x0ℓmp1q
˘m

´ tOnsageru.

We already notice that by the second iteration t “ 2, the exact expression for x2i as a multinomial
expansion in terms of the entries of matrix W becomes increasingly complex. We hence need to
find an alternative indexation scheme for the summation above, properly suited to extract the
desired information and establish Theorem 3.3. We follow the combinatorial approach initiated in
[BLM15]. This approach is based on the introduction of “non-backtracking” trees associated to
“non-backtracking” iterations.

4.1. Strategy of proof. To prove that the AMP iterations have the simple deterministic equiv-
alent described in Theorem 3.3 we first approximate the moments of xt P Rnˆq with the moments
of simpler objects zt called the “non-backtracking” iterations, these are generated with the same
matrix W used in the recursion (8), with a slightly different recursion scheme where the Onsager
term is removed.

Epxt
iq

m « Epzt
iq

m, @m P Nq,

this is done in (Proposition 4.5) section 4.5. We then show a universality property of the iterations
zt in (Proposition 4.2) section 4.3. More specifically, we show that if z̃t is another non-backtracking

iteration sequence generated using another matrix W̃ satisfying the same assumptions as W but
does not have the same distribution, then

Epzt
iq

m « Epz̃t
iq

m, @m P Nq.

This means that we can reduce our problem to an AMP constructed using a Gaussian matrix.
Hence, without loss of generality we can suppose that W is Gaussian. Moreover, we approximate
the non-backtracking iterations zt with another non-backtracking iterations yt, but this time, in

the recursion formula of yt, at each step t we independentally pick a new random matrix W t L
“ W

which is Gaussian,

Epz̃t
iq

m « Epyt
iq

m, @m P Nq.

this is done in (Proposition 4.4) section 4.4. xt is now reduced to its simplest form yt. Finally,
we show in (Proposition 4.7) section 4.6 that

Epyt
iq

m « EpU t
i qm, @m P Nq.

which is relatively easy given that yt are Gaussian. This finishes the proof of Theorem 3.3.
The proof of all these steps follows the combinatorial approach described in both [BLM15] and

[Hac24] and thus we begin by presenting the framework of “non-backtracking” trees in section 4.2.
Notice that that the key difference between prior research and our approach is that the matrix W
is no longer symmetric, and exhibits some correlations between its entries.
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4.2. Description of the tree structure. The proof of Theorem 3.3 follows a combinatorial
approach which aims at studying the moments of the AMP iterates. In order to simplify the ex-
pression of these moments, we use planted and labeled trees to index the sums in these expressions.
We first define planted trees and then describe its labeling.

Definition 4.1 (Planted trees). We recall the following definition from graph theory.

‚ A rooted tree T “ pV pT q, EpT qq at ˝ P V pT q, where V pT q and EpT q denote respectively
the set of vertices and edges, is said to be panted if the root ˝ has degree 1.

‚ We consider that all the edges are oriented towards the root, we say that v P V pT q is the
parent of u if the edge pu Ñ vq is in EpT q, in this case, we use the notation πpuq “ v, we
also say that u is a child of v.

‚ We denote by LpT q the set of leaves of T , i.e. vertices v P V pT q with no children.
‚ Given a vertex v P V pT q, we denote by |v| its distance to the root ˝.
‚ Finally, we define a path starting at v1 and ending at vk as a sequence of vertices pv1, v2, ¨ ¨ ¨ , vkq

such that vi “ πpvi`1q for all i P rk ´ 1s.

We fix a integer d, t P N, throughout this proof we consider the class of planted trees pT, ˝q of
depth at most t such that for each vertex v, v can have at most d children.

We denote

N q
ďd :“ tpa1, ¨ ¨ ¨ , aqq P Nq , a1 ` ¨ ¨ ¨ ` aq ď du ,

where q is also a fixed integer.

Definition 4.2 (Labeled and planted trees). We now describe the labeling of the trees. A labeling
of a tree T , is a triplet of functions pℓ, r, cq such that

ℓ : V pT q Ñ rns, r : V pT qzt˝u Ñ rqs, c : LpT q Ñ N q
ďd.

‚ For each vertex u P V pT q, ℓpuq is called the type of u.
‚ For each vertex u P V pT q except the root, rpuq is called the mark of u.
‚ For each vertex u P V pT q which is not a leaf, we denote by uris the number of children
of u that have mark i P rqs. We use the same notation to describe cpuq for u P LpT q;
cpuq “ pur1s, ¨ ¨ ¨ , urqsq P N q

ďd. In what follows, this notation is used instead of cpuq.
‚ For a non-maximal leaf u P LpT q, i.e. such that |u| is less than the depth of T , we set
ur1s “ ¨ ¨ ¨urqs “ 0.

We denote by T t
the set of planted and labeled trees, with depth t at most.

Non-backtracking trees. One class of planted and labeled trees that is particularly adapted to our
specific study, is the class of trees satisfying the non-backtracking condition, we recall here the
definition that can be found in [BLM15]. A non-backtracking tree is a planted and labeled tree T
such that for each path pu1 “ ˝, u2 ¨ ¨ ¨ , ukq in T the types pℓpuiq, ℓpui`1q, ℓpui`2qq are distinct for
each i P rk ´ 2s. We denote the class of these trees as T t. In addition, we introduce the following
classes of trees, for given integers i, j and r, we denote by,

‚ T t
iÑjprq Ă T t the subset of trees in T t for which the type of the root is i, the type of the

child v of the root satisfies ℓpvq R ti, ju, and the mark of v is rpvq “ r.
‚ T t

i prq Ă T t the subset of trees in T t for which the type of the root is i, the type of the
child v of the root satisfies ℓpvq ‰ i, and the mark of v is rpvq “ r.

We can already use these trees to create the following objects. For a matrixW P Rnˆn, a vector
x P Rn and a family of real numbers α “

␣

αιpr, ℓ, sq | ι P N q
ďd, pr, ℓ, sq P rqs ˆ rns ˆ rts

(

, we define,

W pT q :“
ź

puÑvqPEpT q

Wℓpvqℓpuq ,

ΓpT,α, tq :“
ź

puÑvqPEpT q

αur1s,...,urqs prpuq, ℓpuq, t´ |u|q ,

xpT q :“
ź

vPLpT q

ź

sPrqs

`

xℓpvqpsq
˘vrss

.
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To better illustrate the concepts previously defined, we present a simple example of a tree and
demonstrate how it indexes the tree quantities W , Γ, and x.

a

b

c d

e f g

t2u

t1ur1s

t2ur2sp0, 0q t3ur2s

t1ur2sp3, 1q

t2ur1sp0, 4q

t6ur1sp1, 3q

W pT q “ W21W12W13W31W32W36,

ΓpT,α, 3q “ α0,2p1, 1, 2qα0,0p2, 2, 1qα2,1p2, 3, 1q

ˆ α3,1p2, 1, 0qα0,4p1, 2, 0qα1,3p1, 6, 0q,

xpT q “ px2p1qq0px2p2qq0px1p1qq3px1p2qq1

ˆ px2p1qq0px2p2qq4px6p1qq1px6p2qq3.

Figure 3. Example of a tree T P T 3
for parameters q “ 2, d “ 4, t “ 3 and

n “ 6. The types are written between braces, the marks are between brackets and
leafs info is between parentheses. In this example, T is not a non-backtracking
tree because of the two paths pa Ð b Ð cq and pb Ð d Ð eq.

4.3. Non-backtracking iterations. The non-backtracking iterations pztqt, are defined recur-
sively similarly to pxtqt but minus the Onsager term and with a slight change in the contributing
terms from the previous iteration. Recall that the purpose of having the Onsager term is to
eliminate components that induce non-Gaussian behavior in the iterates in the high dimensional
regime. Basically, non-backtracking iterations evolve purposefully getting rid of parts that are
source non-Gaussian behavior. In particular we do not need to have a corrective term.

Given any i, j P rns with i ‰ j, we initialize the non-backtracking sequence with z0
iÑj :“ x0

i .

We then define recursively zt`1
iÑj using the previous iterations as follows

(31) zt`1
iÑjprq “

ÿ

ℓPrnsztju

Wiℓfrpzt
ℓÑi, ℓ, tq, @r P rqs,

the case l “ i is excluded because Wii “ 0. In addition, we also define the vectors pztqt by

(32) zt`1
i prq “

ÿ

ℓPrns

Wiℓfrpzt
ℓÑi, ℓ, tq, @r P rqs.

We provide here a non-recursive formulation of ztiÑj and zti described as sums indexed by trees

in T t
iÑjprq and T t

i prq.

Lemma 4.1 (Lemma 1 of [BLM15]). For all integers t P N, i, j P rns and r P rqs, we have,

ztiÑjprq “
ÿ

TPT t
iÑjprq

W pT qΓpT,α, tqxpT q,

ztiprq “
ÿ

TPT t
i prq

W pT qΓpT,α, tqxpT q.

Here xpT q :“ x0pT q, we drop the superscript from this notation.

Note that this lemma is purely structural, the proof is not impacted by our specific variance
and correlation profiles.

To simplify the notations in the following proofs we introduce the following sets,

(33) K “ tpi, jq P rns ˆ rns , sij ą 0u and C “ tpi, jq P rns ˆ rns , τij ‰ 0u .

We also define the row and column sections of K,

(34) Ki “ tj P rns , sij ą 0u and Kj “ ti P rns , sij ą 0u .
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The next proposition shows that in the large dimensional regime, the moments of a vector zt
i

issued from the non-backtracking iterations depend for large n only on the first two moments of
the elements of W .

Proposition 4.2 (adaptation of Proposition 1 of [BLM15]). Let rX be a random matrix satisfying
A-1, with distribution not necessarily identical to its analogue X. Assume that W fulfills A-2.

Let ĂW be the matrix constructed similarly to W , but with the Xij replaced with the rXij. Starting
with the set of Rq–valued vectors tz̃0

iÑj , i, j P rns, i ‰ ju given as z̃0
iÑj “ x0

i , define the vectors

z̃t
i P Rq by the recursion (31) and the equation (32), where W is replaced with ĂW . Then, for each
t ě 1 and each m P Nq,

ˇ

ˇEpzt
iq

m ´ Epz̃t
iq

m
ˇ

ˇ “ O
ˆ

1
?
Kn

˙

.

Proof. Without loss of generality, we restrict the proof to the case where the multi-index m
satisfies

mpsq “

"

0 if s ‰ r,
m if s “ r,

for some integer m ą 0. By Lemma 4.1, we have

Epztiprqqm “
ÿ

T1,...,TmPT t
i prq

˜

m
ź

k“1

ΓpTk,α, tq

¸

E

«

m
ź

k“1

W pTkq

ff

m
ź

k“1

xpTkq.

For a tree T and j, ℓ P rns, define

φ⃗ℓjpT q “ |tpu Ñ vq P EpT q, pℓpuq, ℓpvqq “ pj, ℓqu| .

Based on the definition of W pT q, φ⃗ℓjpT q counts the number of edges in the tree T that represent
the pℓ, jq matrix entry Wℓj . We also define φjℓ for j ă ℓ as

φjℓpT q “ φ⃗jℓpT q ` φ⃗ℓjpT q,

this quantity represents the total number of edges in the tree T that represent either Wjℓ or Wℓj .
We know that there is an integer constant CE “ CEpd, t,mq that bounds the total number of
edges in the trees T1, . . . , Tm P T t

i prq, thus

ÿ

kPrms

ÿ

jăℓ

φjℓpTkq ď CE “ m
dt ´ 1

d´ 1
.

CE is simply the maximum number of edges in the m-tuple of trees T1, ¨ ¨ ¨ , Tm. Given an integer
µ P rCEs, recall that K is introduced in (33), define

Aipµq :“
!

pT1, . . . , Tmq , Tk P T t
i prq for all k P rms,

@j ă ℓ,
ÿ

kPrms

φjℓpTkq ‰ 1,

@j, ℓ,
ÿ

kPrms

φ⃗jℓpTkq ą 0 ñ pj, lq P K,

ÿ

kPrms

ÿ

jăℓ

φjℓpTkq “ µ
)

.

Since the elements of W beneath the diagonal are centered and independent, then,

(35) Epztiprqqm “

CE
ÿ

µ“1

ÿ

pT1,...,TmqPAipµq

˜

m
ź

k“1

ΓpTk,α, tq

¸˜

m
ź

k“1

xpTkq

¸

E

«

m
ź

k“1

W pTkq

ff

.

Notice that the contributions of the m–uples of trees in the set
$

&

%

pT1, ¨ ¨ ¨ , Tmq P Aipµq , @j ă ℓ,
ÿ

kPrms

φpTkqjℓ P t0, 2u

,

.

-

,
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are the same for Epztiprqqm and Epz̃tiprqqm by the assumptions on the matrices W and ĂW . Three
cases can be considered for a couple of indices pj, ℓq where j ă ℓ and

ř

kPrms φ⃗pTkqjℓ “ 2,

‚ Wjℓ is represented two times in the trees ñ contribution equal to sjℓ,
‚ Wℓj is represented two times in the trees ñ contribution equal to sℓj ,
‚ Wjℓ and Wℓj are both represented in the trees ñ contribution equal to

?
sjℓsℓjτjℓ.

Notice that in all three cases the contributions do not depend on the distributions of the entries
of the matrix W but only on the first and second moments. Thus, defining the set

(36) qAipµq “

!

pT1, . . . , Tmq P Aipµq , Dj ă ℓ,
ÿ

kPrms

φ⃗pTkqjℓ ě 3
)

,

the proposition can be proven if we prove that for all µ P rCEs, the real number

ξµ “
ÿ

pT1,...,TmqP qAipµq

˜

m
ź

k“1

ΓpTk,α, tq

¸˜

m
ź

k“1

xpTkq

¸

E

«

m
ź

k“1

W pTkq

ff

satisfies

|ξµ| “ O
ˆ

1
?
Kn

˙

.

Using the bounds (24) provided in the statement of Theorem 3.3, it is clear that
śm

k“1 ΓpTk,α, tq
and

śm
k“1 xpTkq are bounded as n goes to infinity.

Since there exists a constant C such that |EW s
jℓ| ď CK

´s{2
n for each integer s ą 0 by A-1 and

A-2, for each pT1, . . . , Tmq P qAipµq, we have
ˇ

ˇ

ˇ

ˇ

ˇ

E
m
ź

k“1

W pTkq

ˇ

ˇ

ˇ

ˇ

ˇ

“
ź

jăℓ

ˇ

ˇ

ˇ
EW

řm
k“1 φ⃗jℓpTkq

jℓ W
řm

k“1 φ⃗ℓjpTkq

ℓj

ˇ

ˇ

ˇ
,

ď
ź

jăℓ

ˇ

ˇ

ˇ

´

EW 2
řm

k“1 φ⃗jℓpTkq

jℓ

¯1{2 ´

EW 2
řm

k“1 φ⃗ℓjpTkq

ℓj

¯1{2

,

ď CK
´ 1

2

ř

jăℓ

ř

k φ⃗jℓpTkq`φ⃗ℓjpTkq

n ď CK´µ{2
n .

To complete the proof, we shall show that

(37)
ˇ

ˇ

ˇ

qAipµq

ˇ

ˇ

ˇ
“ O

´

K
µ´1
2

n

¯

.

Given an m–uple pT1, . . . , Tmq P qAipµq of trees, we construct a graph G “ GpT1, . . . , Tmq by
identifying the types of the vertices in all these trees. The marks as well as the orientation of the
edges are ignored. G is then a rooted and labeled graph whose root is the vertex obtained by
merging the roots of the trees T1, . . . , Tm (remember that they all have the same type i).
The number of edges of G is

|EpGq| “
ÿ

jăℓ

1
ř

k φpTkqjℓą0.

Remember that when
ř

k φpTkqjℓ ą 0, this sum is greater than 2, so

@j ă ℓ,
ÿ

k

φpTkqjℓ ě 21ř
k φpTkqjℓą0,

we also know that for some j ă ℓ we have
ř

k φpTkqjℓ ě 3. Consequently,

2p|EpGq| ´ 1q ` 3 ď
ÿ

jăℓ

m
ÿ

k“1

φpTkqjℓ ,

thus,

|EpGq| ď
µ´ 1

2
.

Note that since G is connected, as being obtained through the merger of planted trees with the
same root’s type,

|V pGq| ď |EpGq| ` 1,
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which gives

|tv P V pGq , v ‰ 0u| ď pµ´ 1q{2.

Also, by construction, G satisfies the following property:

pu Ñ vq P EpGq ñ ℓpuq P Kℓpvq,

where Ki is defined in (34). And by A-2, this implies that G satisfies the following property: for
any fixed labeled vertex v P V pGq if pu Ñ vq P EpGq then u can be labeled by at most CKn

different values.
We shall denote as Gµ

i the set of rooted, undirected and labeled graphs G such that

‚ G is connected,
‚ ℓp0q “ i, |EpGq| ď pµ´ 1q{2,
‚ for any fixed labeled vertex v P V pGq if pu, vq P EpGq then u can be labeled by at most
CKn different values.

We denote as Rµ the set of all the elements of Gµ
i but without the labels. Given a graph G P Gµ

i ,
let us denote as Ḡ “ UpGq P Rµ the unlabeled version of G. With these notations, we have

(38)
ˇ

ˇ

ˇ

qAipµq

ˇ

ˇ

ˇ
“

ÿ

ḠPRµ

ÿ

GPGµ
i :

UpGq“Ḡ

ˇ

ˇ

ˇ

!

pT1, . . . , Tmq P qAipµq , GpT1, . . . , Tmq “ G
)
ˇ

ˇ

ˇ
.

For each graph G, it is clear that

(39)
ˇ

ˇ

ˇ

!

pT1, . . . , Tmq P qAipµq , GpT1, . . . , Tmq “ G
)
ˇ

ˇ

ˇ
ď C ,

where C “ Cpd, t,mq is independent of G. Our goal now is to show that

(40)
ˇ

ˇ

␣

G P Gµ
i , UpGq “ Ḡ

(
ˇ

ˇ ď CKpµ´1q{2
n ,

which is simply the number of all possible labelings of a graph Ḡ under the constraints described
above. To see this, consider a breadth first search ordering of the vertices of the graph v0 “ 0 ă

v1 ă ¨ ¨ ¨ ă v|V pḠq|´1 that begins at the root 0, this ordering has the property of visiting each
vertex once and that each new vertex is connected to an already visited vertex, i,e.

‚ tv0 “ 0, v1, ¨ ¨ ¨ , v|V pḠq|´1u “ V pḠq,

‚ @j “ 1, ¨ ¨ ¨ Dk ă j such that pvj Ñ vkq P EpḠq.

Now, starting with v1 and by induction, after fixing the label of vj´1, one can see that vj can only
be labeled in at most CKn possible ways. So the number of all possible labelings of Ḡ is bounded

by CK
|V pḠq|´1
n ď CK

pµ´1q{2
n .

Furthermore, it is easy to check that

|Rµ| ď C.

Getting back to equality (38), and using this last inequality along with inequalities (40) and (39),
we obtain inequality (37), and the proposition is proved. □

Notice that for a tuple of trees pT1, ¨ ¨ ¨ , Tmq satisfying the following condition

@j ă ℓ,
ÿ

kPrms

φjℓpTkq P t0, 2u,

if there exists a pair pj, ℓq such that
ř

kPrms φ⃗jℓpTkq “ 1 and pj, ℓq P C, i.e. τjℓ ‰ 0, then

E r
śm

k“1W pTkqs “ 0. Consider the following subset Ãipµq of Aipµq defined

Ãipµq “

!

pT1, . . . , Tmq P Aipµq,(41)

@j ă ℓ,
ÿ

kPrms

φjℓpTkq P t0, 2u,

@j, ℓ,
ÿ

kPrms

φ⃗jℓpTkq “ 1 ñ pj, ℓq P C
)

.



24 GUEDDARI ET AL.

If pT1, ¨ ¨ ¨ , Tmq P Ãipµq then the graph G “ GpT1, ¨ ¨ ¨ , Tmq constructed by merging the trees has
exactly µ{2 edges, and that can be seen by writing

m
ÿ

k“1

φjlpTkq “ 2 1řm
k“1 φjlpTkqą0 ,

|EpGq| “
ÿ

jăl

1řm
k“1 φjlpTkqą0 “

ÿ

jăl

1

2

m
ÿ

k“1

φjlpTkq “ µ{2.

Define the set of graphs G̃µ
i analogously to Gµ

i with the difference that we replace the requirement
|EpGq| ď pµ´ 1q{2 with |EpGq| “ µ{2. We can then write

(42) Eztiprqm “

CE
ÿ

µ“1

χµ `

CE
ÿ

µ“1

ξµ,

where

(43) χµ “
ÿ

ḠPRµ

ÿ

GPG̃µ
i :

UpGq“Ḡ

ÿ

pT1,¨¨¨ ,TmqPÃipµq :
GpT1,¨¨¨ ,Tmq“G

˜

m
ź

k“1

ΓpTk,α, tq

¸˜

m
ź

k“1

xpTkq

¸

E

«

m
ź

k“1

W pTkq

ff

.

Recalling that |ξµ| “ OpK
´1{2
n q, we focus on the χµ. To that end, we further decompose the first

sum on the unlabeled graphs Ḡ P Rµ above into a sum on the graphs which are trees and a sum
on the graphs which are not trees, i.e., those that contain a cycle. Let us denote respectively the
corresponding sums by χT

µ and χNT
µ , and write

χµ “ χT
µ ` χNT

µ .

We show in the following lemma that the contribution of the term χNT
µ is negligible.

Lemma 4.3. Consider the same framework as in Proposition 4.2. We have

χT
µ “ Op1q and χNT

µ “ O
ˆ

1

Kn

˙

.

Proof. In the proof of Proposition 4.2, we have already got that |E r
śm

k“1W pTkqs | is bounded by

CK
´µ{2
n , so we only need to study the quantity

ˇ

ˇ

ˇ

!

G P G̃µ
i , UpGq “ Ḡ

)
ˇ

ˇ

ˇ
,

in the case where Ḡ is a tree and where Ḡ in not a tree. Recall that for a given G P G̃µ
i the graph

G is connected and we have |EpGq| “ µ{2 so |V pGqzt0u| ď µ{2 with the equality if and only if G
is a tree. So repeating the same argument as in Proposition 4.2 we find that

ˇ

ˇ

ˇ

!

G P G̃µ
i , UpGq “ Ḡ

)
ˇ

ˇ

ˇ
ď CKµ{2

n and
ˇ

ˇ

ˇ

!

G P G̃µ
i , UpGq “ Ḡ

)
ˇ

ˇ

ˇ
ď CKµ{2´1

n ,

in the case of Ḡ being a tree and not a tree respectively. Multiplying by CK
´µ{2
n yields to the

desired result. □

4.4. Approximation of the non-backtracking iterations. For each n, let us now consider an

i.i.d. sequence pW tqt“0,1,... of nˆ n matrices such that W t L
“ W . We define the vectors yt

iÑj and

yt
i recursively in t similarly to what we did for the vectors zt

iÑj and zt
i, with the difference that

we now replace the matrix W with the matrix W t at step t. More precisely, we set y0
iÑj “ x0

i for

each i, j P rns with i ‰ j. Given tyt
iÑj | i, j P rns, i ‰ ju, we set

(44) yt`1
iÑjprq “

ÿ

ℓPrnsztju

W t
iℓfrpyt

ℓÑi, ℓ, tq, i ‰ j.

Also,

(45) yt`1
i prq “

ÿ

ℓPrns

W t
iℓfrpyt

ℓÑi, ℓ, tq.
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We introduce here a similar quantity to W pT q for a given labeled tree which is adapted to the
computations related to the iterations yti . We define W pT, tq by

W pT, tq “
ź

puÑvqPEpT q

W
t´|u|

ℓpvqℓpuq
,

where we recall that |u| denotes the distance of the vertex u to the root 0 in the tree T .
We can prove similar structural identities for yti and y

t
iÑj as what we did with the iterates zti and

ztiÑj . In fact, we have

ytiÑjprq “
ÿ

TPT t
iÑjprq

W pT, tqΓpT,α, tqxpT q,

ytiprq “
ÿ

TPT t
i prq

W pT, tqΓpT,α, tqxpT q.

Proposition 4.4. Let pztq and pytq two sequences defined in (32) and (45) respectively, then for
each t ě 1 and each m P Nq, we have that for each i P rns,

ˇ

ˇEpzt
iq

m ´ Epyt
iq

m
ˇ

ˇ “ O
ˆ

1
?
Kn

˙

.

Proof. We follow the same strategy of proof as in Proposition 4.2. For simplicity let us fix mprq “

m for a certain r P rqs. We have

E
“

ytiprqm
‰

“

CE
ÿ

µ“1

ÿ

pT1,¨¨¨ ,TmqPAipµq

˜

m
ź

k“1

ΓpTk,α, tq

¸˜

m
ź

k“1

xpTkq

¸

E

«

m
ź

k“1

W pTk, tq

ff

.

As in the case of pztiq, we can also decompose this sum into a sum over trees pT1, ¨ ¨ ¨ , Tmq in the set
qAipµq (defined in (36)) and trees that are in the set Ãipµq (defined in (41)). The contribution of

m-tuples of trees in qAipµq is of order K
´1{2
n , so we may focus on m-tuples of trees in Ãipµq. Recall

the definition of a graph G P Gµ
i as the merger of trees pT1, ¨ ¨ ¨ , Tmq where we identify vertices u

that have the same label ℓpuq. As in the previous proof, we further partition these graphs into
trees and graphs that contain at least a cycle. The latter have a contribution of order K´1

n so we
may focus on the contribution of graphs G that are trees. Write

χ̄T
µ “

ÿ

ḠPRµ

Ḡ is a tree

ÿ

GPG̃µ
i :

UpGq“Ḡ

ÿ

pT1,¨¨¨ ,TmqPÃipµq :
GpT1,¨¨¨ ,Tmq“G

˜

m
ź

k“1

ΓpTk,α, tq

¸˜

m
ź

k“1

xpTkq

¸

E

«

m
ź

k“1

W pTkq

ff

.

The proof of this proposition will be completed if we can show that χT
µ “ χ̄T

µ .

First, notice that the terms
śm

k“1 ΓpTk,α, tq and
śm

k“1 xpTkq are the same in the expressions

of χT
µ (defined in (43)) and χ̄T

µ . So it suffices study the term E
“
śm

k“1W pTkq
‰

. Two cases can be
studied, whether this term is zero or non-zero.

Consider any m-tuple of trees pT1, ¨ ¨ ¨ , Tmq P Ãipµq, if

E

«

m
ź

k“1

W pTkq

ff

‰ 0 ,

then for every matrix entry pi, jq which is represented in the trees T1, ¨ ¨ ¨ , Tm there exist exactly
two edges pa Ñ bq and pc Ñ dq such that tℓpaq, ℓpbqu “ tℓpcq, ℓpdqu “ ti, ju, in addition |a| “ |c|
otherwise E

“
śm

k“1W pTkq
‰

“ 0, we then obtain a second moment of W which means that

E

«

m
ź

k“1

W pTkq

ff

“ E

«

m
ź

k“1

W pTkq

ff

.

Now suppose for the sake of contradiction that

E

«

m
ź

k“1

W pTkq

ff

“ 0 and E

«

m
ź

k“1

W pTkq

ff

‰ 0 ,
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we show that in this case the graph G “ GpT1, ¨ ¨ ¨ , Tmq is not a tree which is a contradiction.
There exists a matrix entry pi, jq with i ă j which is represented in the trees pT1, ¨ ¨ ¨ , Tmq by two
edges pa Ñ bq and pc Ñ dq such that vertices a and c do not have the same distance to the root 0,
i.e. |a| ą |c| for example. This is because E

“
śm

k“1W pTkq
‰

“ 0 and because τij ‰ 0, sij ‰ 0 and
sji ‰ 0. Three possible cases can be considered:

‚ pa Ñ bq and pc Ñ dq exist on the same path of a certain tree: by the non-backtracking
condition, these edges should be separated by at least one vertex say e of label k R ti, ju,
i.e.:

¨ ¨ ¨ Ñ a Ñ b Ñ e Ñ ¨ ¨ ¨ Ñ c Ñ d ¨ ¨ ¨ Ñ 0.

As for the graph G, this means that starting from a vertex of label i we should pass
through a vertex of label k R ti, ju and then return to the vertex of label i which creates
a cycle.

‚ pa Ñ bq and pc Ñ dq exist in two different trees say T1 and T2 respectively:

¨ ¨ ¨ Ñ a Ñ b Ñ ¨ ¨ ¨ Ñ ¨ ¨ ¨ Ñ 0 pT1q

¨ ¨ ¨ Ñ ˚ Ñ c Ñ d Ñ ¨ ¨ ¨ Ñ 0 pT2q

First notice that the labels of the vertices in each of these two paths are different: if two
vertices on the same path have the same label say k then due to the non-backtracking
condition they should be separated by at least two other vertices which result in a cycle in
the graph G. Recall that the roots 0T1

and 0T2
are identified in the graph G which means

that in G there exist a path from the vertex ℓpbq to 0 and another path from ℓpdq to 0,
these two paths are distinct as they have different lengths which is a consequence of the
condition |a| ă |c|. In addition ℓpbq and ℓpdq are either equal or linked in G, this creates
a cycle in the graph.

‚ pa Ñ bq and pc Ñ dq exist in two different paths of the same tree: similar to the previous
case.

□

4.5. Approximation of the AMP iterations. Let us now establish the relationship between
AMP iterates pxtqt and the non-backtracking iterations pztqt. We see in the following proposition
that the moments of xt can be approximated by the moments of zt.

Proposition 4.5. For each t ě 1 and each m P Nq, we have that for each i P rns,

ˇ

ˇEpxt
iq

m ´ Epzt
iq

m
ˇ

ˇ “ O
ˆ

1
?
Kn

˙

.

In order to prove this proposition we need the following structural lemma that connects xtiprq

to ztiprq for i P rns, r P rqs and t P N. Consider Ū t
i (resp. U t

i ) the set of unmarked trees of the
set T̄ t

i (resp. T t
i ). We can consider that these sets are constructed by identifying the trees with

the same structure and labels. Denote also by U the map that assigns to a tree T its unmarked
version T̂ :“ UpT q. The two equations in Lemma 4.1 can be reformulated as:

ztiÑjprq “
ÿ

T̂PUt
iÑj

W pT̂ qΓpT̂, r, tqxpT̂ q,

ztiprq “
ÿ

T̂PUt
i

W pT̂ qΓpT̂, r, tqxpT̂ q,

where W pT q and xpT q are invariant with respect to the marking of the tree, and

ΓpT̂, r, tq :“
ÿ

TPT tprq : UpT q“T̂

ΓpT,α, tq, @T̂ P U t
i .

Consider Bt Ă Ū t to be the set of trees T such that for each pu Ñ vq P EpT q we have ℓpuq ‰ ℓpvq,
in addition at least one of the following conditions holds,

‚ there exists a backtracking path of length 3: a path a Ñ b Ñ c Ñ d such that ℓpaq “ ℓpcq
and ℓpbq “ ℓpdq,
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‚ there exists a backtracking star: a Ñ b Ñ c and a1 Ñ b Ñ c such that ℓpaq “ ℓpa1q “ ℓpcq.

Lemma 4.6. For each t, r, i there exists a Γ̃p., t, rq such that Γ̃pT, r, tq “ Op1q uniformly in T and

xtiprq “ ztiprq `
ÿ

TPBt
i

W pT qΓ̃pT, r, tqxpT q.

Proof. We prove this lemma by induction on t. The cases t “ 0, 1 are simple, suppose that t ě 2,
and that the equation is valid for t. Recall the AMP recursion given by,

xt`1
i prq “

n
ÿ

ℓ“1

Wiℓfrpxtℓq ´

q
ÿ

s“1

n
ÿ

ℓ“1

WiℓWℓifspxt´1
i qBxpsqfrpxtℓq.

Here we omit the dependence of f on ℓ and t, i.e. frpxtℓ, ℓ, tq “ frpxtℓq. Recall that fr is a
multivariate polynomial, so by Taylor’s expansion at ztℓÑi, we can write

frpxtℓq “ frpztℓÑiq `
ÿ

sPrqs

`

xtℓpsq ´ ztℓÑipsq
˘

BxpsqfrpztℓÑiq

`
ÿ

k : k1`¨¨¨`kqě2

«

q
ź

s“1

pxtℓpsq ´ ztℓÑipsqq
ks

ks!

ff

DkfrpzℓÑiq,

(46)

where for k P Nq and x P Rq we denote by Dk
x the following differential operator

Dkgpxq “
Bk1`¨¨¨`kqgpxq

Bxp1qk1 ¨ ¨ ¨xpqqkq
.

Let etℓprq :“
ř

TPBt
ℓ
W pT qΓ̃pT, r, tqxpT q, by the induction hypothesis we have

xtℓprq “ ztℓprq ` etℓprq

“ ztℓÑiprq ` ztℓ,iprq ` etℓprq,

where we use the notation ztℓ,iprq :“ Wℓifrpzt´1
iÑℓq. Plugging this equation into (46) gives

frpxtℓq “ frpztℓÑiq `
ÿ

sPrqs

`

ztℓ,ipsq ` etℓpsq
˘

BxpsqfrpztℓÑiq

`
ÿ

k : k1`¨¨¨`kqě2

»

—

–

q
ź

s“1

´

ztℓ,ipsq ` etℓpsq
¯ks

ks!

fi

ffi

fl

DkfrpzℓÑiq,

(47)

Now, multiplying by Wiℓ on both sides and summing over ℓ gives the following

ÿ

ℓPrns

Wiℓfrpxtℓq “ zt`1
i prq `

ÿ

ℓPrns,sPrqs

Wiℓ

`

ztℓ,ipsq ` etℓpsq
˘

BxpsqfrpztℓÑiq

`
ÿ

ℓPrns, k1`¨¨¨`kqě2

Wiℓ

»

—

–

q
ź

s“1

´

ztℓ,ipsq ` etℓpsq
¯ks

ks!

fi

ffi

fl

DkfrpzℓÑiq.

(48)

The first term is obtained by the definition of zt`1
i prq, see Eq (32). The second term can be

decomposed into the two following sums,

ÿ

ℓPrns,sPrqs

WiℓWℓifrpzt´1
iÑℓqBxpsqfrpztℓÑiq `

ÿ

ℓPrns,sPrqs

Wiℓe
t
ℓpsqBxpsqfrpztℓÑiq.
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Now subtracting the Onsager term from both sides of Eq (48) gives the following

xt`1
i prq “ zt`1

i prq ´
ÿ

ℓPrns,sPrqs

WiℓWℓi

`

frpxt´1
i qBxpsqfrpxtℓq ´ frpzt´1

iÑℓqBxpsqfrpztℓÑiq
˘

`
ÿ

ℓPrns,sPrqs

Wiℓe
t
ipsqBxpsqfrpztℓÑiq(49)

`
ÿ

ℓPrns, k1`¨¨¨`kqě2

Wiℓ

»

—

–

q
ź

s“1

´

ztℓ,ipsq ` etipsq
¯ks

ks!

fi

ffi

fl

DkfrpzℓÑiq .

Denote by S1, S2 and S3 respectively, the three terms in the right hand side of the previous
equation except zt`1

i prq. One wants to prove that these three terms can be written as sums over

trees in T P Bt`1
i of terms having the form,

W pT qΓ̃pT, r, tqxpT q,

where Γ̃pT, r, tq is obtained by construction, the exact form of this term is not important, we only
need it to be bounded as n goes to infinity.

The term S2

The second term is given by the following formula,

S2 “
ÿ

ℓPrns, sPrqs

Wiℓe
t
ℓpsqBxpsqfrpztℓÑiq.

The terms in this sum are given by

etℓpsq “
ÿ

TPBt
ℓ

W pT qΓpT, s, tqxpT q,

BxpsqfrpzℓÑiq “
ÿ

k1`¨¨¨`kqďd

αk1,¨¨¨ ,kq pr, ℓ, tqks
`

ztℓÑipsq
˘ks´1 ź

uPrqsztsu

`

ztℓÑipuq
˘ku

,

with
ztℓÑipuq “

ÿ

TPUt
ℓÑi

W pT qΓpT, u, tqxpT q.

S2 can thus be interpreted as a sum over trees T P Bt`1
i constructed as follows:

‚ The root 0 has a type equal to i, and 0 has a child, say ˝, of type ℓ. This is due to Wiℓ.
‚ The vertex ˝ is the root of a tree in Bt

ℓ. This is due to the term etℓpsq.
‚ The root’s child ˝ is also the root of k1 ` ¨ ¨ ¨ ` pks ´ 1q ` ¨ ¨ ¨ ` kq additional trees in
U t
ℓÑi. This is due to the term BxpsqfrpzℓÑiq. Note that in total, ˝ has at most d ě

k1 ` ¨ ¨ ¨ ` pks ´ 1q ` ¨ ¨ ¨ ` kq ` 1 children.

By construction, we can easily see that T is in Bt`1
i .

The term S1

The first term is given by the following formula,

S1 “
ÿ

ℓPrns,sPrqs

WiℓWℓi

`

frpxt´1
i qBxpsqfrpxtℓq ´ frpzt´1

iÑℓqBxpsqfrpztℓÑiq
˘

.

Doing a Taylor expansion of the polynomial g : px, x1q ÞÑ frpxqBxpsqfrpx1q around pzt´1
iÑℓ, z

t
ℓÑiq

gives

S1 “
ÿ

ℓPrnssPrqs

WiℓWℓi

ÿ

|j|`|k|ě1

»

—

–

q
ź

u“1

´

zt´1
i,ℓ puq ` et´1

i puq

¯ju ´

ztℓ,ipuq ` etℓpuq

¯ku

pju ` kuq!

fi

ffi

fl

Dpj,kqgpzt´1
iÑℓ, z

t
ℓÑiq.
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S1 can be seen as a sum, up to multiplication factors, of the following terms

WiℓWℓi

ź

u“1

´

zt´1
i,ℓ puq ` et´1

i puq

¯ju `
ztℓ,ipuq ` etℓpuq

˘ku
`

zt´1
iÑℓpuq

˘au
`

ztℓÑipuq
˘bu

,

with the constraint that
řq

u“1pju ` kuq ě 1. To show that S1 can be seen a sum of trees T

belonging to Bt`1
i , two cases should be considered, either it exists a u such that ju ě 1 or ku ě 1.

‚ If there exists a u such that ju ě 1, we construct a tree in Bt`1 as follows:
– The root 0 has a type equal to i, and 0 has a child, say ˝, of type ℓ. This is due to
Wiℓ.

– The vertex ˝ is the root of trees in U t
ℓÑi, which is due to the multiplication by ztℓÑipuq.

– The vertex ˝ has a child, say ♢, of type i, which is due to Wℓi.
– The vertex ♢ is the root of trees in U t´1

iÑℓ, which is due to zt´1
iÑℓpuq.

Now because ju ě 1, at least one of the following holds:
– The vertex ♢ is the root of trees in Bt´1

i , which obviously results in a tree T P Bt`1
i .

– The vertex ♢ is has a child of type ℓ, which creates a backtracking path of length 3
of types ℓ Ñ i Ñ ℓ Ñ i which also results in a tree T P Bt`1

i . This child is the root

of a tree in U t´1
iÑℓ. And this is due to the term zt´1

i,ℓ .
‚ If there exists a u such that ku ě 1, we repeat the same argument. This time, the
multiplication by ztℓ,ipuq gives a backtracking star ri, i Ñ ℓ Ñ is, which results in a tree

T P Bt`1
i . Otherwise, the multiplication by etℓpuq adds a tree in Bt

ℓ which obviously results

in a final tree T belonging to Bt`1
i .

The term S3

The third term is given by the following formula,

S3 “
ÿ

ℓPrns, k1`¨¨¨`kqě2

Wiℓ

»

—

–

q
ź

s“1

´

ztℓ,ipsq ` etipsq
¯ks

ks!

fi

ffi

fl

DkfrpzℓÑiq.

Similarly to the interpretation of S2 as a sum of trees in Bt`1
i , we can repeat the same arguments

for S3. The terms that have etipsq as a multiplication factor naturally results in trees belonging
to Bt`1

i . In the other case, notice that the constraints k1 ` ¨ ¨ ¨ ` kq ě 2 implies that a term of
the form Wiℓz

t
ℓ,ipsqz

t
ℓ,ips

1q always exists, this term produces a backtracking star and thus the final

tree T belongs to Bt`1
i .

By studying the tree terms, we proved the existence of a Γ̃pT, t, t` 1q such that

xt`1
i prq “ zt`1

i `
ÿ

TPBt`1
i

W pT qΓ̃pT, r, t` 1qxpT q.

Where Γ̃pT, t, t` 1q is a function of Γ̃pT, t, tq and the activation functions’ coefficients. It remains

to check that Γ̃pT, t, t` 1q “ Op1q. This can be easily verified, and its proof will be omitted. □

Remark 4.3. The previous proof is a non-Symmetric adaptation of the techniques developed in
[BLM15] and [Hac24] in the symmetric case. Instead of terms W 2

iℓ in the symmetric case, we
handle their counterparts WiℓWℓi in the non-Symmetric case and properly interpret them as edges
of a tree. Accordingly, we rely on an Onsager term based on matrix W dWJ instead of Wd2.

Finally, we can prove Proposition 4.5 by repeating the same arguments used in the proof of
Proposition 4.2.
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Proof of Proposition 4.5. We can restrict ourselves to the case of mprq “ m and mpsq “ 0 for
s ‰ r. The m-th power of xtiprq is given by

E
`

xtiprq
˘m

´ E
`

ztiprq
˘m

“ E

¨

˝ztiprq `
ÿ

TPBt
i

W pT qΓ̃pT, r, tqxpT q

˛

‚

m

´ E
`

ztiprq
˘m

ď C
ÿ

T1PBt
i

ÿ

T2,¨¨¨ ,TmPBt
iYT t

i prq

ˇ

ˇ

ˇ

ˇ

ˇ

E
m
ź

i“1

W pTiq

ˇ

ˇ

ˇ

ˇ

ˇ

.

The key observation here is to notice that the graph obtained by merging the trees pT1, ¨ ¨ ¨ , Tmq

has an edge which is the result of the fusion of at least three edges, and this is because T1 has
a backtracking path or a backtracking star. This implies a bound on the number of edges of the
resulting graph.

□

4.6. End of proof of Theorem 3.3. We now show that the sequence of Gaussian vectors pU tq

defined in (23) by the Density Evolution equations approximate the iterations pytq defined in (44)
and (45) where the matrices pW tqtPN are independent and Gaussian.

Proposition 4.7. Let W be a random matrix defined in (3) and satisfying assumptions A-1 and
A-2, suppose in addition that W is gaussian. Let pW tqtPN be a sequence of independent copies of
W . Then for each multi-index m P Nq and each integer t ą 0 we have

max
iPrns

ˇ

ˇE
“

pyt
iq

m
‰

´ E
“

pU t
i qm

‰
ˇ

ˇ ÝÑ 0.

Remark 4.4. Recall that the random matrix pU t
1, ¨ ¨ ¨ , U t

nqJ P Rnˆq is defined such that pU t
i qiPrns

are independent and such that U t
i „ N p0, Qt

iq where pQt
iqt is a sequence of kˆk covariance matrices

defined recursively by

Qt`1
i “

ÿ

ℓPrns

siℓE
“

fpU t
ℓ , ℓ, tqfpU t

ℓ , ℓ, tq
J
‰

.

In particular, the law of U does not depend on our correlation profile.
We also recall that the iterations yt are defined by y0iÑj “ x0i and

yt`1
iÑj “

ÿ

ℓPrnsztju

W t
iℓfpytℓÑi, ℓ, tq

which implies that the conditional distribution of yt`1
iÑj given Ft :“ σtW 0, ¨ ¨ ¨ ,W t´1u is Nk

`

0, Ht`1
ij

˘

where pHt
ijqt is a sequence of q ˆ q covariance matrices defined for each t P N‹ by the following

recursion

Ht`1
ij “

ÿ

ℓPrnsztju

siℓE
“

fpytℓÑi, ℓ, tqfpytℓÑi, ℓ, tq
J
‰

.

We therefore notice that the conditional distribution of yt`1
iÑj given Ft is unchanged if we replace

the matrix W with a random symmetric matrix W̃ having the same variance profile as W . By
doing so, we can directly apply the result in [Hac24, Proposition 15].

Combining the previous results we get the following convergence for each multi-index m

max
iPrns

ˇ

ˇE
“

pxtiq
m
‰

´ E
“

pU t
i qm

‰
ˇ

ˇ ÝÑ 0.

We can then use the triangular inequality to get this same result for any multivariate polynomial
with bounded coefficients instead considering only the monomial Xm.

Proposition 4.8. Let ψ : Rq ˆrns Ñ R such that ψp., ℓq is a multivariate polynomial with bounded
degree and bounded coefficients. Then for each subset Spnq of rns with |Spnq| Ñ 8, it holds that

1

|Spnq|

ÿ

iPSpnq

E
“

ψpxti, iq
‰

´ E
“

ψpU t
i , iq

‰

ÝÑ 0.
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Finally, in order to get the convergence in probability stated in Theorem 3.3, we only need to
show that the following variance

(50) Var

«

1

Kn

ÿ

iPSpnq

ψpxti, iq

ff

ÝÑ 0

converges to zero. The proof of this convergence is similar to the proof of [Hac24, Proposition 17]
and thus is be omitted.

The proof of Theorem 3.3 follows then from Proposition 4.8 and the convergence in (50).

5. AMP with general activation functions and non-zero diagonal matrix

5.1. AMP for general activation functions. Now that we have proved the AMP convergence
result for polynomial activation functions in Theorem 3.1, we can generalize this result for non
polynomial activation functions by approximation arguments. In other words we complete the
proof of our main Theorem 2.1 still assuming that the matrix model has a zero diagonal (Xii “ 0).

We start this section with an approximation of the activation function h by polynomials in
order to use the convergence results of polynomial AMP.

Lemma 5.1. Let h be an activation function satisfying A-5 and let
`

Z1, ¨ ¨ ¨ , Zt
˘

„ DE
`

S, h,x0, t
˘

.

Let e ą 0 be a (small) real number, then there exists a set of functions ppep¨, ¨, tqq
tmax
t“1 such that for

each η P Qη, pep., η, tq is a polynomial and

E
`

hpZt
i , ηi, tq ´ pepZt

i , ηi, tq
˘2

ď e and
ˇ

ˇE
`

BhpZt
i , ηi, tq ´ BpepZt

i , ηi, tq
˘
ˇ

ˇ ď e,

for t “ 0, ¨ ¨ ¨ , tmax with the convention that Z0 “ x0 deterministic. In addition, let qRtmax
i be the

covariance matrix of the i-th row of
´

qZ
1
, ¨ ¨ ¨ , qZ

t
¯

„ DE
`

pe,x
0, S, t

˘

, then there exists δpeq such

that δpeq Ñ 0 when e Ñ 0 and

∥Rtmax
i ´ qRtmax

i ∥ ď δpeq, @i P rns.

In order to prove this lemma, we need to show that the variances of Zt
i are bounded away from

zero. To that end, we use Assumptions A-4, A-5 and A-6.

Lemma 5.2. Let S be a matrix satisfying A-2, x0 an n-dimensional vector satisfying A-4, h a
function satisfying A-5 and A-6. Following the notations of Definition 1.3 let

`

Z1, ¨ ¨ ¨ ,Zt
˘

„

DE
`

h,x0, S, t
˘

and recall the definition of the covariance matrix Rt
i P Rtˆt. Then for every t P N

there exist two constant C “ Cptq ą 0 and c “ cptq ą 0 such that

(1) The spectral norms of the covariance matrices are bounded

@n P N, @i P rns, ∥Rt
i∥ ď C.

(2) The variances of Zt
i are bounded away from zero

@n P N, @i P rns, Rt
ipt, tq ě c.

The proof of this technical lemma is given in Appendix F. The proof of the first part of
Lemma 5.1 relies on the polynomial density Lemma C.1 and the fact that the variances of Zt

i

are bounded from above and also bounded away from zero which is detailed in Lemma 5.2. The
second part uses the same proof technique described in the proof of Lemma 5.6. An immediate

consequence of this approximation is that the covariance matrices qRtmax
i are also bounded.

Let px̌tq the AMP sequence considered in Theorem 3.1. The following lemma allows us to
replace the “random” formulation of the Onsager term by a deterministic equivalent, i.e.

diag
´

W dWJBpepx̌t, ¨, tq
¯

with diag
´

V Bpepx̌t, ¨, tq
¯

.

Lemma 5.3. For each t P N there exists a constant C that does not depend on n such that:

E

»

—

–

¨

˝

ÿ

jPrns

pWijWji ´ Vijq Bpepx̌tj , ηj , tq

˛

‚

4
fi

ffi

fl

ď C{K2
n for all i P rns.
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where Vij “ τij
?
sijsji “ E rWijWjis.

The proof of this lemma is provided in Appendix D.
The following lemma gives the desired comparison of two sequences pxtq and px̌tq defined by

(51) pxtq “ AMP-Z
`

X,S, h,x0,η
˘

and px̌tq “ AMP-W
`

X,S, pe,x
0,η

˘

,

where pe is the polynomial approximation of the function h by an error margin e in the sense of
Lemma 5.1.

Lemma 5.4. Fix tmax ą 0. Let pxtq and px̌tq be two AMP sequences defined as in Eq. (51), then
there exists δpeq Ñ 0 as e Ñ 0 such that the following holds for each t “ 1, ¨ ¨ ¨ , tmax,

∥xt ´ x̌t∥n ď δpeq ` oPp1q and ∥hpxtq ´ pepx̌tq∥n ď δpeq ` oPp1q,

where oPp1q
P

ÝÝÝÑ
nÑ8

0.

Using this Lemma, we are now able to prove the AMP convergence result for general activation
functions.

Proof of Theorem 2.1 in the zero-diagonal case . Let φ : Rtmax Ñ R be a pseudo-Lipschitz func-

tion and denote xi “
`

x1i , ¨ ¨ ¨ , xtmax
i

˘J
and x̌i “

`

x̌1i , ¨ ¨ ¨ , x̌tmax
i

˘J
, without loss of generality we

omit the scalars βi and the parameters ηi by considering that φ depends also on the index i. We
have

1

n

ÿ

iPrns

φpxiq “
1

n

ÿ

iPrns

pφpxiq ´ φpx̌iqq `
1

n

ÿ

iPrns

pφpx̌iq ´ φp qZiqq `
1

n

ÿ

iPrns

pφp qZiq ´ φpZiqq.

The pseudo-Lipschitz property of φ implies that

1

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPrns

φpxiq ´ φpx̌iq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
C

n

ÿ

iPrns

∥xi ´ x̌i∥ p1 ` ∥xi∥ ` ∥x̌i∥q

ď C

˜

tmax
ÿ

t“1

∥xt ´ x̌t∥n

¸˜

1 `

tmax
ÿ

t“1

∥xt∥n `

tmax
ÿ

t“1

∥x̌t∥n

¸

.

By Lemma 5.4 we have
řtmax

t“1 ∥xt ´ x̌t∥n ď δpeq ` oPp1q, and by Theorem 3.1 applied to the test
function x ÞÑ x2 we get ∥x̌t∥n ď C ` oPp1q which also implies that ∥xt∥n ď C ` oPp1q, finally we
have

1

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPrns

φpxiq ´ φpx̌iq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď δpeq ` oPp1q.

By Theorem 3.1, we have that

1

n

ÿ

iPrns

pφpx̌iq ´ φp qZiqq “ oPp1q .

And finally by using Lemma 5.1 we get

1

n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPrns

φpZiq ´ φp qZiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď δpeq,

which concludes the proof of our main theorem. □

In order to provide a comparison between the two AMP sequences in (51), we need the bound-
edness of the spectral norm of W , a technical yet very important condition. This condition is
enforced by A-3 that controls the sparsity level of the random matrix.

Proposition 5.5. Let A-1, A-2 and A-3 hold true. Then the following bound holds true with
probability one,

sup
ně1

∥W∥ ă 8.
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The proof of this proposition is due to a result of [BVH16] and is provided in Appendix E. In
the following paragraph we give the sketch of proof of Lemma 5.4.

Proof of Lemma 5.4. The proof is basically an induction argument in which we use Lemma 5.1,
Lemma 5.3 and the AMP convergence result for polynomial activation functions. The base case
(t “ 1) is easy. Suppose now that the result is valid for all s “ 1, ¨ ¨ ¨ , t and let us prove that it
also holds for s “ t` 1. By the triangular inequality, we can write

∥xt`1 ´ x̌t`1∥n ď∥W∥∥hpxtq ´ pepx̌tq∥n
` ∥diag

`

V EBhpZtq
˘

hpxt´1q ´ diag
`

W dWJBpepx̌tq
˘

pepx̌t´1q∥n.

The first term is directly handled by the induction hypothesis as well as the bound on the spectral
norm of W (see Proposition 5.5 ). Let us now show that the second term, which corresponds to
the normalized distance between the two Onsager terms, can also be bounded by δpeq ` oPp1q.
Using the triangular inequality, this term is less than ∥∆p1q∥n`∥∆p2q∥n`∥∆p3q∥n`∥∆p4q∥n, where

∆p1q “ diag
´

V
´

EBhpZtq ´ EBpep qZ
t
q

¯¯

hpxt´1q,

∆p2q “ diag
´

V EBpep qZ
t
q

¯

`

hpxt´1q ´ pepx̌t´1q
˘

,

∆p3q “ diag
´

V
´

EBpep qZ
t
q ´ Bpepx̌tq

¯¯

pepx̌t´1q,

∆p4q “ diag
`

pV ´W dWJqBpepx̌tq
˘

pepx̌t´1q.

For ∥∆p1q∥n. We bound |rV pEBhpZtq ´ EBpep qZ
t
qqsi| by

(52)
ˇ

ˇ

ˇ
rV EBhpZtq ´ V EBhp qZ

t
qsi

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
rV EBhp qZ

t
q ´ V EBpep qZ

t
qsi

ˇ

ˇ

ˇ
ď Ce` δpeq,

where the last inequality is due to Lemma 5.1. The normalized norm of hpxt´1q can be controlled
using the Lipschitz property of h and the result of Lemma 3.2.

For ∥∆p2q∥n. We bound the real numbers rV EBpep qZ
t
qsi using inequality (52) and we conclude

using the induction hypothesis.

For ∥∆p3q∥n. We use Theorem 3.1-(19a) to show that rV pEBpep qZ
t
q ´ Bpepx̌tqqsi

P
ÝÝÝÑ
nÑ8

0 for

any sequence piq less than pnq. We then use the bounds (18) to show that E∥∆p3q∥n ÝÝÝÑ
nÑ8

0.

For ∥∆p4q∥n. Finally, we use Lemma 5.3 to show that ∥∆p4q∥n
P

ÝÝÝÑ
nÑ8

0.

Using all these bounds we finally get

(53) ∥xt`1 ´ x̌t`1∥n ď δpeq ` oPp1q.

Now, it remains to show that

∥hpxt`1q ´ pepx̌t`1q∥n ď δpeq ` oPp1q.

Using Lipschitz property of h as well as the bound (53), we get

∥hpxt`1q ´ pepx̌t`1q∥n ď δpeq ` oPp1q ` ∥hpx̌t`1q ´ pepx̌t`1q∥n .

Let φpxq “ phpxq ´ pepxqq2 a continuous function with at most polynomial growth at infinity, we
write

∥hpx̌t`1q ´ pepx̌t`1q∥2n “
1

n

ÿ

iPrns

´

φpx̌t`1
i q ´ Eφp qZt`1

i q

¯

` E∥hp qZ
t`1

q ´ pep qZ
t`1

q∥2n,

by Lemma 3.2 the first term converges to 0 in probability, and by Lemma 5.1 the second term is
bounded by e. □
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5.2. The non-zero diagonal matrix model. We have been working so far with a matrix S with
vanishing diagonal (Sii “ 0), under A-7. In [Hac24] and [BLM15], this assumption simplifies the
combinatorial derivations since it prevents the appearance of loops in the combinatorial structures.

In this section, we lift Assumption A-7 and prove that Theorem 2.1 holds for random matrices
with non zero diagonal elements. We proceed with a perturbation argument.

Consider a matrix X that satisfies A-1. Let S “ psijq1ďi,jďn be the variance profile matrix
satisfying A-2 where the diagonal entries sii are non necessarily zero. Finally, define the matrix
W as in Eq. 3, i.e.

Wij “
?
sijXij .

Let x0 and η two n dimensional vectors satisfying A-4, and h a function satisfying A-5 and A-6.
Consider the sequence defined by

`

xt
˘

tPN :“ AMP-Z
`

X,S, h,x0,η
˘

.

We remind below the iteration expression:

xt`1 “ Wh
`

xt,η, t
˘

´ diag
`

V E
“

BhpZt,η, tq
‰˘

hpxt´1,η, t´ 1q ,

where V “ pvijq “ pτij
?
sijsjiq and pZ1, ¨ ¨ ¨ , Ztq „ DE

`

h,x0, S, t
˘

.

In order to proceed, define S̃ to be equal to S except the diagonal elements that we set to zero;

s̃ij “ p1 ´ δijqsij .

Define matrix ĂW by ĂWij “
a

s̃ijXij , and the Rn-valued sequences px̃tqtPN by

`

x̃t
˘

tPN :“ AMP-Z
´

X, rS, h,x0,η
¯

,

where the iterations are given by

x̃t`1 “ ĂWh
`

x̃t,η, t
˘

´ diag
´

rV E
”

BhpZ̃t,η, tq
ı¯

hpx̃t´1,η, t´ 1q .

Here rV “

´

rS d rSJ

¯d1{2

d T “ pp1 ´ δijqvijq and pZ̃1, ¨ ¨ ¨ , Z̃tq „ DE
´

h,x0, S̃, t
¯

.

Since this sequence is generated using a matrix model with vanishing diagonal, we can apply
the AMP result proven so far, i.e. for every uniformly bounded sequence pβiqiPrns and every PL

test function φ : Rtmax`1 Ñ R, we have

1

n

ÿ

iPrns

βiφpηi, x̃
1
i , ¨ ¨ ¨ , x̃tmax

i q ´ βiφpηi, Z̃
1
i , ¨ ¨ ¨ , Z̃tmax

i q
P

ÝÝÝÑ
nÑ8

0 .

In order to prove the same convergence result for pxtqtPN, we prove that xt is a small pertur-
bation of x̃t as n grows to infinity.

Lemma 5.6. For each i P rns and t ď tmax recall that Rt
i (respectively R̃t

i) is the covariance

matrix of Z⃗t
i :“ rZ1

i , ¨ ¨ ¨ , Zt
i sJ (respectively

⃗̃
Zt
i ). Then ∥Rt

i ´ R̃t
i∥ converges to 0 as n grows to

infinity.

Proof. We prove this result by induction on t. For t “ 1 we write:

R1
i ´ R̃1

i “
ÿ

ℓPrns

siℓ
`

hpx0ℓ , ηℓ, 0q
˘2

´
ÿ

ℓPrns : ℓ‰i

siℓ
`

hpx0ℓ , ηℓ, 0q
˘2

“ sii
`

hpx0i , ηi, 0q
˘2
.

Hence
ˇ

ˇ

ˇ
R1

i ´ R̃1
i

ˇ

ˇ

ˇ
ď

C

Kn
ÝÝÝÑ
nÑ8

0 .

Suppose now that for all s ď t the quantity ∥Rs
i ´ R̃s

i ∥ converges to zero and let us now prove that
this convergence also holds at iteration step t` 1. To this end, we must study the pt` 1, s` 1q-th
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entry of the pt` 1q ˆ pt` 1q of the covariance matrices Rt`1
i and R̃t`1

i . We have

(54) Rt`1
i pt` 1, s` 1q ´ R̃t`1

i pt` 1, s` 1q

“
ÿ

ℓPrns : ℓ‰i

siℓ

´

E
“

hpZt
ℓ , ηℓ, tqhpZs

ℓ , ηℓ, sq
‰

´ E
”

hpZ̃t
ℓ , ηℓ, tqhpZ̃s

ℓ , ηℓ, sq
ı¯

` siiE
“

hpZt
i , ηi, tqhpZs

i , ηi, sq
‰

.

Using the fact that E
“

hpZs
i , ηi, sq

2
‰

is bounded by a constant that depends only on t and using
Cauchy-Schwartz inequality, we have

ˇ

ˇsiiE
“

hpZt
i , ηi, tqhpZs

i , ηi, sq
‰
ˇ

ˇ ď
C

Kn
.

In order to bound the first term of the right hand side of Eq. (54), first notice that since h is
Lipschitz then H : px1, x2q ÞÑ hpx1qhpx2q is PL, i.e. there exists C ą 0 such that

@x, y P R2 |Hpxq ´Hpyq| ď C∥x´ y∥2 p1 ` ∥x∥2 ` ∥y∥2q .

Let Σ2 P R2ˆ2 and Σ̃2 P R2ˆ2 be the covariance matrices of the vectors Zt,s
ℓ “ pZt

ℓ , Z
s
ℓ q and

Z̃t,s
ℓ “ pZ̃t

ℓ , Z̃
s
ℓ q respectively. Then given ξ „ N2p0, I2q we can write
ˇ

ˇ

ˇ
E
”

HpZt,s
ℓ q ´HpZ̃t,s

ℓ q

ı
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
E
”

HpΣξq ´HpΣ̃ξq

ı
ˇ

ˇ

ˇ

ď C∥Σ ´ Σ̃∥E
”

∥ξ∥2
´

1 ` ∥Zt,s
ℓ ∥2 ` ∥Z̃t,s

ℓ ∥2
¯ı

.

Using Lemma 5.2 it is easy to see that the factor

E
”

∥ξ∥2
´

1 ` ∥Zt,s
ℓ ∥2 ` ∥Z̃t,s

ℓ ∥2
¯ı

.

is bounded by a constant depending only on tmax. Now using the induction hypothesis we obtain
the following inequality:

∥Σ ´ Σ̃∥ ď ∥Σ2 ´ Σ̃2∥1{2 ď ∥Rt
ℓ ´ R̃t

ℓ∥1{2 ÝÝÝÑ
nÑ8

0

Here we used the fact that the matrix squared root is 1{2-Hölder continuous on the set of symmetric
positive matrices, the proof in in Appendix G. Note that by A-2 we have sij ď CSK

´1
n , plugging

this into (54) gives the desired result. □

Remark 5.1. Notice that we can also specify the convergence rate of ∥Rt
i ´ R̃t

i∥ to 0. In fact we
can show that

∥Rt
i ´ R̃t

i∥ ď
C

K
1{2t
n

.

Proof of Theorem 2.1 in the general case. We begin by proving the following convergence by
induction on t,

(55) ∥xt ´ x̃t∥n
P

ÝÝÝÑ
nÑ8

0 .

For t “ 1, knowing that the x0i ’s live on a compact Qx we get

(56) ∥x1 ´ x̃1∥2n “ ∥pW ´ W̃ qhpx0q∥2n “
1

n

n
ÿ

i“1

siiX
2
iihpx0i q2 ď

C

Kn

ˆřn
i“1X

2
ii

n

˙

,

thus ∥x1 ´ x̃1∥2n
P

ÝÝÝÑ
nÑ8

0. Now assume that this holds for all s P t1, ¨ ¨ ¨ , tu and let us show that

it is also satisfied for t` 1, i.e.

∥xt`1 ´ x̃t`1∥n
P

ÝÝÝÑ
nÑ8

0 .

Let us write the difference between xt`1 and x̃t`1,

xt`1 ´ x̃t`1 “ Whpxtq ´ W̃hpx̃tq

` diag
`

V E
“

BhpZt
q
‰˘

hpxt´1q ´ diag
´

Ṽ E
”

BhpZ̃t
q

ı¯

hpx̃t´1q ,
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We first show that

∥Whpxtq ´ W̃hpx̃tq∥n
P

ÝÝÝÑ
nÑ8

0 .

We have

(57) ∥Whpxtq ´ W̃hpx̃tq∥n ď∥pW ´ W̃ qhpx̃tq∥n`∥W phpxtq ´ hpx̃tqq∥n
Using the fact that the x̃ti are bounded by a constant C “ Cptq independent of n we can directly
see that the first term of (57) converges to zero. For the second term, we use the bound on ∥W∥
(see Proposition 5.5) as well as the Lipschitz property of h and the induction hypothesis.

Now let us study the term

(58) diag
`

V E
“

BhpZt
q
‰˘

hpxt´1q ´ diag
´

Ṽ E
”

BhpZ̃t
q

ı¯

hpx̃t´1q .

This term can be decomposed as follows

diag
´

pV ´ Ṽ qE
“

BhpZt
q
‰

¯

hpxt´1q

` diag
´

Ṽ E
”

BhpZt
q ´ BhpZ̃t

q

ı¯

hpxt´1q

` diag
´

Ṽ E
”

BhpZ̃t
q

ı¯

`

hpxt´1q ´ hpx̃t´1q
˘

:“ ∆1 ` ∆2 ` ∆3 .

Using the Lipschitz property of h we can bound ∥∆3∥2n as follows:

∥∆3∥n “

∥∥∥diag ´Ṽ E
”

BhpZ̃t
q

ı¯

`

hpxt´1q ´ hpx̃t´1q
˘

∥∥∥
n

ď

∥∥∥diag ´Ṽ E
”

BhpZ̃t
q

ı¯
∥∥∥ ∥hpxt´1q ´ hpx̃t´1q∥n

ď Cmax
jPrns

!

E
ˇ

ˇ

ˇ
BhpZ̃t

jq

ˇ

ˇ

ˇ

)

∥xt´1 ´ x̃t´1∥n .

Recall that max
jPrns

!

E
ˇ

ˇ

ˇ
BhpZ̃t

jq

ˇ

ˇ

ˇ

)

is bounded by C “ Cptq, using the induction hypothesis we prove

that ∥∆3∥n
P

ÝÝÝÑ
nÑ8

0.

In order to bound the first term ∥∆1∥n, notice that V ´ Ṽ is a diagonal matrix whose entries
are bounded by C{Kn, thus∥∥∥diag ´pV ´ Ṽ qE

“

BhpZt
q
‰

¯
∥∥∥ ď

C

Kn
max
iPrns

␣

E
ˇ

ˇBhpZt
iq
ˇ

ˇ

(

“ O
ˆ

1

Kn

˙

,

where the last equality is by the boundness of max
iPrns

␣

E
ˇ

ˇBhpZt
iq
ˇ

ˇ

(

. Now write

hpxt´1q “
`

hpxt´1q ´ hpx̃t´1q
˘

` hpx̃t´1q,

by the induction hypothesis we clearly see that ∥hpxt´1q ´ hpx̃t´1q∥n
P

ÝÝÝÑ
nÑ8

0, in addition we

know that ∥hpx̃t´1q∥2n ´ E
∥∥∥hpZ̃t´1q

∥∥∥2
n

P
ÝÝÝÑ
nÑ8

0 so by bounding E
∥∥∥hpZ̃t´1q

∥∥∥2
n
we get that the

probability of ∥hpxt´1q∥n not being bounded converges to 0. Finally ∥∆1∥n
P

ÝÝÝÑ
nÑ8

0.

For ∥∆2∥n, we use Lemma 5.6 to bound
∥∥∥diag ´Ṽ E

”

BhpZt
q ´ BhpZ̃t

q

ı¯
∥∥∥ by C{Kn and finally

get ∥∆2∥n
P

ÝÝÝÑ
nÑ8

0. To sum up, we have proved that the difference between the two Onsager

terms (58) has a normalized norm converging to 0. Finally, we have proved (56) by induction,
i.e. x̃t asymptotically approximates xt in terms of normalized norm. Now we are able to use
the convergence result of the sequence px̃tqt to prove the convergence of x̃t as n grows to 8.

Let φ : Rtmax Ñ R be a pseudo-Lipschitz function and denote xi “
`

x1i , ¨ ¨ ¨ , xtmax
i

˘J
and x̃i “
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`

x̃1i , ¨ ¨ ¨ , x̃tmax
i

˘J
, and without loss of generality we omit the scalars βi and the parameters ηi by

considering that φ depends also on the index i. We have

1

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

φpxiq ´ φpZ⃗t
i q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

φpxiq ´ φpx̃iq

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

φpx̃iq ´ φp
⃗̃
Zt
i q

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

φp
⃗̃
Zt
i q ´ φpZ⃗t

i q

ˇ

ˇ

ˇ

ˇ

ˇ

“: Θ1 ` Θ2 ` Θ3 .

Using the pseudo-Lipschitz property of φ we get the following

Θ1 ď
C

n

n
ÿ

i“1

∥xi ´ x̃i∥ p1 ` ∥xi∥ ` ∥x̃i∥q

ď
C

n

˜

tmax
ÿ

t“1

∥xt ´ x̃t∥2
¸

1
2
˜

n
ÿ

i“1

p1 ` ∥xi∥ ` ∥x̃i∥q
2

¸
1
2

ď
C

n

˜

tmax
ÿ

t“1

∥xt ´ x̃t∥

¸˜

n`

tmax
ÿ

t“1

∥xt∥2 ` ∥x̃t∥2
¸

1
2

ď C

˜

tmax
ÿ

t“1

∥xt ´ x̃t∥n

¸˜

1 `

tmax
ÿ

t“1

∥xt∥n `

tmax
ÿ

t“1

∥x̃t∥n

¸

.

Then, by using (56) we get Θ1
P

ÝÝÝÑ
nÑ8

0. The term Θ2 converges to 0 in probability by Theorem 2.1

applied with zero diagonal matrix model. As for Θ3 we use the pseudo-Lipschitz property of φ as
well as Lemma 5.6. This ends the proof for Theorem 2.1.

Appendix A. Proof of Theorem 2.2

We prove here the AMP result for non-centered matrices described in Theorem 2.2.
We follow the general idea described in [FVRS22], which is to reduce the problem to an AMP

with centered random matrix model and apply Theorem 2.1. To this end, write the following,

xt`1 “ λ
@

v, htpx
t,ηq

D

u `Whtpx
t,ηq ´ diag

`

V EBhtpZ
t ` µtu,ηq

˘

ht´1pxt´1,ηq

“ µt`1u `Whtpx
t,ηq ´ diag

`

V EBhtpZ
t ` µtu,ηq

˘

ht´1pxt´1,ηq ` δt`1u,

where δt :“ λ
@

v, ht´1pxt´1,ηq
D

´ µt. One should think of δt`1u as an error term, we will show

later that this term has a negligible effect. Define now the following sequence
`

ỹt
˘

tPN as follows,

ỹ0
“ x0 and ỹt :“ xt ´ µtu for t ě 1,

this sequence satisfies the following recursion,

ỹt`1
“ Wgtpỹ

t,v,ηq ´ diag
`

V EBgtpZ
t,v,ηq

˘

gt´1pỹt´1,v,ηq ` δt`1v,(59)

where the function gtpx, v, ηq with parameters v and η is given by,

gtpx, v, ηq :“ htpx` λv, ηq @x P R.

One can clearly see that this function satisfies the same assumptions as ht. Now define the following
AMP algorithm pytqtPN by

(60)

#

y0 “ x0,

yt`1 “ Wgtpy
t,v,ηq ´ diag

`

V EBgtpZ
t,v,ηq

˘

gt´1pyt´1,v,ηq ,

where
`

Z1, ¨ ¨ ¨ ,Zt
˘

„ ĄDE
`

h,x0, S, t,u,v
˘

,

in the sense of Definition 2.6. A key observation is that
`

Z1, ¨ ¨ ¨ ,Zt
˘

„ DE
`

g,x0, S, t
˘

.
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Hence Theorem 2.1 applies for the recursion (60) and yields that for any pseudo-Lipschitz test
function φ : Rt`1 Ñ R it holds that

(61)
1

n

n
ÿ

i“1

βiφ
`

ηi, y
1
i , ¨ ¨ ¨ , yti

˘

´ βiE
“

φ
`

ηi, Z
1
i , ¨ ¨ ¨ , Zt

i

˘‰ P
ÝÝÝÑ
nÑ8

0 .

In order to prove our result, it suffices to show that the error term δt`1u in Eq. (59) is negligible
and that for all t one has yt « ỹt. To this end, we want to prove by induction on t that,

(62) δt
P

ÝÝÝÑ
nÑ8

0 and ∥ỹt
´ yt∥n

P
ÝÝÝÑ
nÑ8

0, for all t ě 1.

For t “ 1, we have δ1 “ 0 and ỹ1
“ y1. Suppose that (62) is true for t, and let us prove that this

remains true for t` 1 as well. Let us begin with δt`1. We have the following

δt`1 “ λ
ÿ

iPrns

vi
`

gtpỹ
t
iq ´ EgtpZt

i q
˘

“ λ
ÿ

iPrns

vi
`

gtpỹ
t
iq ´ gtpy

t
iq
˘

` λ
ÿ

iPrns

vi
`

gtpy
t
iq ´ EgtpZt

i q
˘

:“ T1 ` T2 .

Using the Lipschitz property of the function gt as well as the induction hypothesis, namely, ∥ỹt ´

yt∥n
P

ÝÝÝÑ
nÑ8

0 we directly get that T1
P

ÝÝÝÑ
nÑ8

0. As for the second term, T2
P

ÝÝÝÑ
nÑ8

0 is a direct

application of Theorem 2.1, i.e. Eq. (61).

It remains to show that ∥ỹt`1 ´ yt`1∥n
P

ÝÝÝÑ
nÑ8

0. Using the recursive definition of pỹtqt and

pytqt in (59) and (60) we can write the following;

ỹt`1 ´ yt`1 “ W
`

gtpỹq ´ gtpy
tq
˘

´ diag
`

V EBgtpZ
t
q
˘ `

gt´1pỹt´1q ´ gt´1pyt´1q
˘

` δt`1u .

The normalized norm of the first term can be easily handled using the Lipschitz property of the
function gt as well as the induction hypothesis, we also use Proposition 5.5 which ensures the
boundness of the spectral norm ∥W∥. As for the second term, we similarly show that the quantity
∥gt´1pỹt´1q ´ gt´1pyt´1q∥n vanishes, in probability. It remains to show that ∥diag

`

V EBgtpZ
t
q
˘

∥
is bounded as n goes to infinity, this clearly holds as Bgt is the derivative of a Lipschitz function
and thus is bounded.

Finally, we have proved that ∥ỹt`1´yt`1∥n
P

ÝÝÝÑ
nÑ8

0 which ends the induction argument. Using

(62) and the AMP result of the sequence pytqt we directly deduce an AMP result of the sequence
pỹtqt.

Appendix B. Elements of proof of Lemma 3.2

Lemma B.1. Let pmnq and pσ2
nq be two bounded sequences and let pνnq be the sequence of Gaussian

measures with means mn and variances σ2
n. Let pµnq be any sequence of probability measures such

that the following holds for each k P N,

(63)

ż

xkdµn ´

ż

xkdνn ÝÝÝÑ
nÑ8

0 .

Then for any continuous function ψ : R Ñ R such that |φpxq| ď Cp1 ` |x|mq for some constant
C ą 0 and some integer m we have

(64)

ż

ψpxqdµn ´

ż

ψpxqdνn ÝÝÝÑ
nÑ8

0 .

Proof. First, it is sufficient to show that from any subsequence of pnq we can extract a further
subsequence such that the convergence in (64) holds along this subsequence. So without loss of
generality we only prove that if (63) holds along the sequence pnq then there exists a subsequence
of pnq along which (64) holds.

The sequence of probability measures pνnq is tight because pmnq and pσ2
nq are bounded, thus we

can extract a subsequence of pnq, which also be denoted as pnq, such that pνnq converges weakly
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to a probability measure ν. Consider now the moment generating function Φνn of νn defined on
R as follows,

Φνn
ptq “

ż

etxdνnpxq “ exppmnt` σ2
nt

2{2q, t P R.

This function can be viewed as a restriction to the real line of the following holomorphic function

Φνn
pzq “

ż

ezxdνnpxq “ exppmnz ` σ2
nz

2{2q, z P C.

Notice that the sequence pΦνnq is uniformly bounded on compact sets of C, thus there exists a
holomorphic function Φ and a subsequence of pnq such that pΦνnq converges uniformly to Φ on
compact sets. This implies the pointwise convergence of the moment generating function pΦνn

ptqq

to Φptq so by a convergence result in [Cur42, Theorem 3] and the uniqueness of the weak limit, we
get Φptq “ Φνptq. The convergence of pΦνn

ptqq to Φνptq implies the convergence of the moments,
and by (63) we get

(65)

ż

xkdµn ÝÝÝÑ
nÑ8

ż

xkdν,

we also know that Φν characterizes ν [Cur42, Theorem 1], thus ν is determined by its moments,
so pµnq converges weakly to ν. Let ψ be a function as in the lemma and let Xn and X be random
variables with distributions µn and ν respectively, we want to prove that ErψpXnqs ÝÝÝÑ

nÑ8
ErψpXqs,

this follows from the convergence in distribution of pψpXnqq to ψpXq and the uniform integrability
of pψpXnqq. The latter is due the following observation

sup
nPN

E
“

pψpXnqq2
‰

ď C2 sup
nPN

E
“

p1 ` |Xn|mq2
‰

“ C2 sup
nPN

ż

p1 ` |x|mq2dµnpxq ă 8 .

The last inequality is due to the convergence of the moments (65). □

Remark B.1. Results of Lemma B.1 can be extended to probability measures µ on Rd by Cramér–Wold
theorem, i.e. considering the push-forward probability measure µt by the map x ÞÑ xx, ty for each
t P Rd.

Remark B.2. We can also extend Lemma B.1 to the case where pµnq and pνnq are sequences of
random probability measure and where we replace both two convergence statements by convergence
in probability formulations. The proof follows from the subsequence criterion [Kal02, Lemma 3.2].

Appendix C. Polynomial approximation

The following lemma states a basic density result of polynomial functions in the Hilbert space
L2pµq where µ is a Gaussian measure. The polynomial approximation is shown to hold uniformly
on certain sets of Gaussian measures pµσqσPS .

Lemma C.1. [Hac24] Let Q Ă R a compact set and h : R ˆ Q Ñ R a function satisfying the
following properties. (i) There exists a fixed number L ą 0 such that uniformly in η P Q,

|hpx, ηq ´ hpy, ηq| ď L|x´ y| , @px, yq P R2 .

(ii) There exists a continuous non-decreasing function κ : R` Ñ R` with κp0q “ 0 such that

|hpx, ηq ´ hpx, η1q| ď κp|η ´ η1|q p1 ` |x|q , @x P R , @pη, η1q P Q2 .

Let 0 ă σmin ď σmax and ε ą 0 be fixed, and ξ „ N p0, 1q.
There exists a function gε : RˆQ Ñ R such that for every η P Q, x ÞÑ gεpx, ηq is a polynomial,

and uniformly in η P Q and σ P rσmin, σmaxs,

E phpσξ, ηq ´ gεpσξ, ηqq
2

ď ε and |E Bxhpσξ, ηq ´ E Bxgεpσξ, ηq| ď ε .

Proof. Let δ ą 0 and consider a δ-covering of the compact set Q with balls centered in tηkukPrKs.
Fix k P rKs and consider the function x ÞÑ hpx, ηkq. By the density of polynomials in the space
L2pN p0, σ2

maxqq, there exists a polynomial x ÞÑ gεpx, ηkq such that

E phpσmaxξ, ηkq ´ gεpσmaxξ, ηkqq
2

ď
ε

4
.
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Let η P Q and ηk such that |η´ ηk| ď δ and put gεpx, ηq :“ gεpx, ηkq for such η. By the properties
of function h, we have

E phpσmaxξ, ηq ´ gεpσmaxξ, ηqq
2

ď 2E phpσmaxξ, ηq ´ hpσmaxξ, ηkqq
2

`2E phpσmaxξ, ηkq ´ gεpσmaxξ, ηkqq
2
,

ď 2L2κpδq2E p1 ` σmax|ξ|q
2

`
ε

2
.

Using the properties of κ we can choose δ ą 0 small enough so that

E phpσmaxξ, ηq ´ gεpσmaxξ, ηqq
2

ď ε .

Let σ P rσmin, σmaxs, denote φpxq :“ hpx, ηq ´ gεpx, ηq. A change of variable yields

Eφpσξq2 ď
σmax

σmin
Eφpσmaxξq2 ď

σmax

σmin
ε .

By Stein’s integration by parts lemma we also have

ˇ

ˇEφ1pσξq
ˇ

ˇ “
1

σ
Erξφpσξqs ď

1

σmin

a

Eφpσξq2 ď

c

σmax

pσminq3

?
ε ,

which concludes the proof. □

Appendix D. Proof of Lemma 5.3

Proof of Lemma 5.3. In this proof, we use the framework introduced in Section 4.2. Let us put
pj :“ Bppx̌tj , ηj , tq as a simplification of the notations, the expectation can be developed as follows,

E

»

—

–

¨

˝

ÿ

jPrns

pWijWji ´ Vijq pj

˛

‚

4
fi

ffi

fl

“
ÿ

j1,j2,j3,j4Prns

E

«˜

4
ź

ℓ“1

pWijℓWjℓi ´ Vijℓq

¸

pj1pj2pj3pj4

ff

:“
ÿ

j1,j2,j3,j4Prns

Eφpj1, j2, j3, j4q ,

with pj having the following form

pj “

d´1
ÿ

ℓ“0

p1 ` ℓqαℓpj, tq
`

x̌tj
˘ℓ
,

notice now that by using Lemma 4.6, we can easily see pj as a sum over unmarked trees with root
type j, with depth at most t and with each vertex having at most d ´ 1 children, the weight of
the trees (i.e. the terms W pT q, Γ̃pT q and xpT q) are the same as in Lemma 4.6.

pj “
ÿ

TPŪt
j

W pT qΓ̃pT qxpT q .

Thus, the quantity φpj1, j2, j3, j4q above can be written as a sum over trees as follows:

φpj1, j2, j3, j4q “
ÿ

pT1,T2,T3,T4qP

Ūt
j1

ˆŪt
j2

ˆŪt
j3

ˆŪt
j4

ψpT1, T2, T3, T4q,

ψpT1, T2, T3, T4q :“
4
ź

ℓ“1

pWijℓWjℓi ´ VijℓqW pTℓqΓ̃pTℓqxpTℓq .

(66)

In the case where j1, j2, j3 and j4 are distinct, the above sum can interpreted as a sum over trees
having the structure described in Figure 4. these are trees having a root of type i, this root has
four children of types j1, j2, j3 and j4, each one of these four vertices has a child of type i and is
also the planted root of a tree of length t ´ 1. Let us denote by Si the set of all these trees. Let
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Figure 4. Tree structure.

T P Si a tree parameterized by pT1, T2, T3, T4q P Ū t
j1

ˆ Ū t
j2

ˆ Ū t
j3

ˆ Ū t
j4

and let µ be the number of
edges of T , i.e.

µ “ 8 `

4
ÿ

ℓ“1

|EpTℓq|.

Following the proof of Proposition 4.2, we know that

(67) |EψpT1, T2, T3, T4q| ď CK´µ{2
n ,

Let us now compute the number of non vanishing contributions in φpj1, j2, j3, j4q. A term
EψpT1, T2, T3, T4q vanishes if there exists an ℓ “ 1, 2, 3, 4 such that neither the edge pi Ñ jℓq
nor pjℓ Ñ iq belongs to set of edges of the trees T1, ¨ ¨ ¨ , T4 or if there exists another edge in
T1, ¨ ¨ ¨ , T4 which occurs once, in other words, if we consider the graph G obtained by identifying
the vertices of the same type in T then T has a non vanishing contribution if all the edges are
covered in G at least twice and the edges tpi, jℓq | ℓ “ 1, ¨ ¨ ¨ , 4u at least three times, then:

µ ě 2 p|EpGq| ´ 4q ` 3 ˆ 4 “ 2|EpGq| ` 4.

Notice that G is a connected graph (there exists a path from any vertex of G to i), then

|V pGq| ď |EpGq| ` 1 ď µ{2 ´ 1.

The vertices except ti, j1, j2, j3, j4u can have arbitrary types from a set of at most CKn types, so
we get

|Eφpj1, j2, j3, j4q| ď CK´µ{2
n Kµ{2´1´5

n “ CK´6
n ,

In addition, we have

ˆ

Kn

4

˙

ď CK4
n choices for quadruples pj1, j2, j3, j4q with distinct elements,

this means that
ÿ

j1,j2,j3,j4Prns

distinct

|Eφpj1, j2, j3, j4q| ď CK´2
n .

A similar argument can be used to analyze the other cases where j1, j2, j3, j4 are not necessarily
distinct.

□

Appendix E. Proof of Proposition 5.5

We begin by decoupling the entries of our random matrix W using triangular inequality twice

pE∥W∥pq
1{p

ď pEp∥U∥ ` ∥L∥qpq
1{p

ď pE∥U∥pq
1{p

` pE∥L∥pq
1{p

,

where U and L are nˆn triangular matrices corresponding to the upper part (including diagonal)
and lower part of W respectively. Notice that U can be seen as an n ˆ n random matrix with
independent entries having the following variance profile

suij “

"

sij if i ď j
0 otherwise.
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Following the notations of [BVH16] we define

σ1 “ max
i

˜

ÿ

jěi

sij

¸1{2

, σ2 “ max
j

˜

ÿ

iďj

sij

¸1{2

, σ˚ “ max
iďj

?
sij .

Now using the results of [BVH16] we get

´

E∥U∥2 logpnq
¯1{2 logpnq

À σ1 ` σ2 ` σ˚plogpnqqpρ_1q{2

À 1 `

d

plogpnqqρ_1

Kn
.

Using assumption A-2 we get
`

E∥U∥2 logpnq
˘1{2 logpnq

ď C and with a similar treatment to L we

finally get
`

E∥W∥2 logpnq
˘1{2 logpnq

ď C. Using Markov’s inequality,

P r∥W∥ ě Ces ď
1

n2
.

Finally, using Borel-Cantelli’s lemma we get

P
„

sup
n
∥W∥ ă 8

ȷ

“ 1.

Appendix F. Proof of Lemma 5.2

We prove both results by induction on t. The proof of the first item is very similar to [Hac24,
Lemma 1] and thus will be omitted. Let us now prove the second item. For t “ 1 we have

R1
i p1, 1q “

řn
ℓ“1 siℓ

`

hpx0ℓ , ηℓ, 0q
˘2

ě infnPN infiPrns

`

hpx0i , ηi, 0q
˘2řn

ℓ“1 siℓ, using assumptions A-2,
A-4 and A-6-(1) we get the result. Suppose now that that exists c ą 0 such that

@n P N,@i P rns, σi :“
b

Rt
ipt, tq ě c.

Let ξ „ N p0, 1q, we can write

Rt`1
i pt` 1, t` 1q “

n
ÿ

ℓ“1

siℓE
`

hpZt
ℓ , ηℓ, tq

˘2
“

n
ÿ

ℓ“1

siℓE phpσℓξ, ηℓ, tqq
2

ě E phpσ‹ξ, η‹, tqq
2

n
ÿ

ℓ“1

siℓ,

where pσ‹, η‹q is such that E phpσ‹ξ, η‹, tqq
2

“ minℓPrns E phpσℓξ, ηℓ, tqq
2
. Let D ą 0 be as in A-6-

(2), using the induction hypothesis and the previous result we can see that 0 ă c ď σ‹ ď C, using
this gives the following

E phpσ‹ξ, η‹, tqq
2

“
1

σ‹

?
2π

ż

R
phpx, η‹, tqq

2
expp´x2{2σ2

‹qdx

ě
1

C
?
2π

ż

r´D,Ds

phpx, η‹, tqq
2
expp´x2{2σ2

‹qdx

ě
expp´D2{2σ2

‹q

C
?
2π

ż

r´D,Ds

phpx, η‹, tqq
2
dx

ě
expp´D2{2c2q

C
?
2π

inf
ηPQη

ż

r´D,Ds

phpx, η, tqq
2
dx .

Finally assumption A-6-(2) gives the result.
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Appendix G. Hölder continuity of the squared root

Lemma G.1. The function X ÞÑ X1{2 is 1
2 -Hölder continuous on Sn

` (the set of symmetric
positive matrices).

Proof. Let A,B P Sn
`, it suffices to show the following inequality,

∥A´B∥2 ď ∥A2 ´B2∥.

Let λ be an eigenvalue of A´B such that |λ| “ ∥A´B∥, then there exists u P Rn of norm 1 such
that

pA´Bqu “ λu.

We can write the following

A2 ´B2 “ pA´Bq2 `BpA´Bq ` pA´BqB,

taking the quadratic form of this matrix at u gives

∥A2 ´B2∥ ě uJpA2 ´B2qu “ λ2 ` 2λuJBu .

We can assume without loss of generality that λ ě 0, having that uJBu ě 0 gives

∥A2 ´B2∥ ě λ2 ` 2λuJBu ě λ2 “ ∥A´B∥2.

□

This result is used in the proof of Lemma 5.6.
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