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Abstract

In this work, a static relaying protocol, calledecode or Quantize and Forwar@@oQF), is
introduced for half duplex single-relay networks, and ierfprmance is studied in the context of
communications over slow fading wireless channels. Th@gsed protocol is inspired by the so-called
Compress-and-ForwardCF) but only needs statistical Channel State Informatibithe Transmitter
(CSIT). First, we analyze the behavior of the outage prditabP, of the proposed protocol as the
SNR p tends to infinity. In this case, we prove thetP, converges to a constat We refer to this
constant as theutage probability gairand we derive its closed-form expression for a general @éss
wireless channels that includes Rayleigh and Rice. We duntlore prove that the DoQF protocol has the
best achievable outage gain in the wide class of half-dugtiatic relaying protocols and we minimize
& w.r.t the power allocation to the source and the relay anddtivations of the slots. Next, we focus
on Rayleigh channels to derive tlversity-Multiplexing Tradeoff(DMT) of the DoQF. Our results

show that the DoQF achieves the 2 by 1 MISO DMT upper-boundrfoltiplexing gainsr < 0.25.
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I. INTRODUCTION

Relaying has become a widely accepted means of cooperatianreéless networks. In this
paper, we focus on networks composed of one source, on@alisti and one relay that operates
under the half-duplex constraing., the relay can either receive or transmit, but not both at the
same time. The relay thus listens to the source signal dariogrtain amount of time (the first
slot) and is allowed to transmit towards the destinatiorinduthe rest of the time (the second
slot).

A wide range of relaying protocols have been proposed sd/fast of these protocols belong
to one of the following families of relaying schemes: Amypldnd Forward (AF) [1], [2], [3],
Decode and Forward (DF) [4], [5], [6], [7] and Compress andweod (CF) [4], [8], [9], [10],
[11]. The first classical family of relaying protocols is foeed by Amplify and Forward (AF)
protocols for which the relay retransmits a scaled versibitsoreceived signal. A second well
known family of protocols is formed by the Decode and Forw@é&) approaches. In this case,
the relay listens to the source during the first slot of trassimn and tries to decode the source
message. If it succeeds, the relay forwards the (re-codmace message during the second
slot. In this context, Azariamt al. [7] proposed adynamicversion of the DF (DDF, Dynamic
Decode and Forward) in which the slots durations are supptwsbe adaptive as a function of
the (random) state of the source-relay channel. AlthouglDIBF is attractive from a theoretical
point of view, an implementation of the DDF requires the ukeaulers-decoders with adaptive
length. To the best of our knowledge, the design of such céafethe DDF is still in its early
stages [12], [13], [14]. We now go back to tetatic protocols for which the relay listening time
is constant and thus regardless of the channels realizafina of the most widespreadatic
DF protocols is the so-calledon orthogonalDF [4] (as opposed to therthogonal DF [5]).
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By “non orthogonal” it is meant that the source and the relsy amultaneously transmitting

during the second slot. The non orthogonal DF will be simmgignated as DF in the rest of
this paper. Finally, another classical family of relayingtocols is the Compress and Forward
(CF) [4], 8], [9], [10], [11]. In the standard version of ti@F [8], the relay uses a Wyner-Ziv

encoder [15] to produce a source encoded version of itsuegsignal and forwards it assuming
that the destination disposes of a side information (theadigeceived on the source-destination
link). Moreover, the relay is assumed to have perfect kndgdeof the the relay-destination and
source-destination channel gains. In order to overcom&@Wneer-Ziv encoder and/or the perfect
CSIT assumption, a few strategies inspired by the CF scheave &lso been proposed in the
literature. We cite for example [4], [11] where the stronguamption of perfect knowledge by

the relay of the source-destination and the relay-desimathannels is replaced by a quantized
feedback link from the destination to the relay. In [11], ttase of no CSIT at the relay is also
treated and the performance degrades dramatically. In yE@or quantization is performed by

carefully choosing the relay data rate in order to have bidiéink between relay and destination
and then applies 8uccessive Interference Cancel(&C) at the destination side. Perfect CSIT

is thus needed.

We recall the DMT [20] of any relaying scheme with a singleayeis upper-bounded by the
DMT of a2x 1 MISO system given byiyso(r) = 2(1—r)*. In [7], it is shown the DDF achieves
the MISO upper-bound for < 0.5. As for the DF, it is known from [21] that it does not achieve
the MISO bound for any. Concerning the CF, it is MISO-achieving provided that WyAg&/
coding and perfect CSIT are assumed. In [10], it is proven teplacing Wyner-Ziv encoder
with a standard vector quantization leads to a significagtatiation of the DMT. In [2], new
protocols corresponding to a hybrid AF and CF approach thas shot need CSIT are proposed,
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but no DMT is provided to assess the merit of this approactihénrecent work [22], [23], a
static protocol called “quantize-map-and-forward” is y@n to achieve the MISO upper-bound
of the DMT for any multiplexing gain. However, no practicalding-decoding architecture has
been proposed yet to implement it. Therefore developing stavc powerful protocol (without
instantenous CSIT) whose the performance are close to tisMipper-bound of the DMT is

still worthy.

In our contribution, we consider the context where the imstacous realizations of the source-
destination and relay-destination channels are comglaté&énown by the relay. We only assume
that the average powers of the channels are available.drctimtextwe propose a new relaying
technique which we shall refer to as tliecode or Quantize and Forwa(B®oQF), and we
analyze its performance over slow fading wireless chantietsugh the DMT and the outage
gain. We especially show that the DoQF is DMT-optimal for tipléxing gains less than.25
and that its outage gain coincides with the lower-bound otage gains of the wide class of
half-duplex static protocolsThe DoQF can be considered either asaagmentedDF scheme
or as a non-standardegradedCF scheme without the need of perfect CSIT. Indeed, in DoQF
protocol, the relay first tries to decode the source messagedbon the signal received during
the first slot. If the latter step is successful, then sinyiléo the classical DF scheme, the relay
retransmits a coded version of this message during the desloh based on an independent
codebook. If the relay is not able to decode the message,e$ dot remain inactive, but it
guantizes the received signal vector using a well chosdortin value as done in [10], [11],
but unlike these two works, the design parameters in our \aoekobtained assuming statistical
CSIT. Moreover, the relay in [10], [11] always quantizes areVer decodes and so only relies
on CF whereas we combine the DF and the CF approaches.
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The paper is organized as follows: the performance metndsgeneral notations are drawn
in Section II. A detailed description of the new DoQF protioisoprovided in Section Ill. The
outage performance analysis and minimization at high SNRafoonstant transmission rate
is addressed in Section IV. Section V is devoted to the DMT ofQB. Numerical results are
drawn in Section VI. Finally, Section VIl is devoted to thenctusions. Due to page limitation,

the proofs of all the theorems are omitted and are availabléhe following webpagé

[I. PERFORMANCE METRICS ANDNOTATIONS

The source wants to transmit nats per channel uée The outage probability>,(p) is the
probability that the number of transmitted nats exceedsrbeual information associated with
the whole channel.Deriving,(p) for all possible values of the SNRis a difficult problem, but
P,(p) can be well approximated in the high SNR regime. Indeé®,(p) usually converges to
a non-zero constargt asp tends to infinity. This constant is referred to as theage gain16],
[17], [18], [19] and is a relevant performance metric for thesign of relaying protocols.

The derivation of the outage gain assumes that theRatea constant w.r.t. the SNR One
could as well take benefit of an increasing SNR to increasérémsmission rate. When the rate
R = R(p) depends on the SNR, a relevant performance metric is therdiiyeéviultiplexing
Tradeoff (DMT) introduced in [20]. We remind that a relayipgotocol achievesnultiplexing

gain r anddiversity gaind(r) if R(p) and P,(p) satisfy:

1
i B0 _ lim 208 Lolp) _ —d(r). 1)
p—oo log p p—oo logp

http://perso.telecom-paristech-rtiblat/publications. html#nl

%for the sake of simplicity in the derivations part, the rat@valuated via the natural logarithm instead of the basg@rithm;
therefore, we introduce the "nats” and not the "bits”
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Here,d(r) will be referred to as the DMT of the relaying protocol.

Node 0 will coincide with the source, node 1 with the relay ande 2 with the destination. We
denote byH;; the complex random variable representing the wirelessretdretween nodeand
nodej. Coefficientst;; are independent and perfectly known at the receiving rdulg unknown

at each other node of the network. We defig = |H;;|?, and we write as usudl(p) = p? if

lim,, o, SHEL — d. Notations>, < are similarly defined. Finallyz)* = max(0, z).

lIl. THE PROPOSEDDOQF PROTOCOL

A. Description of the Protocol

The source needs to send information at a rat& afats per channel use. The source has at
its disposal a frame of lengti’ and a dictionary ofLeRTJ Gaussian independent vectors with
independentN(0, 1) elements each. We partition the wak selected by the source &§ =
[ XG0, XOTJT where the length o, and X, is t,7" andt, T respectively witht; = 1 —t,. Here
to < 1is a fixed parameter. The source transmits the veg@ipXo = [/@0p X, \/oz—opXOTJT,
wherepT represents the total energy spent by both the source andléye Note thaty, = apT
is the source share of the total energy. Denotd-hyhe averageenergy spent by the relay. The

energyE; should be selected such that the following (long-term) posamstraint is respected
Ey+ E; < pT . (2)

The relay listens to the source message for a duratiagZofchannel uses (slot 0). At the end

of this slot, the signal of siz&/T received by the relay writes

Yio = aopHoi Xoo + Vio (3)
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where each component of vecfdy;, is a unit variance Additive White Gaussian Noise (AWGN).

Figure 1 represents the transmit and receive signals fdr pade.

f[] T t 1 T
S .
X 00 X 01
: Yio :
'3 1
JXI—J_J_
| Yao | Yo |
D L 1.

Figure 1. Transmit/Receive signals for source (S), relayail destination (D)

We now consider separately the case when the relay managiesdde the source message

and the case when it does not.
e Case when the relay decodes the source message

We can check from (3) that the relay is able to decode the souessage if the event

& ={w : tolog(1l 4+ appGoi(w)) > R} (4)

is realized. If this is the case, the relay transmits durhmgremainder of the frame (slot 1) the
corresponding codeword of lengtfil” from its own codebook. The relay codebook is composed
of LeRTJ Gaussian independent vectors with independ®xt0, 1) elements each. The relay
selects the codeword;; and transmits /a1p.X 11, which means that, pT" is the relay share of
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the total energy. Finally, during the slots O and 1, the dasiton receives the signal

D@E? Yéllﬂ]T = HE[X(%v X(F]Flv XEI]T + [‘/21(;7 VgﬂT ) (5)
where
H 1/a0pH02]:tOT 0 0
8 p—
0 \/QOPHO2It1T \/alle2It1T

Items of V54 (resp.Vs;) are unit variance AWGN at the destination during slot Oresdot 1).
e Case when the relay does not decode the source message (eveid realized)

The relay quantizes in this case the received signal dutoi@sand transmits a coded version
of the quantized vector during slot 1 using the followingpste
a) QuantizationDenote byY;, the quantized version of the received vedtqy. VectorYy, is con-
structed as follows. Clearly, al}7' components of vectadr, are independent ar@N (0, appGo1+

1) distributed. Denote by\?(p) the desired squared-error distortion per vector component
E| Y10 (i) — Yio(i)|* < A%(p) .

The Rate Distortion Theorem for Gaussian sources [24]tslthat there exists@e??” | | ¢,T')-

rate distortion code (for som@(p) > 0) which is achievable for distortion?(p) provided that

(6)

Qp) > log (M)

A%(p)

Such a code can be constructed by properly selecting theigedvectorY;, among a quantizer-
codebook formed bye“@"T| independent random vectors with distributi®(0, (aopGor +
1 — A%(p))L,r). Vector Yy, is selected from this codebook in such a way that sequeriges
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andY;, are jointly typical w.r.t. the joint distributiom(yy) given by
Y=Y +A(p)Z, (7)

whereY andZ are independent random variables with respective digtoibsiCN(0, apGo; +

1— A2(p)) and@N(0, 1). Condition (6) ensures that such a vectay exists with high probability
asT — oo. Parametei))(p) can be interpreted as the number of nats used to quantize one
component of the received vectdk,. It must be chosen such that (6) is satisfied. As the rhs
of (6) depends on the channel gdif,, it looks impossible at first glance to construct a fixed
guantizer which is successful for any channel state. Negbka$s, recall that we are considering
the case where eveftis not realizedi.e., ¢ty log(1 + appGo1) < R. It is thus sufficient to define
Q(p) = log (ﬁ) where K is any constant such th&f > ¢ We choosek’ = e,

Remark: Condition (6) implies that inequality,pGo:+1 > A?%(p) should hold. The quantization

step is thus possible provided that the following event &ized
S = {u} : OéopGOl(W) +1> Az(p)} . (8)

Event$ happens with negligible probability provided that(p) is chosen properly.

b) Forwarding the Relay MessagBuring the second slot of lengthT’, the relay must forward
the index of the quantized vector among the poss[ta@pﬁoTj ones. To that end, it uses a
Gaussian codebook with ratg(p)ty/t,. If we denote byX;; the corresponding codeword, the
signal transmitted by the relay can be written @(%XH, where ¢(p) is the power of the
relay. Functionp(p) should be selected such that the power constraint given )oig {2spected.
c) Processing at Destinatiofn case the relay has quantized the source message ¢edefined

by (8) is realized), the destination proceeds as followfrdt tries to recover the relay message

January 30, 2012 DRAFT



10

X1 received during slot 1 and uses it to help decode the sourssage. The signal of length

t;T received by the destination during the second slot can biewras

Yo1 =V o(p)H12 X1 + JaopHoe Xo1 + Vor - (9)

Note that (9) can be seen as a Multiple Access Channel (MACardler to recoverX;; (and
consequently;,) from (9), the destination interprets the source contiisuas noise. It succeeds

in recoveringffm if the event

F - {w 1, log <1 n af/fg)oizg“ﬁ 1) > Q(p)to} (10)

is realized. We distinguish between three possible cases.
Events § and F are realized: In this case, the contribution oX;; in (9) can be canceled,
and the resulting signal can be writtenﬁz’g = JaopHpXo1 + Vo1. Moreover, it is a straight-

forward result of (7) that the conditional distributigr,- is Gaussian with meafi [}7|Y} =

A%(p) (1+a0pGor—A2(p) )

T+aopGor . We thus write

— 2 1 /
%1&(0) Y and variance va(YIY) =
appGol

Z, (11)

v _ 1+ aopGo — A2(P)Y N A%(p) (1 + aopGor — A%(p))
0 1+ appGor 0 1+ appGor

where vectorZ is AWGN independent ol such that each of its componentsi) satisfies

Z(i) ~ CN(0,1). PluggingYiy = \/aogpHp Xoo + Vip into (11), it follows that

Yio = V/7(Gox, p)aopHor Xoo + Vio

(1+aopG01—A2(P))2

(oorGor)? and where vectot;, is AWGN whose components satisfy

wherey(Goy, p) =

Vio(i) ~ CN(0,%(Gor, p) + A%(p)y/7(Gor, p)). In order to decode the source message, the
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g ! T .
overall received signal can be reconstructed’as- [Y%,YIE, (Y,)*| given by
}/2 = H?[X(’]I(‘)u X(’]Ii]T + ‘7107 (12)

where
VoaopHoo Ly r 0

Hy = | \/v(Go1, p)aopHo L1 0 ’

0 VoaopHooly v |

. -~ T - - - - - .
and wherel/;, = [VQTO, VL, Vle] is a zero-mean Gaussian noise with covariance matrix

ItoT 0 0
EVioVisl = | 0 \/1(Gor.p) + A2(0)y/A(Gor. pliyr O
0 0 L,z

Events $ and F are realized: The destination will only be able to udé,, the signal received
during slot 0. Note that in such a case, we ¥gt = \/aopHo2 Xoo + Vao.

Event 8 is realized: In this case, the relay does not quantize the source mesEhigeis like
the case of a non cooperative transmission.

Finally, the outage probability of the DoQF protocol writes

Po(p) = Po,l(p) + Po,2(p) + Po,3(p) + Po,4(p) ) (13)

where

. P,1(p) is the probability that the destination is in outagyed that the event is realized:

P,1(p) = Prltolog(l 4+ appGoz) + t1log(l + appGoz + a1pG12) < RJ(1 — Pr [E]) : (14)
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« P,»(p) is the probability that the destination is in outage and évants, 7, § are realized:

7(G01> P)@ome )

P,a(p) = Pr|tilog(1 + appGoz) + tolog | 1 4+ agpGoa +
Y(Gor, p) + A2(p)v/7(Gor, p)

<R E&978 (15)

?

« P,3(p) is the probability that the destination is in outage and évants¢, F, § are realized:
P,3(p) = Prtglog(1 + appGe2) < R, &, T, 8] ; (16)

« P,4(p) is the probability that the destination is in outage and &wantsE, § are realized:
Poa(p) = Pr[log(1 + apGun) < R.E.8] . (17)

In Figure 2, the data processing steps at the destinatioa amglsummarized.

B. On the selection of parametefis t1, ag, a1, d(p), A%(p)

Parameters,, ¢, o, a1, ¢(p) should be selected such that constraint (2) is respeegduch
that £+ E, < pT'. Let us derively, and E;. The source transmits the signglaopXoo, v/aopXo1]
spending the energy, = agpT. If event € is realized, then the relay transmits the signal
VaipXy; and spends; pt; T Joules. If events§ ands$ are realized, the relay transmWXu
spendinge(p)t, T Joules. As for the case where evénis realized, the relay remains inactive
spending no energy. The average energy spent by the relyssst = aqpt, 7 (1 — Pr [E]) +

¢(p)t: TPr[€,8]. Putting all pieces together, the power constraint giver{)ywrites

agp + arpty (1 —Pr [E]) + ¢(p)t1Pr[E,8] < p. (18)
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Yes: £ No: €
| Decode from Eq. (3) | Relay has|not decoded
Yes No
l Yes
{ Success } [ Outage : P, ; ]
not quantize
Relay message lost
, 1
Decode from Eq. (12) Decode from slot 0
l !
Yes No

Message
No decoded?

Message
decoded?

Slot 0 allows |[decoding Slot Ofinsufficient

[ Success ] [ Outage : Py, J { Success ] [ Outage : Py 3 + Py 4 J

Figure 2. Data processing at the destination

The selection oft,, t1, ag, a1, ¢(p) such that (18) is respected is addressed (along with the
selection ofA%(p)) in Sections IV and V. The rest of the paper is devoted to theysbf the

performance of the DoQF using two performance metrics: Tutage gain and the DMT.

IV. OUTAGE PROBABILITY ANALYSIS OF THE DOQF PrROTOCOL

A. Notations and Channel Assumptions

Recall that/;; is the random variable that represents the wireless chaeteleen nodes
and j of the network {,j € {0, 1,2}), and thatG,; = |H,;|* designates the power gain of this
channel. In this section, all variabl€s; are assumed to have densitigs, () which are right
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continuous at zero. This assumption is satisfied in pagidoy the so-called Rayleigh and Rice
channels. Note that except for this mild assumption, we donmake any assumption on the
channels probability distributions. We denote by the limit ¢;; = f5,,(07) and we assume
that all these limits are positive and available to the res®wllocation unit. For instance, in
the Rayleigh caseli;; is complex circular Gaussian with zero mean and variaffyeln this
caseG;; has the exponential distributiofy, (z) = 0, exp(—z/07;)1{z > 0}, and in particular

Cij = aif. Here, for any subsed of R, we denote byl {A} the indicator function of the set.

B. Lower Bound on the Outage Gain of Static Half-Duplex Recots

Before deriving the outage gain of the DoQF protocol, we filestive a bound on the outage
performance of the wide class of half-duplex static relgypnotocols. This class is indexed using
parameters,, g, o;. For each value of these parameters, the class is denot@ddf, «vo, 1)
and is defined as the set of all half-duplex static relayirmfqmols which satisfy:

- The source has at its disposal a dictionary LeFTJ codewords. Each codeword, =

[XZE, xE]" is a vector of length’ channel uses.

- The source transmit power ST E[|Xo(i)]?] satisfies the following high SNR constraint

i 7 i B[ Xo(0)2

p—00 p

< ayp. (29)

- The relay listens to the source signal during the fig$t channel uses out of tHE channel
uses which is the duration of the whole transmission. Thayrélas at its disposal a
dictionary of codewordsY;; of length (1 — ¢y)7" channel uses each.

- During the last(1 — t,)7" channel uses, the relay average transmit power satisfies

1 (1_—t0)TE X (7)]2
lim (1—to)T Zz_l [1X11(8)]7] <a. (20)

p—00 P
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The above definition does not impose any particular codesvdigtribution neither any con-
straints on the powers for finite values of the SNRConstraints (19) and (20) restrict only the

way the average transmit powers behavéhi@ high SNR regime

Theorem 1. For any static half-duplex relaying protocol from the cla®gp(to, v, 1), the

outage gainé = lim, ., p?P,(p) is lower-bounded bycs.np, Where

2 Aty — 2 2ty — 1

Coacon (1 exp(2R) o exp(R/t0)> | Coacia (1 exp(2R)  t eXp(R/t1)> |

Sos-HD = = 2 apan \2 | 4t — 2 2t — 1

(21)

The above lower-bound has been derived using the Cut-Séth@d for Half-Duplex (HD)
relay channels. This explains the use of the subscript (O$4d designate this bound.

We now derive and compare the outage gain of the DoQF protatokthe above lower-bound.

C. Outage Gain of the DoQF Protocol

Theorem 2. Assume that the quantization squared-erfot(p) and the relay powed(p) satisfy

li/r)n o(p) = 400, (22)

1 ¢(§ ) _ o, (23)
pop

li/{n A*(p) =0, (24)

lim (¢(p)"* A%(p)"°) = +oc. (25)

p

The outage gairgpo.or associated with the proposed DoQF protocol coincides whth lbwer-

bound given by21), i.e., {poqr = {cs—nD-

Theorem 2 states that the DoQF is outage-gain-optimal inwlte class of half-duplex
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static relaying protocols. Moreover, due to (22)-(25), van choosep(p) = «a1p (provided
that p_% < A%*(p) < 1). It is thus optimal from an outage gain perspective to et talay

transmit at a constant power regardless of whether the sonessage has been decoded or not.

D. Power and Time Optimization

We derivet, t1, ag, aq minimizing {poor Subject to constraint (18). Let us examine (18) when
the SNRp tends to infinity. We first divide the two sides of this powenstraint byp, which leads
to ag+aty (1 — Pr [€]) + 424, Pr[€,8] < 1, wherePr[€] = Prtolog(1 + appGor) < R). Itis
useful to write the ternﬂi@tl Pr[€, 8] in the Ihs of the above inequality a;sq%pPr €. 8]. Recall
that due to (23)]im, % = 0. Furthermore, it is straightforward to check thar €, §]
is upper-bounded for any € R.. Indeed,lim,_., pPr[€,8§] is a constant. Putting all pieces
together, the power constraint at high SNR writesvas- t;a; < 1. Note that this constraint is

not convex inayg, oy, t1. It will be convenient to replace it with a convex constranyt making

the change of variables, = oy and 3, = a;t;. The power constraint thus becomes

Bo+p <1. (26)

It can be shown [19] thatt, 3y, 51) — Epoor IS convex on(0,1) x (0, 00)?. Furthermore, the
minimization of {peor(t1, B0, 1) given constraint (26) reduces to minimiziggeqr On the line
segment ofR? defined bys,+ 3 = 1. Functionépeor(t1, o, 1 — 3o) defined on(0, 1)? is convex
as it coincides with the restriction @boor(t1, 5o, /1) t0 a line segment. S€voor(t1, 5o, 1 — o)
goes to infinity on the frontier of0, 1)2. Therefore, the minimum is in the interior ¢, 1)2, and
can be obtained by a descent method [25]. The optimizatiobl@m is convex which simplifies
greatly the algorithm complexity. The simplest way is togaed into two steps: we first evaluate
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the cost function on a 2Dcparsestep) grid in(0,1)? to find rough estimation of this optimal
power and time distribution. Then fine step can be implemented through a gradient-descent
algorithm initialized with thecoarseestimates. Notice that the optimal distribution has to be
updated only when the channel statistics (and not the clhaeakzation) are varying. As the
channel statistics have usually a large coherence timedigtgbution update has to be done

only seldom and so does not consume a lot of energy and time.

V. DMT ANALYSIS OF THE DOQF PrROTOCOL

In this section, wireless channels are assumed to be Raydigstyibuted and the transmission

rate is assumed to be a function of the SNRatisfyingR = R(p) = rlogp (see (1)).

A. On the Selection ah?(p) and ¢(p) from a DMT Perspective

In Section IV, parameterd?(p) and¢(p) were chosen from an outage gain perspective such
that (22)-(25) are satisfied. In the current section, we @terésted in choices ak?(p) and¢(p)

that are relevant from a DMT perspective. In the sequel, vgeiras

A%(p) =", (27)

where parameted will be fixed later. The powek(p) should be chosen without violating
constraint (18). We recall that the term [Rr 8] in (18) is given by PIE, 8| = Pr[tolog(1 +
)+

aopGor) < R(p), 1+aopGor > A%(p)]. Itis straightforward to show that Bg, 8] = p~(-"/t

+
(provided thaty < 1 — (1 — t%) ). The (asymptotic) power constraint can be thus written as

d(p) < plH=r/)” (28)
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If we choose) < 0, thenA?(p) andg(p) given by (27) and (28) also satisfy constraints (22)-(25).

However, this does not necessarily yield the best DMT pearéorce of the protocol.

B. DMT of the DoQF protocol

Denote byd(ty, 6, ) the DMT of DoQF for fixed values of, andd:

log P
d(to, 5,r) = — lim 287()

(29)
p—oo  logp

where P,(p) is the outage probability of the protocol. We define the finMDof DoQF as

dboqr(r) = sup d(ty, d,7) , (30)

to,0

Theorem 3. Assume that the relay power and quantization squared-edistortion satisfy

d(p) = pt+-r/t)" and A2(p) = p°, respectively. The DMT of the DoQF is given by

;

2(1 —7r)* forr <2
2— —=& for—<r<2(*[ D
\ =0 (7) 3
dDoQF(T) = WA 5\[ ) (31)
2 2(v5-1 5—1
2-5mr forSTE <rs AR
(2—=r)(1—r) forr> §+1

wherev*(r) is the unique solution n{ ] to the following equation.

2’\/_+1

2(1+7)0® — (4 +5r)v* +2(1 + 4r)v —4r =0. (32)

The MISO upper-bound is thus reached by the DoQFfor. 0.25, but the DMT of the
protocol deviates from the MISO bound fer> 0.25. Note that we allowed, andé to depend
on the multiplexing gairr. This additional degree of freedom will not change the faett the
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DoQF protocol is static. Indeed, parametgyandé do not depend on any channel coefficients.

VI. NUMERICAL ILLUSTRATIONS AND SIMULATIONS

Simulations have been carried out assuming that chanrelRayleigh distributedle., H;; ~
CN(0,0%). Varianceafj is a function of the distancé;; between nodesandj following a path

y Y7

loss model with exponent equal to a,?j = Cd;jg, where the constard’ is chosen in such a
way thato?, = 1. The data rate is fixed to 2 bits per channel use.

In Figure 3, outage probability performance with equal tdoratime slots and equal am-
plitudes for both the DF and the DoQF is compared to the perdoce after time and power
optimization for different values of the SNR Both the simulated outage probabili§(p) and
the approximated outage probabilﬁ%;fi are plotted in this figure. The relay is assumed to lie at
two thirds of the source-destination distance on the sedestination line segment. Substantial
gains are observed between the DF and the DoQF, and betwéemnzep and non optimized
protocols. Note that minimizing the outage gain continueseiduce the outage probability of
the protocol even for moderate values of the SNR.

Figure 4 represents the outage gains for the DoQF and the Blits/éhe positionl, ; of the
relay. Note from the figure that the farther the relay fromgbarce is, the better DoQF compared
to DF works. This fact can be explained as follows: If the yek close to the destination, it
will be more often in outage and the Quantization step wilisttoperate more often.

In Figure 5, we plot the ratios of the outage gains with equmaés$ and equal powers to the
optimized outage gains as a function of the positign of the relay. Note from this figure that
optimizing the slots durations and the power allocatiorddgdarger performance gains for both

the DF and the DoQF when the relay is too close or too far froenstburce.
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Path loss exponent: 3, Relay at two~thirds of source~destination distance
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Figure 3. Outage performance of the DF and DoQF protocols
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Figure 4. Outage gain of DF and DoQF versus relay position

In Figure 6, we plot the DMT of the DoQF, orthogonal DF, (northogonal) DF, non

orthogonal AF (NAF), DDF, CF (with and without Wyner-Ziv dod [10]) and the MISO
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Path loss exponent: 3
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Figure 5. Outage gain ratio of DF and DoQF versus relay positi

upper-bound. The DoQF outperforms the other static prég¢ottat arenot based on perfect
CSIT. In contrast, the DDF protocol is still better than theQ@F but its dynamic approach leads
to several implementation difficulties. The CF protocolwilyner-Ziv coding (which needs
perfect CSIT at the relay node) is DMT-optimal while its noryMgr-Ziv variant without CSIT
[11] never achieves the MISO upper-bound and unfortunaitigrs poor performance.

In Figure 7, the optimal sizes of slot O for the DF (as computefl]) and the DoQF are
plotted. We remark that, whenis small enough, slots 0 and 1 have the same length. When
increases, the duration of relay listening increases #saa consequence, the duration for the

guantization step thus decreases and the DoQF becomes tddbe DF as seen on the DMT.

VIlI. CONCLUSIONS

A static relaying protocol (DoQF) has been introduced fdf-taplex single-relay scenarios.
The proposed DoQF involves practical coding-decodingtesgias at both the relay and the
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2 x 1 MISO, CF with CSIT and Wyner-Ziv
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Figure 6. DMT of the DoQF and other protocols
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Figure 7. Optimalt, for DF and DoQF

destination. The performance of this protocol has beenedud the context of communications
over slow fading wireless channels using two relevant perémce metrics: The outage gain and
the diversity multiplexing tradeoff (DMT). The DoQF protchas been shown to be optimal
in terms of outage gain in the wide class of half-duplex steglaying protocols. The proposed
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protocol has been finally shown to achieve the DMT of MISO farltiplexing gainsr < 0.25.
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APPENDIX A

PROOF OFTHEOREM 1

The capacity of any static relaying protocol is limited bye thut-set upper-bound. In this
appendix, we derive the outage gain associated with theatutapacity. We prove next that this

outage gain is equal t€cs.yp given by (21).

The cut-set upper-bound on the capacity of any half-dupleye-relay protocol from the class
Pup (to, o, 1), With a listening time equal t&,7" and a cooperation time equal (o — ¢,)7" =

t;T, is given by

1
Cecs.qp = lim — in I (Xoo; Y10, Y- 1(Xo1; Yor| X
CS-HD TLOOTP(XOOI%%?XH)HHH{ ( 00; 1105 20)+ ( 015 21| 11),

I(Xoo; Yao) + I(Xo1, Xu1; 3/21)} ; (33)

where the maximization in (33) is with respect to all the jadistributions of Xy, Xo; and X,
that satisfy the power constraints (19) and (20). It can hmvshthat the maximum in (33) is
achieved when vector¥,,, X, and X;; are zero-mean i.i.d Gaussian with covariance matrices

that satisfy constraints (19) and (20). The cut-set uppemntd can thus be written as

CCS-HD = min {to log (1 + E UXO(Z)|2] GOl + E UXO(Z)‘Q} Gog) + tl log (1 + E UXQ(Z)|2] Gog) y
tolog (14 E [|Xo(0)|*] Goz) + t1log (1 + E [| Xo(i)[*] Goz + E [| X11(4)*] G12) }
= min{Csimo, Cmiso} (34)
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whereCsvo andCyso are defined in order to simplify the presentation of the pmofollows:

Csimo = tolog (1 +E UXo(i)ﬂ Go +E [‘Xo(i)|2] G02) + t1log (1 +E [|X0(i)‘2} GO?)

Cwiso = tolog (1 +E [|Xo(i)*] Goz) + t1log (1 + E [|Xo(9)]*] Goo + E [| X11(1)?] G12) -

We now prove that the limitim, ., p*Pr[Ccs_np < R] exists and that it is equal €cs—up

given by (21). For that sake, note that the following holds:

Pr[CCS-HD < R] =1—-Pr [CCS-HD > R]
=1 — Pr[Csimo > R, Cmiso > R
>1—Pr [CSIMO > R] x Pr [CMISO > R]

=1 - (1 — Pr [CSIMO < R]) X (1 — Pr [CMISO < R]) .
Now define

P, simo = Pr[Csimo < R]

P,mso = Pr[Cwiso < RJ.
Using these new notations, we conclude that the followingelebound onPr[Ccs.ip < R

holds:

Pr[Ces.mp < R] > P, simo + Pomiso — PosimoPomiso - (35)

In the same way, it is straightforward to show thaiCcs.yp < R] can be upper-bounded as
follows.

Pr[Ccsup < R] < P, simo + Pomiso + P simoPomiso - (36)
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Now, we can use the same arguments and tools employed in GiosB to prove that

lim p*P,smo = —2 o / 1{t; log(1 +u) + tolog (1 +u+v) < R}ydudv  (37)
R

p—00 [eh 2
. 2 Co2C12
lim p°P, miso = / 1{tolog(1 + u) + t1 log(1 + u +v) < R}dudv (38)
p—00 g Ri
pll_glo p*PosimoPomiso = 0. (39)

Note that the integrals in the rhs of (37) and (38) coincidéhwihe two integrals in the rhs

of (48). We can thus write

. copcor (1 | exp(2R)  tgexp(R/to)
lim 2P, s = 220 (2 - 40
pro ) TOSMO = T <2 T at — 2 2y — 1 (40)
. copcrz (1 exp(2R)  tiexp(R/t)
lim 2P, wiso = - - . 41
Pi’rglop MISO 1002 <2 4t1 -2 2t1 —1 ( )

Combining (35), (36), (39), (40) and (41) we conclude that

lim p°Pr[Ces.ip < RT] = &cs—np

p—00

whereécs.hp is the lower-bound defined by (21). Note that sii&g.p is an upper-bound on the
capacity of any static half-duplex relaying protocol bgomg to the clas$Pyp(to, o, 1), then
csrp Which satisfiesScs_yp = lim, .« p?Pr[Ces.up < RT] is a lower-bound on the outage

gain of any protocol from the clasByp(to, ap, a1). This completes the proof of Theorem 1.

APPENDIX B

PROOF OFTHEOREM 2

Recall the definition ofP,(p) given by (13) as the outage probability associated with the
DoQF protocol. In order to prove Theorem 2, we need to show tA&,(p) converges as
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p — oo and to derive the outage gafiboor given by &peor = lim, . p?P,(p). According
to (13), Po(p) = Pou(p) + Po2(p) + Pos(p) + Poa(p), where P, 1 (p), Fop(p), Fos(p) and F,4(p)
are defined by (14), (15), (16) and (17) respectively. Tleeefwe need to first compute the
limits lim, .o 2Py 1(p), limy—oo p2Po2(p), lim,_. p*P,3(p) andlim,_.. p>P,4(p) in order to

obtain the outage gaitboor. It has been proved in [19] that

lim p*P,,(p) = 2222 / 1{tolog(1 +u) + t1log(1 + u+v) < R}dudv,  (42)
p—0 ot JR

2
wherecy; andc;; has been defined in Subsection IV-A @s = fq,, (0+) andcyy = fa,,(0+)
respectively. The steps of the proof that (42) holds are genjlar to the steps given below for

the derivation oflim, ., p?P,2(p). Refer to the definition of?,»(p) given by (15) as

Y(Gor, p)aopGor <R
(Gow, p) + A%(p)\/7(Gor, p) 7

P,2(p) = Pr [tl log(1 + appGoz) + tolog (1 + agpGoz +
v

£.9.8|, (43)

2
(1+a0pGor1—A2(p))
(1+aopGor)?

respectively by (4), (8) and (10) into (43) leads to

where v(Goi, p) =

. Plugging the definitions of events, § and F given

(Y, p)aopy
P,2(p) :/ 1 {t1 log(1 4+ agpx) + tg log (1 + agpr + ) < R}
R? Yy, p) + A%(p) /(Y p)

x 1{tolog(1 + aopy) < R} 1 {1+ appy > A*(p)}

<1 {tntog (14 1525 > 10000) } S o (0 o)y

+ appx
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By making the change of variables= «aypxr andv = agpy we obtain

1 v(v, p)v

p°Poa(p) = o2 /Rg+ 1 {h log(1 + u) + to log (1 +u+ o N(p)\/m) < R}

x 1{tolog(1 +v) < R}1{l1+v > A*p)}

x 1 {tl log (1 + ?(ﬁ)j) > tOQ(p)} fGos <%ﬁ) fco <%ﬁ) fa,(2)dudvdz .

(44)

SinceQ(p) = log (K/A*(p)), it is possible and useful to write the last indicator asdai.

1 {tl log (1 + %) > toQ(p)} —1{z> (1L+uwb(p)} (45)

where

to

Kn 1
9( ) = to - * (46)
" s @ 90

Define the function®(u, v, z, p) as the integrand in the rhs of (44) and &the the compact

subset ofR2 defined a2 = € R2 +, log(1 tolog (1 (vp)v <
. {(%U) wfrlog{lu)tolog | 1+u+ Y(0.0)+A2(p)\/~(vp) | T

R,tolog(1+v) < R . As fq,, and f¢,, are right continuous at zero, then the functienv) —
fcos <$) feo <%p> is bounded ort€ for p large enough.e., there existp, > 0 and M > 0

such thatvp > po, fco, <fw> fco (ﬁp) < M. It is straightforward to verify that the following
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inequalities hold for allp > po:

Y(v, p) + A%(p) /7 (v, p)

x 1{tolog(1 +v) < R}1{l+v> A*p)}

O(u,v,z,p) <M x 1 {t1 log(1 4+ u) + tolog (1 +u+ (v, p)v ) < R}

X 1{z > (1+u)f(p)} fe.(2)

<M x 1{log(1 +u) < R} x 1{tglog(1 4+ v) < R} fg,,(2) -

The rhs of the latter inequality is an integrable function®h and it does not depend gn

Therefore, we can apply Lebesgue’s Dominated Convergeheerém (DCT) in order to com-
: 2 ; ; : 2 _ : y(v.p) _

putelim,_.o p*P,2(p) in (44). Note first thatim,_.., A*(p) = 0, lim,_ TR v 1

andlim, ... #(p) = 0 due to assumptions (22)- (25). After some algebra, we caity estoow

that the following result holds.

lim p*P,o(p) = 6020201 / 1{t1log(l +u)+tolog (1l +u+v) < R}dudv. (47)
R

—00 (0% 2
P 0 2

We now prove thatim, .., p*P,3(p) = 0. First, recall thatP, 3(p) = Prltolog(1 + appGoa) <
R,&,7,8]. Plugging the definition of even®, 8 andJ from (4), (8) and (10) respectively into
the latter equation leads to

P,3(p) = / 1 {tolog(1 + appz) < R} 1{tolog(1l + appy) < R} 1 {1+ appy > A*(p)}

RY

1 {u log, (1 ; %) < to@<p>} Fons () o (4) fona (=) didydz
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Definingu = agpxr andv = agpy, we get

P,5(p) = aglp2 /R3 1{tplog(l +u) < R} 1{tglog(1+v) < R} 1 {1 +v > A2(p)}

1 {tl log (1 + %) < tOQ(p)} o (aiop) feor (aiop) o (2)dudvdz .

As we did in (45), we write the last indicator as follows.

1 {t1 log (1 + %) < toQ(p)} =1{z<(1+uwb(p)} ,

whered(p) is defined by (46). In analogy with the approach we used to eveijm, .., p*>P,2(p),
we define€; as the compact subset Bf, satisfyingC; = {(u,v, z) € R3, tolog(1 4+ u) < R,
tolog(l +v) < R, z < (1 4+ uw)b(p)}. Next, we use the fact thats,,, fc,, and fq,, are
right continuous at zero, along withm, .., 6(p) = 0, to show that the functioriu,v, z) —
fcos <$) feo <%p> feu,(2) is bounded ort; for p large enough.e., there existp; > 0 and
M, > 0 such thatvp > p1, fap, (ﬁ)) feo <#}p> fei,(2) < M. It follows that the following

inequalities hold for allp > p;:

M
P2Po,3(P) S —1/
R

- 1{1+u§e%}1{z§(1+u)8(p)}dudz

)

2
+

Sl

M » M,y [0 M, =
3—21/ l{zget};@(/})}dzg—;/ dz:—zlet};@(p).
ap Jry ap Jo Qg

Now sincelim,_., #(p) = 0 due to assumptions (22)-(25), it follows tHat, ... p* P, 3(p) = 0.

We can prove in the same way and without difficulty that, ... p*>P, 4(p) = 0.
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Putting all pieces together,

lim p2P0 = lim p2P0,1<p) + lim p2P0,2<p) + lim p2P0,3<p) + lim p2P0,4<p)

p—00 p—00

= St / 1{tolog(1 + u) + t; log(1 + u + v) < R}dudvy
(07183} R2

+COZC201 / 1 {tl log(l + u) +to log (]_ + u+ U) < R} dudv . (48)
R

« 2
0 +

The remaining task is to prove that the rhs of (48) is equah&orhs of (21). This can be done
by making the change of variables= log(1 + u) andy = log (1 + HLU) in (48). The details

of the proof can be found in [19]. The proof of Theorem 2 is thomplete.

APPENDIX C

PROOF OFTHEOREM 3
The outage probability associated with the DoQF protocda giaen by (13) as

Po(p) = Po,l(p) + PO,Z(p) + Po,3(p) + Po,4(p) ) (49)

where probabilitiesP, 1 (p), P,2(p), P.,3(p) and P, 4(p) are respectively defined by (14), (15),

(16) and (17). Inserting (49) into the definition of the DM, d, ) given by (29) leads to

log (P1(p) + Poa(p) + Pos(p) + Poulp))

d(tg,0,7) = — lim

p—o0 log p
- min {dl <t07 T)u d2<t07 57 T)u d3<t07 57 T)? d4<t07 57 T)} ) (50)
where
log P, ;
dilto,6.7) = — lim 28 Fei(P) (51)
p—oo  logp
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for i = 1,2, 3, 4. Note thatd,(¢o,r) is the only term in (50) that does not depend on parameter
0. The derivation of the DMT associated with the DoQF protowsidl be thus done as follows:
1) Compute the termg, (to, ), ds(to,d,7), ds(te,d, ) anddy(ty, d,r) for fixed values oft,
and ) as given by (51). This is done in this Subsection.
2) Computet} p,qr(r) and dg pqr(r) minimizing d(ty, 6,7) defined from (50) as the mini-
mum of dy (to, ), da(to,d,7), d3(te,d,r) anddy(to, d, 7).

3) The final DMT of the protocol can be finally obtained by cééting d(t; r,qr (1), 95 poqr(7), 7)-
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Derivation of the term d, (%o, 7), i.e.,, event& is realized:

Recall the definition given by (14) of,(p) as the probability that the destination is in
outage and that the evefitis realized. It is clear from (4) and (14) that ;(p) is a function
of parameter,. This is why the DMT termy, (t,, ) associated withP, ;(p) is also a function
of this parameter. Following the steps used in Appendix DpAe can show that the following

result holds.
2(1—r)*t forty <0.5

di(to,r) = 2— &= fortg > 0.5andr < 1 —t (52)

\ U;gﬁ forto > 0.5 andr > 1 — ¢,

Derivation of the term dy(to, 6, 7), i.e, eventsE, 8 and F are realized:

Note from (10) and (15) thaP,»(p) is a function of parameterg andd. This is why the
DMT ds(to, 6, ) associated withP, »(p) is function oft¢, andd.

First, consider the casg > 0.5.

+
If parameters is chosen such that< § <1 — (1 - %) , thendy(ty, 0, 7) can be written as

d2<t0,(5,7’):
+ r + T r + to
(1—7“) “+ max (1—5> ,1—7°—5 s H—< —%> —H(;Sl—r
+ + + +
T r 1-2r T r r r
f-(1-g) —tsrma {2 (1) (1-8) ] £- (1) -1

As for the choiced > 1 — (1 — %)Jr we show in Appendix D-A that evert&$ cannot be
realized in this case for any channel state provided ghiatsufficiently large. Therefore, there
exists pyp > 0 such thatvp > py, BP,2(p) = 0. The corresponding DM (¢, 0, ) will have
no effect on the final DMT of the protocol. The valdg(ty,d,7) = 2(1 — r)™ is conveniently
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chosen in this case:

+
do(to,6,7) =2(1 —7r)* ford > 1— (1 - ti) : (54)
0

The proof of (53) and (54) is provided in Appendix D-A. We cérow using the same arguments

of the latter appendix that
do(to,0,7) =2(1 —7r)", for§ <O0. (55)
Similarly, we can obtain the expression (56) by, 0, ) in the case, < 0.5.

d2 (t(]a 57 7’) =

J’_
1— L) — ﬁ—fé, fort, < 0.5 and2tyt; > r

(56)

Derivation of the term ds(to,d,7), i.e,, events€, 8 and F are realized:
By referring to (10) and (16), it becomes clear tigt(p) is a function of parameterg and
. This explains the fact that;(ty, 0, 7) also depends on these two parameters.
The expression given below af; (¢, d,7) can be derived using the approach used in Ap-

pendix D-A.

ds(to, 6,7) = 2<1_%>++<2(1‘%)++§—?5—ﬁ)+ for5§1—<1—£)+ . (57)

2(1 — r)* for5>1—<1—t%>+

+ _
Recall that in the casé > 1 — (1 — %) , eventé&S cannot be realized, as we saw earlier,
for any channel realization provided thais sufficiently large. In this cas€, ;(p) = 0 and the
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corresponding DMTd3(ty, 9, 7) will have no effect on the final DMT of the protocol. This is

why the valueds(to, d,7) = 2(1 — r)* was conveniently chosen in (57) in this case.
Derivation of the term d4(to,d,7), i.e,, events€ and 8 are realized:

This is the case when the relay does not quantize even if inbasucceeded in decoding
the source message. This happens whgrGo; + 1 < A%(p) which means that the relay stays
inactive. Recall the definition of, 4(p) as the probability that the destination is in outage and
that eventst and$ are realized. It is straightforward to verify that
(1 —T)++max{(1— £>+,(1—5)+} for o >0

2(1—r)* for § <0

dy(to,6,7) = (58)

Note that in the casé < 0, the conditionngpGo; +1 > A?(p) is always satisfied for sufficiently
large values ofy for all channel realizations sinca?(p) = p° < 1. Therefore, there exists in
this casep, > 0 such thatvp > p,, events is never realized and®, ,(p) = 0. The corresponding
DMT dy4(to,d,r) will have therefore no effect on the final DMT of the protocahd as usual

we can assign it conveniently the valdgty, d,7) = 2(1 — )™ as done in (58).
Derivation of the final DMT of the DoQF protocol:

At this point, the DMT termsi; (to, ), da(to, d,7), d3(to,d, ) anddy(to, d, ) associated with
all the possible cases encountered by the destination hese erived. the DMTd(to, d, )
associated with the DoQF protocol for fixed valuestoaindd can now be obtained from (29)
as the minimum of the above DMT terms. No closed-form expoessf d(t,, , ) is given in this
paper. However, Theorem 3 does provide the closed-formesgmn ofdy, o (r) obtained by
solving the optimization problend}, o (1) = sup;,, d(to, d,7). We derivedy, qr(r) as follows.
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Before proceeding with the proof, we defitjg, r (1) anddpqr(r) as the argument of the

supremum indf, o (1) = sups,, d(to, 0, 7).
We will first computedy,,qr(r) in the caser < 0.25, and then in the case> 0.25.
The caser < 0.25

Let us plugty = 0.5 andd = 0 into (52), (53), (57) and (58) to obtain

dl(to,’r’) = dg(to,(g, ’I“) = d4(t0,5, ’I“) = 2(1 — 7’)+ s (59)

ds(to, 0,7) = 2(1 — 2r)" + (2(1 — 2r)* —27) " =2 — 8. (60)

Note thatds(to, d, ) is the only term that may be different frog{1 — »)*. However, one can
verify by referring to (60) thatis(ty,0,7) > 2(1 — r)* < r < 0.25. We conclude that, for
r < 0.25,d(0.5,0,r) = 2(1 —r)*. We have thus proved that the MISO upper-bound is achieved

by the DoQF forr < 0.25 by choosingtj p,or(r) = 0.5 and dpaor(r) = 0.
The caser > 0.25

The first step of the proof in this case is to reduce the sizénefset of possible values of
t5.poqr(r) anddp, or(r). For that sake, we first recall that the DMT of (non-orthodpBé in the
general multiple-relay case has been derived in [21]. DebgtP, pr(p) the outage probability
associated with the DF protocol. The DMT of DF for fixed valuwég, can thus be defined as

d(to,r) = —/}Lrgo % (61)
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and the final DMT of the protocol ad;(r) = sup,, d(to,r). The closed-form expression of

dir(r) in the case of a single relay is reproduced here by

2— -2 p for0<r< V51
die(r) = e Vo (62)

2—r)1—7) for ¥l <r<i.

f+1

Moreover, the optimal value df, as function ofr, that allows to achieve this DMT is given by

f0r0<r<\/_

2

* \[ 1 - \f 1

to,DF(T) = o o (63)
L <r<1.

5 for ¥ \/_+ N

given the above results, we will prove in particular that tbiowing three lemmas hold.
Lemma 1. For anyr € [0, 1], dfqr(r) > dip(r).

In other words, Lemma 1 states that the DMT achieved by the Pp&tocol cannot be

worse than the DMT achieved by the DF. The proof of Lemma 1vermgin Appendix D-B.

Lemma 2. For any r € [0, 1], the following inequalities hold truemax{0.5, 7} < tf p,qr(r) <

tS,DF(T)-

Here,t; pr(r) is the value oft, defined by (63) which allows to achieve the DMT of the DF

protocol. The proof of Lemma 2 is given in Appendix D-C.

28 DoQF

J’_
Lemma 3. Assume that > 0.25. The following holds trued < o5, qr(r) < 1—<1 ;()) :

The proof of Lemma 3 is given in Appendix D-D.
These three lemmas will considerably simplify the deratof dp) (7). Indeed, with the
help of Lemma 2 and Lemma 3, we will derive the DMT of the DoQBtH in the case when

025 <r< 2V5-1) " and secondly in the case wh L or <.

R 7
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2(v/5—1)
e 0.2 < r< v

We begin with the simplification of the DMT ternas (£; poor(r). )+ d2 (£5 5oor(7)s 000r(7), 7).

d3 (t5 boor(T)s Opooe(r), ) @nddy (t§ 5oor(T), 0peor(r), 7). The final DMT dj (1) can then
be deduced as the minimum of the above terms. Consider firsiettivation ofl; (¢ pooe(r), 7).

Since Lemma 2 states théllp,or(r) < 5 pp(r) = it follows from (52) that

\/_+1’

r
s (8 poge(r).7) = 2 — ——— . o
1 ( O,DOQF( ) ) 1-— to,DoQF(T)

We now proceed to the simplification of the expressioraft| 5oor(7), 0500r(r). 7). Thanks

to Lemma 2 and Lemma 3, we will prove that

* * T
ds (t5,000r("); 0poge(r), 7) = (1 —7)* + max ¢ 1 — T
o,DoQF(T)

17— soQF<r>} . (65)

For that sake, refer to (53) and note that proving (65) is\edent to proving that

r _ _ r " _ tS,DoQF(T) X , o,
* ( ) (1 - ( )) 1 * )5D0QF( )S 1 . (66)

1- 10.000F( " 10.000F( " - tO,DoQF(r
+
In order to show that (66) holds, we suppose to the contr% < m) —

%650@(@ > 1—7. Sincedpyoe(r) > 0 according to Lemma 3, the latter assumption
0,Do

leads to
2t3,DoQF(7") (1 - tS,DoQF(T))

1+ to,DoQF(T) (1 - to,DoQF(T))
Moreover, it is straightforward to show that
2t (1 — 2 —1
i ti-t _2v5-1) (68)
(1—=t) " 9-5
where the restriction t@.5 < t < fpp(r) = ¢?)2+1 is due to Lemma 2. Now, we can

January 30, 2012 DRAFT



40

combine (67) and (68) in order to get> 2(9{5\;51) , which contradicts the fact that <

2(+v/5—1)
9—/5

. We conclude that expression (65) holds true.
We can further simplify the expression (65) by proving thatr — dp,oe(r) > 1 — m.

The proof of this point uses the same arguments as above ahdssomitted. The term

da (t5 boor(T), Op0oe(r), ) can finally be written as

dy (tS,DoQF(T)a 5Ek)oQF(7“)> 7’) =2(1- 7’)+ - 5BoQF(7“) . (69)

As for ds (5 poor(T): 0por(r), ) given by (57), it simplifies to

to DoQF(T) o DoQF(r) T
s (£.000e(r) pogelr): 1) = 4 12— Gqelr) — 4+ 75 *
’ ( 0:DORF PooF ) 1- tO,DoQF(T) PooF 1 - tO,DoQF(T) to, DoQF(T)
(70)
The remaining task is to simplify the expression (58) whiefiresd, (£ poor(r), Opoor(r): 7)-

For that sake, we can resort to Lemma 1 to prove that

d4 (tS,DoQF(r)v BOQF(T)7 T) = (1 - 7“)+ + (1 - BOQF(T)) :

It follows that dy (£ poor(r): Oheor(r): ) = d2 (£5 peor(T): 05eor(r), ) and that it can thus
be dropped from the derivation of the final DMT of the DoQF. Nthat the DMT terms

dy (t5 5oor(7): ) da (5 poor(): Oeor(r). ) and ds (£§ poor(r), Opooe(r), ) have been ex-

pressed as functions of or(r) and ¢ poor(), We can proceed to the determination of

t5.000F(T): Opoor(T), @and consequentlyp (7).

— Determination of6p,qr(r):
Assume thatt; poo(r) has been already determined. It is straightforward to yerif
that d, (¢, 0, ) given by (69) is decreasing w.it and thatds (¢, 6, r) given by (70) is
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increasing w.r.ty on R*. Furthermored, (¢,0,7) > ds (¢,0,7). We conclude that

dy (tS,DoQF(T)> 550QF(7")7 7") =d (tS,DoQF(T)7 550QF(T>7 7“) .

Therefore,0p,or(7) can be given as a function of ,,ox(7) as follows

r

BOQF(T) = (4 - 3t8,DoQF(T)) —(2+2r) (1 - tS,DoQF(T)) ) (71)

tS,DoQF(T)

which leads to

dy (tS,DoQF(T)a 5BoQF(7’)a 7“) =d3 (tS,DoQF(T)> 550QF(T)7 7“) =

r

2—2r 4+ (24 2r) (1 — £§ poor(r)) — (4 — 38§ pooe(T)) = (72)
to,DoQF(T)
— Determination oftf pyor(7):
We can show in the same way thgt,,o(r) can be obtained by writing
dy (tS,DoQF(T)aT) =d (tS,DoQF(T)a EoQF(T)aT) . (73)

Plugging the expression af,oe(r) from (71) and the expression %(tS,DoQF(T)’

0Doar(T)s r) from (72) into (73) leads to equation (32) given in Theorens3 a

2(1+ T)tS,DoQF(T)g —(4+ 5T)t87DOQ|:(7‘)2 + 2(1 + 47)t5 poor(r) —4r = 0.

It can be shown after some algebra that the above equatioitsadmnique solution

v*(r) o [0 5, f+1} provided thatr < 2({\[1 This explains why the distinction
r < (gfﬁl andr > 2(9{5\;51) appears in Theorem 3. Once the solutiorir) to the

above equation has been computed, Wgjd(7), 5 poor() @anddp,or(r) can be easily
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obtained.

2(+v/5—1)
0% <r<1.

In this case, we need to prove th@,o(r) = dpe(r). To that end, we can show that
boor() > dpe(r) leads to a contradiction. The proof of this point is based eminas 1,

2 and 3 and is omitted due to lack of space.

The proof of Theorem 3 is thus completed.

APPENDIX D

DERIVATION OF dy(to, d,7) AND PROOFS OFLEMMAS 1, 2,AND 3

A. Derivation ofds(tg, d,r) (for to > 0.5 and § > 0)

First, recall the definition ofdly(to,d,r) as dy(to,d,r) = —limpﬁm%, where the

probability P, »(p) is defined by (15) as

Po,?(ﬂ) = Pr

V(Gm, P)CYOPGM
t11og(1 4 aopGoz) + tolog | 1+ anpGo + < R(p),
Y(Got, p) + A%(p)r/7(Gor, p))

E.9.8, (74)

2
(1+a0pGor1—22(p))
(1+aopGor)?

where v(Go1, p) = , and where eventg, S and F are defined by (4), (8)
and (10) respectively. Note thatG,, p) is positive since everft i.e., 1 + appGor > A?%(p), is

realized. Furthermore, we can check that the following ltesnids.

7(G017 p) . 1 -~ )t

(Gorp) + N2(0) /A (Gornp) L+ A2p) " (75)

In the following, we assume thak(p) = rlogp in accordance with (1), and we define as

_ log Gij
log p

in [20] the exponential orderassociated with channel;; as a;; = . We can easily
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verify that a;; is a Gumbeldistributed random variable with the probability densitnétion
fay; (@) = log pee=""*". By pluggingGy, = p~“* into (4), the probability of the everd i.e.,

tolog(1l + appGo1) > R(p), can be written as

Pr[€]=Pr {(1 —ag)" < } . (76)

Sl

Similarly, we can verify that the probability of evefit i.e., ¢, log (1 + %) > Q(p)to,

+ +
<1 + (1 — 1) — a1 — (1 — CL02)+> S L — t—05] y (77)
to tl tl

and that the probability o8 satisfies

satisfies

Pr[F|=Pr

Pr[8]=Pr[6 < (1 —ap)']. (78)

By plugging R(p) = rlog p, Gor = p~*, Gog = p~*2, G1a = p~“2, (75), (76), (77) and (78)

into (74), the following high SNR result holds for> 0.

PO’Q(p)iPI [tl(l — CL02)+ -+ to(l — min(aog, ap1 + 5))+ <r y (1 — a01)+ < tﬁ y
0

N +
<1+ (1_1) _a12—(1—a02)+> ~ L_t_%v §<(1—an)" |, (79)
to tl tl
or, equivalently,
Po,2(P)i/ Jao1 (@01) fags (@02) fars (@12)dagidagedays | (80)
0
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where f,,;(.) is the probability density function of;; and

0

+ +
<1+<1—t1) —CL12—(1—CL02)+> >L—i—05,5§(1—a01)+}. (81)

O = {(a01,a02,a12) & R3 | tl(l — CL02)+ -+ to(l — min(aog,am + 5))+ <r, (1 — a01)+ < ti ,

0 3] 1

Plugging the expression df, (.) given earlier into (80)F,2(p) can be written as

Po,2(/))i/(10g p)3plaortaotar) ompmEOL om0 0T R G dagydayy -
0

It can be shown (refer to [20]) that the terflog p)® can be dropped from the latter equation
without losing its exactness. Moreover, integration in #zme equation can be restricted to

positive values ofiy;, apz anda;,. Define 0. = O NRY. The probabilityP, »(p) thus satisfies

Po72(P)i/ p et tai2) gag dagsdays (82)
O+
and the DMTd,(ty, 0, ) associated withP, »(p) can now be written [20] as

d2 (to, 5, 7") = inf (CLOl -+ apo + alg) . (83)

(ao1,a02,a12)€0F

In this appendix, the derivation af,(ty, d,r) will be done only in the case characterized by
to > 0.5 andd > 0. The derivation in the case< 0 or t, < 0.5 follows the same approach.
+
Consider first the caseé < § < 1 — (1 — %) . The infimum in (83) can be computed by

partitioning O, into subsets according to whethey;, ag, are smaller or larger than 1.

e ag; > 1. Inthis case(1—aq;)™ = 0 and the fourth inequality in (81) reducesae< 0. This
result contradicts our assumption that 0. There is therefore no tripléag;, ags, a12) € OF
such thatam > 1.
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e ag; < 1,aq2 > 1. Since the third inequality in the definition ¢f given by (81) contains
n +
the term (1 + <1 — %) —ajp— (11— a02)+> , then we should consider two categories

of triples (am, o2, a12):

+
o 14 (1—%) — s — (1 — ag)t < 0.
For triples (a1, ag2, a12) € OF under this category, the third inequality in (81) can be
reduced tod > i, which contradicts the second and the fourth inequalitie$sil).
This category can be therefore dropped out.
+
o 1+ <1—£) — a1y — (1= agy)* > 0.
Recall the first inequality in (81i)e., (1 —ap2)" +to(1 —min(aps, an +0))" < r. Since
5 < (1 —ap )" due to the fourth inequality in (81), then; + < ap + (1 —ap)™ =
+
1 < age. The first inequality in (81) reduces thus &g, > (1 — %) . We conclude

that

+
inf (CLQl + ap2 + Cl,lg) =1 + <1 - L) . (84)

ap1<1,a02>1 to

One can verify after some simple algebra théf, ), <1 a5,>1(a01 + a2 + a12) = 1 +

(1 - t%) " is always larger thad, (to, ) given by (52). Therefore, the termf,, <1 a,,~1(a01+
age+a12) Nnever coincides with the minimum if(ty, 0, 7) = min{d; (to, ), da(to, 0, 7),ds(to, d, ),
da(to,0,7)}. As a result, the argument of the infimunf o, a,,a10)c0, (@01 + ao2 + a12)

coincides necessarily with a tripleo;, age, a12) from the following subset.

e ao; < 1,a92 < 1. Two categories of triplesag;, ags, a12) should be considered.

+
o 14 (1—%) — s — (1 — ag)t < 0.
As done before, it is straightforward to verify that theradstriples(ao:, agz, a12) € OF

that fall under this category.
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+
o 1+(1—%) — a1y — (1 — agy)* > 0.

The third inequality in (81) leads in this case to

_l’_
r r to
>——(1—— ——94. 85
ap2 t < t()) t ( )

In order to evaluate the first inequality in (81), two subgatées of tripleq(ag;, gz, a12)

should be further examined.

1) apy < agi+96. For triples(ag, ag2, a12) € O under this category, the first inequality
in (81) leads tazpe > (1 —r)™.

2) agy > ag + 6. The first inequality results in this case dap, + ﬁ—?am > %’“ — ﬁ—fé.

Referring to Figures 8 and 9 reveals thaf, , <1 ,,,<1(a01 + o2 + a12) coincides with

the rhs of (53). We have thus proved thiatt,, d, ) is indeed given by (53).

fapr i Tao
!

,,,,,,,,,,

| Sl : 1 el
11 —-r Tte~o_ Q02 A= ’I“i i e Qo2

<
Y

N s 1— 4 : . AW 1= t

-'a’(lfa) - Tr—ﬁfs Sk K*(“a) - Tr—ﬁfs

Figure 8- Outage region for the DoQF protocol-in the caségure 9. Outage region for the DoQF protocot-in the case
+ +
l—(l—l) —lg <1, 1—r<i—(1—1) _ g,

t1 to

Now consider the case> 1— (1 — £)+ in order to prove that (54) holds. To that end, refer to
the second and the fourth inequalities in the definitio®afiven by (81), that ig1 —ag )t < =
andd < (1 —ag;)*. Note that(1 — ap;)™ < 1 sinceag; > 0. A necessary condition fagy; to
satisfy the second and the fourth inequalities in (81), amsequently to belong tO ., is thus
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0 < min {1, %} =1- (1 — £)+ This means that if we choogesuch that) > 1 — <1 — %)Jr
the setO. will be empty. In this casel?, »(p) = 0 for sufficiently largep. In other words, there
existsp, > 0 such thatvp > p,, the event&$ cannot be realized and the relay will not be able
to quantize, reducing the DoQF to a classical DF scheme. ©hesponding DMTd,(to, d, )
will have no effect in this case on the final DMT of the protod®e can give it for convenience

the valued,(to, d,r) = 2(1 — r)™, which is the upper-bound on the DMT of any single-relay

protocol.

B. Proof of Lemma 1

Assume that parametets and ¢ of the DoQF protocol are fixed such that= #; p(r) and
+ . . . -
0=1-— (1 — @) = %Fﬁ wheret; oe(r) is defined by (63). In this case, equations (52), (53),
(57) and (58) lead tdl(to, 7’) = d4(t0, 0, 7’) = dEF(T) and dg(to, 0, 7") = dg(t(], 0, 7’) = 2(1 — T)+,
meaning thati(ty, 6, r) = dpg(r).
We conclude that the DoQF can be reduced to have the perfeemainDF by choosing

to = tope(r) and§ = z"—. The final DMT dp,oe(r) of the DoQF is therefore necessarily

tS,DF(’”) '

greater or equal tdj.(r). The proof of Lemma 1 is thus completed.

C. Proof of Lemma 2

Proving Lemma 2 requires proving that the following threequalities holdr < #{ poor(7),
t5.000r(7) < tope(r) and 0.5 < 8 hoor(r). Let us begin with the proof of the inequality <
t5.0oor(7). Assume to the contrary that> ¢ 5,or(7). In this caseds(t; poor(r); Ipoor(”), 7) =
0 due to (57). This implies that the DMT of the DoQF satisfifi$; poor(7), Ipeor(7), 7) =
d3(5.poar(T): 9pogr(r), ) = 0, which is in contradiction with Lemma 1. We conclude that

t5.poor(T) holds true.

January 30, 2012 DRAFT



48

We now show that the inequality p,or(r) < t;pr(7) also holds true. For that sake, note that

the DMT dp(r) of DF given by (62) can be written as a function#gf,(r) defined by (63):

r

df =2 - —
o (") 1—- tS,DF(T)

= dl (tS,DF(T)v T) ’ (86)

where the second equality in (86) can be easily checked leyriied to (52). On the other hand,

dy (tzk),DoQF(r)vr) > d*DoQF(T) (87)

due to (50). Furthermore, Lemma 1 states that

*DoQF(T> > dpe(r) . (88)

Combining (86), (87) and (88) leads th (t}poor(r): ) > di (t;pe(r), 7). Sinced,(ty,r) =

2 — 77, we conclude thatj p,or(r) < 5 pe(r) holds.

1—to?

In order to prove that inequalits 5,or(7) > 0.5 holds, we will show that the best DMT that
can be achieved with, < 0.5 i.e., maxy, <05 d(to, 0, 7), IS less or equal to the DMT that can be

achieved by choosing, > 0.5. It can be shown after some algebra that
Vu > 0.5,Yv < 0.5, do(v,d,7) < dy(u,d,r),

where dy(u, 6, 7) is given by (53) andly(v,d,r) is given by (56). Furthermore, it is straight-
forward to show that functions — ds(¢,0,r) andt — dy(t,0,r) defined respectively by (57)
and (58) are increasing w.t.t Finally, sinced;(v,r) = 2(1 — r)* for any v < 0.5 due to (52),
thend(v, 0, 7) = min{dy(v, d,r), ds(v,d,r),ds(v,d,7r)}. Putting all pieces together, we conclude
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that

Vu > 0.5,Vv < 0.5, d(v,d,r) <d(u,d,r),

which in turn means thaf p,or > 0.5.

D. Proof of Lemma 3

Lemma 3 states that the following two inequalities hold tfoer > 0.25:

J’_
Shoqr(r) < 1= (1= =25 and0 < Guqr(r).

0,DoQF

Recall from our discussion in Appendix D-A that the first inatity is a necessary condition for
the DMT of the DoQF protocol to be greater or equal to the DMTDéf We thus only need

to prove the second inequality. To that end, we will resort.éonma 1 which implies that

ds (tS,DoQF(T)a 5EOQF(T>7 7’) > d*DF(T) ) (89)

* * _ t*, 0 (r) * t*, 0 (r) r
Whered3 (tO,DOQF(T)7 6DOQF(T)7 T) — 4+LF)6DOQF(T)— (4 + 1_%5;:)';':(7“)) ta DoQF(T) due tO (70)

1_t8,D0QF(T

Consider first the case\/% < r < 1. In this casedie(r) = (1 — r)(2 — r) due to [21].

Inequality (89) is therefore equivalent to

to DoQF(r) to DoQF(T) T
4+ ——————0poor(r) — [ 4+ — - >(1—=r)(2—-r1).
1- tO,DoQF<T) PooF 1- tO,DoQF(T) to, DoQF(T)

It is straightforward to show that the above inequality isiieglent to

tS,DoQF(T)
1- ta,DoQF(r)

4 1
85 ooe(r) > 1% + + -3 |r—2. (90)
DOQF( ) <t8,DoQF(T) 1- ta,DoQF(r) )

One can check after some algebra that the rhs of (90) islgtpaisitive for ﬁﬁ <r < 1.

We conclude thabtj,oe(r) > 0 on this interval. The proof of the strict positivity @f,ox(7)
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for 0.25 < r < ﬁ;} can be done without difficulty in the same way, completing pineof of

Lemma 3.
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