
1

Performance Analysis over Slow Fading

Channels of a Half-Duplex Single-Relay

Protocol: Decode or Quantize and Forward

Nassar Ksairi(1), Philippe Ciblat(2), Pascal Bianchi(2), Walid Hachem(2)

Abstract

In this work, a static relaying protocol, calledDecode or Quantize and Forward(DoQF), is

introduced for half duplex single-relay networks, and its performance is studied in the context of

communications over slow fading wireless channels. The proposed protocol is inspired by the so-called

Compress-and-Forward(CF) but only needs statistical Channel State Information at the Transmitter

(CSIT). First, we analyze the behavior of the outage probability Po of the proposed protocol as the

SNR ρ tends to infinity. In this case, we prove thatρ2Po converges to a constantξ. We refer to this

constant as theoutage probability gainand we derive its closed-form expression for a general classof

wireless channels that includes Rayleigh and Rice. We furthermore prove that the DoQF protocol has the

best achievable outage gain in the wide class of half-duplexstatic relaying protocols and we minimize

ξ w.r.t the power allocation to the source and the relay and thedurations of the slots. Next, we focus

on Rayleigh channels to derive theDiversity-Multiplexing Tradeoff(DMT) of the DoQF. Our results

show that the DoQF achieves the 2 by 1 MISO DMT upper-bound formultiplexing gainsr < 0.25.
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I. INTRODUCTION

Relaying has become a widely accepted means of cooperation in wireless networks. In this

paper, we focus on networks composed of one source, one destination and one relay that operates

under the half-duplex constrainti.e., the relay can either receive or transmit, but not both at the

same time. The relay thus listens to the source signal duringa certain amount of time (the first

slot) and is allowed to transmit towards the destination during the rest of the time (the second

slot).

A wide range of relaying protocols have been proposed so far.Most of these protocols belong

to one of the following families of relaying schemes: Amplify and Forward (AF) [1], [2], [3],

Decode and Forward (DF) [4], [5], [6], [7] and Compress and Forward (CF) [4], [8], [9], [10],

[11]. The first classical family of relaying protocols is formed by Amplify and Forward (AF)

protocols for which the relay retransmits a scaled version of its received signal. A second well

known family of protocols is formed by the Decode and Forward(DF) approaches. In this case,

the relay listens to the source during the first slot of transmission and tries to decode the source

message. If it succeeds, the relay forwards the (re-coded) source message during the second

slot. In this context, Azarianet al. [7] proposed adynamicversion of the DF (DDF, Dynamic

Decode and Forward) in which the slots durations are supposed to be adaptive as a function of

the (random) state of the source-relay channel. Although the DDF is attractive from a theoretical

point of view, an implementation of the DDF requires the use of coders-decoders with adaptive

length. To the best of our knowledge, the design of such codesfor the DDF is still in its early

stages [12], [13], [14]. We now go back to thestaticprotocols for which the relay listening time

is constant and thus regardless of the channels realization. One of the most widespreadstatic

DF protocols is the so-callednon orthogonalDF [4] (as opposed to theorthogonalDF [5]).
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By “non orthogonal” it is meant that the source and the relay are simultaneously transmitting

during the second slot. The non orthogonal DF will be simply designated as DF in the rest of

this paper. Finally, another classical family of relaying protocols is the Compress and Forward

(CF) [4], [8], [9], [10], [11]. In the standard version of theCF [8], the relay uses a Wyner-Ziv

encoder [15] to produce a source encoded version of its received signal and forwards it assuming

that the destination disposes of a side information (the signal received on the source-destination

link). Moreover, the relay is assumed to have perfect knowledge of the the relay-destination and

source-destination channel gains. In order to overcome theWyner-Ziv encoder and/or the perfect

CSIT assumption, a few strategies inspired by the CF scheme have also been proposed in the

literature. We cite for example [4], [11] where the strong assumption of perfect knowledge by

the relay of the source-destination and the relay-destination channels is replaced by a quantized

feedback link from the destination to the relay. In [11], thecase of no CSIT at the relay is also

treated and the performance degrades dramatically. In [10], vector quantization is performed by

carefully choosing the relay data rate in order to have reliable link between relay and destination

and then applies aSuccessive Interference Canceller(SIC) at the destination side. Perfect CSIT

is thus needed.

We recall the DMT [20] of any relaying scheme with a single relay is upper-bounded by the

DMT of a 2×1 MISO system given bydMISO(r) = 2(1−r)+. In [7], it is shown the DDF achieves

the MISO upper-bound forr < 0.5. As for the DF, it is known from [21] that it does not achieve

the MISO bound for anyr. Concerning the CF, it is MISO-achieving provided that Wyner-Ziv

coding and perfect CSIT are assumed. In [10], it is proven that replacing Wyner-Ziv encoder

with a standard vector quantization leads to a significant degradation of the DMT. In [2], new

protocols corresponding to a hybrid AF and CF approach that does not need CSIT are proposed,
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but no DMT is provided to assess the merit of this approach. Inthe recent work [22], [23], a

static protocol called “quantize-map-and-forward” is proven to achieve the MISO upper-bound

of the DMT for any multiplexing gain. However, no practical coding-decoding architecture has

been proposed yet to implement it. Therefore developing newstatic powerful protocol (without

instantenous CSIT) whose the performance are close to the MISO upper-bound of the DMT is

still worthy.

In our contribution, we consider the context where the instantaneous realizations of the source-

destination and relay-destination channels are completely unknown by the relay. We only assume

that the average powers of the channels are available. In this context,we propose a new relaying

technique which we shall refer to as theDecode or Quantize and Forward(DoQF), and we

analyze its performance over slow fading wireless channelsthrough the DMT and the outage

gain. We especially show that the DoQF is DMT-optimal for multiplexing gains less than0.25

and that its outage gain coincides with the lower-bound on outage gains of the wide class of

half-duplex static protocols.The DoQF can be considered either as anaugmentedDF scheme

or as a non-standarddegradedCF scheme without the need of perfect CSIT. Indeed, in DoQF

protocol, the relay first tries to decode the source message based on the signal received during

the first slot. If the latter step is successful, then similarly to the classical DF scheme, the relay

retransmits a coded version of this message during the second slot based on an independent

codebook. If the relay is not able to decode the message, it does not remain inactive, but it

quantizes the received signal vector using a well chosen distortion value as done in [10], [11],

but unlike these two works, the design parameters in our workare obtained assuming statistical

CSIT. Moreover, the relay in [10], [11] always quantizes andnever decodes and so only relies

on CF whereas we combine the DF and the CF approaches.

DRAFT January 30, 2012



5

The paper is organized as follows: the performance metrics and general notations are drawn

in Section II. A detailed description of the new DoQF protocol is provided in Section III. The

outage performance analysis and minimization at high SNR for a constant transmission rateR

is addressed in Section IV. Section V is devoted to the DMT of DoQF. Numerical results are

drawn in Section VI. Finally, Section VII is devoted to the conclusions. Due to page limitation,

the proofs of all the theorems are omitted and are available on the following webpage1.

II. PERFORMANCE METRICS ANDNOTATIONS

The source wants to transmitR nats per channel use2. The outage probabilityPo(ρ) is the

probability that the number of transmitted nats exceeds themutual information associated with

the whole channel.DerivingPo(ρ) for all possible values of the SNRρ is a difficult problem, but

Po(ρ) can be well approximated in the high SNR regime. Indeed,ρ2Po(ρ) usually converges to

a non-zero constantξ asρ tends to infinity. This constant is referred to as theoutage gain[16],

[17], [18], [19] and is a relevant performance metric for thedesign of relaying protocols.

The derivation of the outage gain assumes that the rateR is a constant w.r.t. the SNRρ. One

could as well take benefit of an increasing SNR to increase thetransmission rate. When the rate

R = R(ρ) depends on the SNR, a relevant performance metric is the Diversity-Multiplexing

Tradeoff (DMT) introduced in [20]. We remind that a relayingprotocol achievesmultiplexing

gain r anddiversity gaind(r) if R(ρ) andPo(ρ) satisfy:

lim
ρ→∞

R(ρ)

log ρ
= r lim

ρ→∞

log Po(ρ)

log ρ
= −d(r) . (1)

1http://perso.telecom-paristech.fr/∼ciblat/publications.html#jnl
2for the sake of simplicity in the derivations part, the rate is evaluated via the natural logarithm instead of the base-2 logarithm;

therefore, we introduce the ”nats” and not the ”bits”
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Here,d(r) will be referred to as the DMT of the relaying protocol.

Node 0 will coincide with the source, node 1 with the relay andnode 2 with the destination. We

denote byHij the complex random variable representing the wireless channel between nodei and

nodej. CoefficientsHij are independent and perfectly known at the receiving nodej but unknown

at each other node of the network. We defineGij = |Hij|2, and we write as usualf(ρ)
.
= ρd if

limρ→∞
log f(ρ)
log(ρ)

= d. Notations
.
>,

.
< are similarly defined. Finally,(x)+ = max(0, x).

III. T HE PROPOSEDDOQF PROTOCOL

A. Description of the Protocol

The source needs to send information at a rate ofR nats per channel use. The source has at

its disposal a frame of lengthT and a dictionary of
⌊

eRT
⌋

Gaussian independent vectors with

independentCN(0, 1) elements each. We partition the wordX0 selected by the source asX0 =

[

XT
00, X

T
01

]T
where the length ofX00 andX01 is t0T andt1T respectively witht1 = 1− t0. Here

t0 < 1 is a fixed parameter. The source transmits the vector
√

α0ρX0 =
[√

α0ρXT
00,

√
α0ρXT

01

]T
,

whereρT represents the total energy spent by both the source and the relay. Note thatE0 = α0ρT

is the source share of the total energy. Denote byE1 the averageenergy spent by the relay. The

energyE1 should be selected such that the following (long-term) power constraint is respected

E0 + E1 ≤ ρT . (2)

The relay listens to the source message for a duration oft0T channel uses (slot 0). At the end

of this slot, the signal of sizet0T received by the relay writes

Y10 =
√

α0ρH01X00 + V10 , (3)

DRAFT January 30, 2012



7

where each component of vectorV10 is a unit variance Additive White Gaussian Noise (AWGN).

Figure 1 represents the transmit and receive signals for each node.

Figure 1. Transmit/Receive signals for source (S), relay (R) and destination (D)

We now consider separately the case when the relay manages todecode the source message

and the case when it does not.

• Case when the relay decodes the source message

We can check from (3) that the relay is able to decode the source message if the event

E = {ω : t0 log(1 + α0ρG01(ω)) > R} (4)

is realized. If this is the case, the relay transmits during the remainder of the frame (slot 1) the

corresponding codeword of lengtht1T from its own codebook. The relay codebook is composed

of
⌊

eRT
⌋

Gaussian independent vectors with independentCN(0, 1) elements each. The relay

selects the codewordX11 and transmits
√

α1ρX11, which means thatα1ρT is the relay share of
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the total energy. Finally, during the slots 0 and 1, the destination receives the signal

[Y T
20, Y

T
21]

T = HE[XT
00, X

T
01, X

T
11]

T + [V T
20, V

T
21]

T , (5)

where

HE =









√
α0ρH02It0T 0 0

0
√

α0ρH02It1T
√

α1ρH12It1T









.

Items ofV20 (resp.V21) are unit variance AWGN at the destination during slot 0 (resp. slot 1).

• Case when the relay does not decode the source message (eventE is realized)

The relay quantizes in this case the received signal during slot 0 and transmits a coded version

of the quantized vector during slot 1 using the following steps.

a) Quantization: Denote byỸ10 the quantized version of the received vectorY10. VectorỸ10 is con-

structed as follows. Clearly, allt0T components of vectorY10 are independent andCN(0, α0ρG01+

1) distributed. Denote by∆2(ρ) the desired squared-error distortion per vector component:

E|Ỹ10(i) − Y10(i)|2 ≤ ∆2(ρ) .

The Rate Distortion Theorem for Gaussian sources [24] tellsus that there exists a(
⌊

eQ(ρ)t0T
⌋

, t0T )-

rate distortion code (for someQ(ρ) > 0) which is achievable for distortion∆2(ρ) provided that

Q(ρ) > log

(

α0ρG01 + 1

∆2(ρ)

)

. (6)

Such a code can be constructed by properly selecting the quantized vectorỸ10 among a quantizer-

codebook formed by
⌊

eQ(ρ)t0T
⌋

independent random vectors with distributionCN(0, (α0ρG01+

1 − ∆2(ρ))It0T ). Vector Ỹ10 is selected from this codebook in such a way that sequencesY10
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and Ỹ10 are jointly typical w.r.t. the joint distributionp(Y,Ỹ ) given by

Y = Ỹ + ∆(ρ)Z , (7)

whereỸ andZ are independent random variables with respective distributionsCN(0, α0ρG01 +

1− ∆2(ρ)) andCN(0, 1). Condition (6) ensures that such a vectorỸ10 exists with high probability

as T → ∞. ParameterQ(ρ) can be interpreted as the number of nats used to quantize one

component of the received vectorY10. It must be chosen such that (6) is satisfied. As the rhs

of (6) depends on the channel gainG01, it looks impossible at first glance to construct a fixed

quantizer which is successful for any channel state. Nevertheless, recall that we are considering

the case where eventE is not realizedi.e., t0 log(1+α0ρG01) < R. It is thus sufficient to define

Q(ρ) = log
(

K
∆2(ρ)

)

, whereK is any constant such thatK ≥ e
R
t0 . We chooseK = e

R
t0 .

Remark: Condition (6) implies that inequalityα0ρG01+1 > ∆2(ρ) should hold. The quantization

step is thus possible provided that the following event is realized

S =
{

ω : α0ρG01(ω) + 1 > ∆2(ρ)
}

. (8)

EventS happens with negligible probability provided that∆2(ρ) is chosen properly.

b) Forwarding the Relay Message: During the second slot of lengtht1T , the relay must forward

the index of the quantized vector among the possible
⌊

eQ(ρ)t0T
⌋

ones. To that end, it uses a

Gaussian codebook with rateQ(ρ)t0/t1. If we denote byX11 the corresponding codeword, the

signal transmitted by the relay can be written as
√

φ(ρ)X11, whereφ(ρ) is the power of the

relay. Functionφ(ρ) should be selected such that the power constraint given by (2) is respected.

c) Processing at Destination: In case the relay has quantized the source message (eventS defined

by (8) is realized), the destination proceeds as follows. Itfirst tries to recover the relay message
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X11 received during slot 1 and uses it to help decode the source message. The signal of length

t1T received by the destination during the second slot can be written as

Y21 =
√

φ(ρ)H12X11 +
√

α0ρH02X01 + V21 . (9)

Note that (9) can be seen as a Multiple Access Channel (MAC). In order to recoverX11 (and

consequentlỹY10) from (9), the destination interprets the source contribution as noise. It succeeds

in recoveringỸ10 if the event

F =

{

ω : t1 log

(

1 +
φ(ρ)G12(ω)

α0ρG02(ω) + 1

)

> Q(ρ)t0

}

(10)

is realized. We distinguish between three possible cases.

Events S and F are realized: In this case, the contribution ofX11 in (9) can be canceled,

and the resulting signal can be written asY
′

21 =
√

α0ρH02X01 + V21. Moreover, it is a straight-

forward result of (7) that the conditional distributionpỸ |Y is Gaussian with meanE
[

Ỹ |Y
]

=

1+α0ρG01−∆2(ρ)
1+α0ρG01

Y and variance var
(

Ỹ |Y
)

=
∆2(ρ)(1+α0ρG01−∆2(ρ))

1+α0ρG01
. We thus write

Ỹ10 =
1 + α0ρG01 − ∆2(ρ)

1 + α0ρG01

Y10 +

√

∆2(ρ) (1 + α0ρG01 − ∆2(ρ))

1 + α0ρG01

Z̃ , (11)

where vectorZ̃ is AWGN independent ofY10 such that each of its components̃Z(i) satisfies

Z̃(i) ∼ CN(0, 1). PluggingY10 =
√

α0ρH01X00 + V10 into (11), it follows that

Ỹ10 =
√

γ(G01, ρ)α0ρH01X00 + Ṽ10 ,

whereγ(G01, ρ) =
(1+α0ρG01−∆2(ρ))

2

(1+α0ρG01)2
and where vector̃V10 is AWGN whose components satisfy

Ṽ10(i) ∼ CN
(

0, γ(G01, ρ) + ∆2(ρ)
√

γ(G01, ρ)
)

. In order to decode the source message, the
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overall received signal can be reconstructed asY2 =
[

Y T
20, Ỹ

T
10, (Y

′

21)
T
]T

given by

Y2 = HF[XT
00, X

T
01]

T + V̌10, (12)

where

HF =















√
α0ρH02It0T 0

√

γ(G01, ρ)α0ρH01It0T 0

0
√

α0ρH02It1T















,

and whereV̌10 =
[

V T
20, Ṽ

T
10, V

T
21

]T

is a zero-mean Gaussian noise with covariance matrix

E[V̌10V̌
∗
10] =















It0T 0 0

0
√

γ(G01, ρ) + ∆2(ρ)
√

γ(G01, ρ)It0T 0

0 0 It1T















.

Events S and F are realized: The destination will only be able to useY20, the signal received

during slot 0. Note that in such a case, we getY20 =
√

α0ρH02X00 + V20.

Event S is realized: In this case, the relay does not quantize the source message.This is like

the case of a non cooperative transmission.

Finally, the outage probability of the DoQF protocol writes

Po(ρ) = Po,1(ρ) + Po,2(ρ) + Po,3(ρ) + Po,4(ρ) , (13)

where

• Po,1(ρ) is the probability that the destination is in outageand that the eventE is realized:

Po,1(ρ) = Pr[t0 log(1 + α0ρG02) + t1 log(1 + α0ρG02 + α1ρG12) ≤ R](1 − Pr
[

E
]

) ; (14)

January 30, 2012 DRAFT



12

• Po,2(ρ) is the probability that the destination is in outage and thateventsE, F, S are realized:

Po,2(ρ) = Pr

[

t1 log(1 + α0ρG02) + t0 log

(

1 + α0ρG02 +
γ(G01, ρ)α0ρG01

γ(G01, ρ) + ∆2(ρ)
√

γ(G01, ρ)

)

≤ R, E, F, S

]

; (15)

• Po,3(ρ) is the probability that the destination is in outage and thateventsE, F, S are realized:

Po,3(ρ) = Pr[t0 log(1 + α0ρG02) ≤ R, E, F, S] ; (16)

• Po,4(ρ) is the probability that the destination is in outage and thateventsE, S are realized:

Po,4(ρ) = Pr
[

log(1 + α0ρG02) ≤ R, E, S
]

. (17)

In Figure 2, the data processing steps at the destination node are summarized.

B. On the selection of parameterst0, t1, α0, α1, φ(ρ), ∆2(ρ)

Parameterst0, t1, α0, α1, φ(ρ) should be selected such that constraint (2) is respectedi.e.,such

thatE0+E1 ≤ ρT . Let us deriveE0 andE1. The source transmits the signal[
√

α0ρX00,
√

α0ρX01]

spending the energyE0 = α0ρT . If event E is realized, then the relay transmits the signal

√
α1ρX11 and spendsα1ρt1T Joules. If eventsE andS are realized, the relay transmits

√

φ(ρ)X11

spendingφ(ρ)t1T Joules. As for the case where eventS is realized, the relay remains inactive

spending no energy. The average energy spent by the relay is thusE1 = α1ρt1T
(

1 − Pr
[

E
])

+

φ(ρ)t1TPr
[

E, S
]

. Putting all pieces together, the power constraint given by(2) writes

α0ρ + α1ρt1
(

1 − Pr
[

E
])

+ φ(ρ)t1Pr
[

E, S
]

≤ ρ . (18)
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Figure 2. Data processing at the destination

The selection oft0, t1, α0, α1, φ(ρ) such that (18) is respected is addressed (along with the

selection of∆2(ρ)) in Sections IV and V. The rest of the paper is devoted to the study of the

performance of the DoQF using two performance metrics: The outage gain and the DMT.

IV. OUTAGE PROBABILITY ANALYSIS OF THE DOQF PROTOCOL

A. Notations and Channel Assumptions

Recall thatHij is the random variable that represents the wireless channelbetween nodesi

and j of the network (i, j ∈ {0, 1, 2}), and thatGij = |Hij|2 designates the power gain of this

channel. In this section, all variablesGij are assumed to have densitiesfGij
(x) which are right
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continuous at zero. This assumption is satisfied in particular by the so-called Rayleigh and Rice

channels. Note that except for this mild assumption, we do not make any assumption on the

channels probability distributions. We denote bycij the limit cij = fGij
(0+) and we assume

that all these limits are positive and available to the resource allocation unit. For instance, in

the Rayleigh case,Hij is complex circular Gaussian with zero mean and varianceσ2
ij . In this

case,Gij has the exponential distributionfGij
(x) = σ−2

ij exp(−x/σ2
ij)1{x ≥ 0}, and in particular

cij = σ−2
ij . Here, for any subsetA of R, we denote by1{A} the indicator function of the setA.

B. Lower Bound on the Outage Gain of Static Half-Duplex Protocols

Before deriving the outage gain of the DoQF protocol, we firstderive a bound on the outage

performance of the wide class of half-duplex static relaying protocols. This class is indexed using

parameterst0, α0, α1. For each value of these parameters, the class is denoted byPHD(t0, α0, α1)

and is defined as the set of all half-duplex static relaying protocols which satisfy:

- The source has at its disposal a dictionary of
⌊

eRT
⌋

codewords. Each codewordX0 =

[

XT
00, X

T
01

]T
is a vector of lengthT channel uses.

- The source transmit power1
T

∑T
i=1 E [|X0(i)|2] satisfies the following high SNR constraint

lim
ρ→∞

1
T

∑T
i=1 E [|X0(i)|2]

ρ
≤ α0 . (19)

- The relay listens to the source signal during the firstt0T channel uses out of theT channel

uses which is the duration of the whole transmission. The relay has at its disposal a

dictionary of codewordsX11 of length (1 − t0)T channel uses each.

- During the last(1 − t0)T channel uses, the relay average transmit power satisfies

lim
ρ→∞

1
(1−t0)T

∑(1−t0)T
i=1 E [|X11(i)|2]

ρ
≤ α1 . (20)
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The above definition does not impose any particular codewords distribution neither any con-

straints on the powers for finite values of the SNRρ. Constraints (19) and (20) restrict only the

way the average transmit powers behave inthe high SNR regime.

Theorem 1. For any static half-duplex relaying protocol from the classPHD(t0, α0, α1), the

outage gainξ = limρ→∞ ρ2Po(ρ) is lower-bounded byξCS-HD, where

ξCS−HD =
c02c01

α2
0

(

1

2
+

exp(2R)

4t0 − 2
− t0 exp(R/t0)

2t0 − 1

)

+
c02c12

α0α1

(

1

2
+

exp(2R)

4t1 − 2
− t1 exp(R/t1)

2t1 − 1

)

.

(21)

The above lower-bound has been derived using the Cut-Set (CS) bound for Half-Duplex (HD)

relay channels. This explains the use of the subscript (CS-HD) to designate this bound.

We now derive and compare the outage gain of the DoQF protocolwith the above lower-bound.

C. Outage Gain of the DoQF Protocol

Theorem 2. Assume that the quantization squared-error∆2(ρ) and the relay powerφ(ρ) satisfy

lim
ρ

φ(ρ) = +∞, (22)

lim
ρ

φ(ρ)

ρ2
= 0, (23)

lim
ρ

∆2(ρ) = 0, (24)

lim
ρ

(

φ(ρ)t1 ∆2(ρ)t0
)

= +∞. (25)

The outage gainξDoQF associated with the proposed DoQF protocol coincides with the lower-

bound given by(21), i.e., ξDoQF = ξCS−HD.

Theorem 2 states that the DoQF is outage-gain-optimal in thewide class of half-duplex

January 30, 2012 DRAFT



16

static relaying protocols. Moreover, due to (22)-(25), we can chooseφ(ρ) = α1ρ (provided

that ρ
− t1

t0
.
< ∆2(ρ)

.
< 1). It is thus optimal from an outage gain perspective to let the relay

transmit at a constant power regardless of whether the source message has been decoded or not.

D. Power and Time Optimization

We derivet0, t1, α0, α1 minimizing ξDoQF subject to constraint (18). Let us examine (18) when

the SNRρ tends to infinity. We first divide the two sides of this power constraint byρ, which leads

to α0+α1t1
(

1 − Pr
[

E
])

+ φ(ρ)
ρ

t1Pr
[

E, S
]

≤ 1, wherePr[E] = Pr [t0 log(1 + α0ρG01) ≤ R]. It is

useful to write the termφ(ρ)
ρ

t1Pr
[

E, S
]

in the lhs of the above inequality ast1
φ(ρ)
ρ2 ρPr

[

E, S
]

. Recall

that due to (23),limρ→∞
φ(ρ)
ρ2 = 0. Furthermore, it is straightforward to check thatρPr

[

E, S
]

is upper-bounded for anyρ ∈ R+. Indeed,limρ→∞ ρPr
[

E, S
]

is a constant. Putting all pieces

together, the power constraint at high SNR writes asα0 + t1α1 ≤ 1 . Note that this constraint is

not convex inα0, α1, t1. It will be convenient to replace it with a convex constraintby making

the change of variablesβ0 = α0 andβ1 = α1t1. The power constraint thus becomes

β0 + β1 ≤ 1 . (26)

It can be shown [19] that(t1, β0, β1) 7→ ξDoQF is convex on(0, 1) × (0,∞)2. Furthermore, the

minimization of ξDoQF(t1, β0, β1) given constraint (26) reduces to minimizingξDoQF on the line

segment ofR2
+ defined byβ0+β1 = 1. FunctionξDoQF(t1, β0, 1−β0) defined on(0, 1)2 is convex

as it coincides with the restriction ofξDoQF(t1, β0, β1) to a line segment. SoξDoQF(t1, β0, 1− β0)

goes to infinity on the frontier of(0, 1)2. Therefore, the minimum is in the interior of(0, 1)2, and

can be obtained by a descent method [25]. The optimization problem is convex which simplifies

greatly the algorithm complexity. The simplest way is to proceed into two steps: we first evaluate
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the cost function on a 2D (coarsestep) grid in(0, 1)2 to find rough estimation of this optimal

power and time distribution. Then afine step can be implemented through a gradient-descent

algorithm initialized with thecoarseestimates. Notice that the optimal distribution has to be

updated only when the channel statistics (and not the channel realization) are varying. As the

channel statistics have usually a large coherence time, thedistribution update has to be done

only seldom and so does not consume a lot of energy and time.

V. DMT A NALYSIS OF THE DOQF PROTOCOL

In this section, wireless channels are assumed to be Rayleigh distributed and the transmission

rate is assumed to be a function of the SNRρ satisfyingR = R(ρ)
.
= r log ρ (see (1)).

A. On the Selection of∆2(ρ) and φ(ρ) from a DMT Perspective

In Section IV, parameters∆2(ρ) andφ(ρ) were chosen from an outage gain perspective such

that (22)-(25) are satisfied. In the current section, we are interested in choices of∆2(ρ) andφ(ρ)

that are relevant from a DMT perspective. In the sequel, we assume

∆2(ρ)
.
= ρδ , (27)

where parameterδ will be fixed later. The powerφ(ρ) should be chosen without violating

constraint (18). We recall that the term Pr
[

E, S
]

in (18) is given by Pr
[

E, S
]

= Pr
[

t0 log(1 +

α0ρG01) ≤ R(ρ), 1+α0ρG01 > ∆2(ρ)
]

. It is straightforward to show that Pr
[

E, S
] .

= ρ−(1−r/t0)+

(provided thatδ ≤ 1 −
(

1 − r
t0

)+

). The (asymptotic) power constraint can be thus written as

φ(ρ)
.
≤ ρ1+(1−r/t0)+ . (28)
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If we chooseδ < 0, then∆2(ρ) andφ(ρ) given by (27) and (28) also satisfy constraints (22)-(25).

However, this does not necessarily yield the best DMT performance of the protocol.

B. DMT of the DoQF protocol

Denote byd(t0, δ, r) the DMT of DoQF for fixed values oft0 andδ:

d(t0, δ, r) = − lim
ρ→∞

log Po(ρ)

log ρ
, (29)

wherePo(ρ) is the outage probability of the protocol. We define the final DMT of DoQF as

d∗
DoQF(r) = sup

t0,δ
d(t0, δ, r) , (30)

Theorem 3. Assume that the relay power and quantization squared-errordistortion satisfy

φ(ρ)
.
= ρ1+(1−r/t0)+ and ∆2(ρ)

.
= ρδ, respectively. The DMT of the DoQF is given by

d∗
DoQF(r) =











































2(1 − r)+ for r ≤ 1
4

2 − r
1−v∗(r)

for 1
4

< r ≤ 2(
√

5−1)

9−
√

5

2 − 2
3−

√
5
r for 2(

√
5−1)

9−
√

5
< r ≤

√
5−1√
5+1

(2 − r)(1 − r) for r >
√

5−1√
5+1

, (31)

wherev∗(r) is the unique solution in
[

1
2
, 2√

5+1

]

to the following equation.

2(1 + r)v3 − (4 + 5r)v2 + 2(1 + 4r)v − 4r = 0 . (32)

The MISO upper-bound is thus reached by the DoQF forr < 0.25, but the DMT of the

protocol deviates from the MISO bound forr > 0.25. Note that we allowedt0 andδ to depend

on the multiplexing gainr. This additional degree of freedom will not change the fact that the
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DoQF protocol is static. Indeed, parameterst0 andδ do not depend on any channel coefficients.

VI. NUMERICAL ILLUSTRATIONS AND SIMULATIONS

Simulations have been carried out assuming that channels are Rayleigh distributedi.e., Hij ∼

CN(0, σ2
ij). Varianceσ2

ij is a function of the distancedij between nodesi andj following a path

loss model with exponent equal to 3:σ2
ij = Cd−3

ij , where the constantC is chosen in such a

way thatσ2
02 = 1. The data rate is fixed to 2 bits per channel use.

In Figure 3, outage probability performance with equal duration time slots and equal am-

plitudes for both the DF and the DoQF is compared to the performance after time and power

optimization for different values of the SNRρ. Both the simulated outage probabilityPo(ρ) and

the approximated outage probabilityξDoQF

ρ2 are plotted in this figure. The relay is assumed to lie at

two thirds of the source-destination distance on the source-destination line segment. Substantial

gains are observed between the DF and the DoQF, and between optimized and non optimized

protocols. Note that minimizing the outage gain continues to reduce the outage probability of

the protocol even for moderate values of the SNR.

Figure 4 represents the outage gains for the DoQF and the DF versus the positiond0,1 of the

relay. Note from the figure that the farther the relay from thesource is, the better DoQF compared

to DF works. This fact can be explained as follows: If the relay is close to the destination, it

will be more often in outage and the Quantization step will thus operate more often.

In Figure 5, we plot the ratios of the outage gains with equal times and equal powers to the

optimized outage gains as a function of the positiond0,1 of the relay. Note from this figure that

optimizing the slots durations and the power allocation yields larger performance gains for both

the DF and the DoQF when the relay is too close or too far from the source.
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In Figure 6, we plot the DMT of the DoQF, orthogonal DF, (non orthogonal) DF, non

orthogonal AF (NAF), DDF, CF (with and without Wyner-Ziv coding [10]) and the MISO
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upper-bound. The DoQF outperforms the other static protocols that arenot based on perfect

CSIT. In contrast, the DDF protocol is still better than the DoQF but its dynamic approach leads

to several implementation difficulties. The CF protocol with Wyner-Ziv coding (which needs

perfect CSIT at the relay node) is DMT-optimal while its non Wyner-Ziv variant without CSIT

[11] never achieves the MISO upper-bound and unfortunatelyoffers poor performance.

In Figure 7, the optimal sizes of slot 0 for the DF (as computedin [21]) and the DoQF are

plotted. We remark that, whenr is small enough, slots 0 and 1 have the same length. Whenr

increases, the duration of relay listening increases also.As a consequence, the duration for the

quantization step thus decreases and the DoQF becomes closer to the DF as seen on the DMT.

VII. CONCLUSIONS

A static relaying protocol (DoQF) has been introduced for half-duplex single-relay scenarios.

The proposed DoQF involves practical coding-decoding strategies at both the relay and the
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destination. The performance of this protocol has been studied in the context of communications

over slow fading wireless channels using two relevant performance metrics: The outage gain and

the diversity multiplexing tradeoff (DMT). The DoQF protocol has been shown to be optimal

in terms of outage gain in the wide class of half-duplex static relaying protocols. The proposed
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protocol has been finally shown to achieve the DMT of MISO for multiplexing gainsr ≤ 0.25.
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APPENDIX A

PROOF OFTHEOREM 1

The capacity of any static relaying protocol is limited by the cut-set upper-bound. In this

appendix, we derive the outage gain associated with the cut-set capacity. We prove next that this

outage gain is equal toξCS-HD given by (21).

The cut-set upper-bound on the capacity of any half-duplex single-relay protocol from the class

PHD(t0, α0, α1), with a listening time equal tot0T and a cooperation time equal to(1− t0)T =

t1T , is given by

CCS-HD = lim
T→∞

1

T
max

p(X00,X01,X11)
min

{

I(X00; Y10, Y20) + I(X01; Y21|X11),

I(X00; Y20) + I(X01, X11; Y21)
}

, (33)

where the maximization in (33) is with respect to all the joint distributions ofX00, X01 andX11

that satisfy the power constraints (19) and (20). It can be shown that the maximum in (33) is

achieved when vectorsX00, X01 andX11 are zero-mean i.i.d Gaussian with covariance matrices

that satisfy constraints (19) and (20). The cut-set upper-bound can thus be written as

CCS-HD = min
{

t0 log
(

1 + E
[

|X0(i)|2
]

G01 + E
[

|X0(i)|2
]

G02

)

+ t1 log
(

1 + E
[

|X0(i)|2
]

G02

)

,

t0 log
(

1 + E
[

|X0(i)|2
]

G02

)

+ t1 log
(

1 + E
[

|X0(i)|2
]

G02 + E
[

|X11(i)|2
]

G12

)

}

= min{CSIMO, CMISO} , (34)
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whereCSIMO andCMISO are defined in order to simplify the presentation of the proofas follows:

CSIMO = t0 log
(

1 + E
[

|X0(i)|2
]

G01 + E
[

|X0(i)|2
]

G02

)

+ t1 log
(

1 + E
[

|X0(i)|2
]

G02

)

CMISO = t0 log
(

1 + E
[

|X0(i)|2
]

G02

)

+ t1 log
(

1 + E
[

|X0(i)|2
]

G02 + E
[

|X11(i)|2
]

G12

)

.

We now prove that the limitlimρ→∞ ρ2Pr[CCS−HD ≤ R] exists and that it is equal toξCS−HD

given by (21). For that sake, note that the following holds:

Pr[CCS-HD ≤ R] =1 − Pr [CCS-HD > R]

=1 − Pr[CSIMO > R, CMISO > R]

≥1 − Pr [CSIMO > R] × Pr [CMISO > R]

=1 − (1 − Pr [CSIMO ≤ R]) × (1 − Pr [CMISO ≤ R]) .

Now define

Po,SIMO = Pr [CSIMO ≤ R]

Po,MISO = Pr[CMISO ≤ R] .

Using these new notations, we conclude that the following lower-bound onPr[CCS-HD ≤ R]

holds:

Pr[CCS-HD ≤ R] ≥ Po,SIMO + Po,MISO − Po,SIMOPo,MISO . (35)

In the same way, it is straightforward to show thatPr[CCS-HD ≤ R] can be upper-bounded as

follows.

Pr[CCS-HD ≤ R] ≤ Po,SIMO + Po,MISO + Po,SIMOPo,MISO . (36)
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Now, we can use the same arguments and tools employed in Subsection B to prove that

lim
ρ→∞

ρ2Po,SIMO =
c02c01

α2
0

∫

R
2
+

1 {t1 log(1 + u) + t0 log (1 + u + v) ≤ R} dudv (37)

lim
ρ→∞

ρ2Po,MISO =
c02c12

α0α1

∫

R
2
+

1{t0 log(1 + u) + t1 log(1 + u + v) ≤ R}dudv (38)

lim
ρ→∞

ρ2Po,SIMOPo,MISO = 0 . (39)

Note that the integrals in the rhs of (37) and (38) coincide with the two integrals in the rhs

of (48). We can thus write

lim
ρ→∞

ρ2Po,SIMO =
c02c01

α2
0

(

1

2
+

exp(2R)

4t0 − 2
− t0 exp(R/t0)

2t0 − 1

)

(40)

lim
ρ→∞

ρ2Po,MISO =
c02c12

α01α02

(

1

2
+

exp(2R)

4t1 − 2
− t1 exp(R/t1)

2t1 − 1

)

. (41)

Combining (35), (36), (39), (40) and (41) we conclude that

lim
ρ→∞

ρ2Pr[CCS-HD ≤ RT ] = ξCS−HD ,

whereξCS-HD is the lower-bound defined by (21). Note that sinceCCS-HD is an upper-bound on the

capacity of any static half-duplex relaying protocol belonging to the classPHD(t0, α0, α1), then

ξCS-HD which satisfiesξCS−HD = limρ→∞ ρ2Pr[CCS-HD ≤ RT ] is a lower-bound on the outage

gain of any protocol from the classPHD(t0, α0, α1). This completes the proof of Theorem 1.

APPENDIX B

PROOF OFTHEOREM 2

Recall the definition ofPo(ρ) given by (13) as the outage probability associated with the

DoQF protocol. In order to prove Theorem 2, we need to show that ρ2Po(ρ) converges as
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ρ → ∞ and to derive the outage gainξDoQF given by ξDoQF = limρ→∞ ρ2Po(ρ). According

to (13),Po(ρ) = Po,1(ρ)+Po,2(ρ)+Po,3(ρ)+Po,4(ρ), wherePo,1(ρ), Po,2(ρ), Po,3(ρ) andPo,4(ρ)

are defined by (14), (15), (16) and (17) respectively. Therefore, we need to first compute the

limits limρ→∞ ρ2Po,1(ρ), limρ→∞ ρ2Po,2(ρ), limρ→∞ ρ2Po,3(ρ) and limρ→∞ ρ2Po,4(ρ) in order to

obtain the outage gainξDoQF. It has been proved in [19] that

lim
ρ→∞

ρ2Po,1(ρ) =
c02c12

α0α1

∫

R
2
+

1{t0 log(1 + u) + t1 log(1 + u + v) ≤ R}dudv , (42)

wherec01 and c12 has been defined in Subsection IV-A asc01 = fG01(0+) and c12 = fG12(0+)

respectively. The steps of the proof that (42) holds are verysimilar to the steps given below for

the derivation oflimρ→∞ ρ2Po,2(ρ). Refer to the definition ofPo,2(ρ) given by (15) as

Po,2(ρ) = Pr

[

t1 log(1 + α0ρG02) + t0 log

(

1 + α0ρG02 +
γ(G01, ρ)α0ρG01

γ(G01, ρ) + ∆2(ρ)
√

γ(G01, ρ)

)

< R,

E, F, S

]

, (43)

where γ(G01, ρ) =
(1+α0ρG01−∆2(ρ))

2

(1+α0ρG01)2
. Plugging the definitions of eventsE, S and F given

respectively by (4), (8) and (10) into (43) leads to

Po,2(ρ) =

∫

R
3
+

1

{

t1 log(1 + α0ρx) + t0 log

(

1 + α0ρx +
γ(y, ρ)α0ρy

γ(y, ρ) + ∆2(ρ)
√

γ(y, ρ)

)

≤ R

}

× 1 {t0 log(1 + α0ρy) ≤ R}1
{

1 + α0ρy > ∆2(ρ)
}

× 1

{

t1 log

(

1 +
φ(ρ)z

1 + α0ρx

)

> t0Q(ρ)

}

fG02(x)fG01(y)fG12(z)dxdydz ,
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By making the change of variablesu = α0ρx andv = α0ρy we obtain

ρ2Po,2(ρ) =
1

α2
0

∫

R
3
+

1

{

t1 log(1 + u) + t0 log

(

1 + u +
γ(v, ρ)v

γ(v, ρ) + ∆2(ρ)
√

γ(v, ρ)

)

≤ R

}

× 1 {t0 log(1 + v) ≤ R} 1
{

1 + v > ∆2(ρ)
}

× 1

{

t1 log

(

1 +
φ(ρ)z

1 + u

)

> t0Q(ρ)

}

fG02

(

u

α0ρ

)

fG01

(

v

α0ρ

)

fG12(z)dudvdz .

(44)

SinceQ(ρ) = log (K/∆2(ρ)), it is possible and useful to write the last indicator as follows.

1

{

t1 log

(

1 +
φ(ρ)z

1 + u

)

> t0Q(ρ)

}

= 1 {z > (1 + u)θ(ρ)} , (45)

where

θ(ρ) =
K

t0
t1

φ(ρ) (∆2(ρ))
t0
t1

− 1

φ(ρ)
. (46)

Define the functionΦ(u, v, z, ρ) as the integrand in the rhs of (44) and letC be the compact

subset ofR2
+ defined asC =

{

(u, v) ∈ R
2
+, t1 log(1+u)+t0 log

(

1 + u + γ(v,ρ)v

γ(v,ρ)+∆2(ρ)
√

γ(v,ρ)

)

≤

R, t0 log(1+v) ≤ R

}

. As fG02 andfG01 are right continuous at zero, then the function(u, v) 7→

fG02

(

u
α0ρ

)

fG01

(

v
α0ρ

)

is bounded onC for ρ large enoughi.e., there existρ0 > 0 andM > 0

such that∀ρ ≥ ρ0, fG02

(

u
α0ρ

)

fG01

(

v
α0ρ

)

≤ M . It is straightforward to verify that the following
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inequalities hold for allρ ≥ ρ0:

Φ(u, v, z, ρ) ≤M × 1

{

t1 log(1 + u) + t0 log

(

1 + u +
γ(v, ρ)v

γ(v, ρ) + ∆2(ρ)
√

γ(v, ρ)

)

≤ R

}

× 1 {t0 log(1 + v) ≤ R}1
{

1 + v > ∆2(ρ)
}

× 1 {z > (1 + u)θ(ρ)} fG12(z)

≤M × 1 {log(1 + u) ≤ R} × 1 {t0 log(1 + v) ≤ R} fG12(z) .

The rhs of the latter inequality is an integrable function onR
3
+ and it does not depend onρ.

Therefore, we can apply Lebesgue’s Dominated Convergence Theorem (DCT) in order to com-

putelimρ→∞ ρ2Po,2(ρ) in (44). Note first thatlimρ→∞ ∆2(ρ) = 0, limρ→∞
γ(v,ρ)

γ(v,ρ)+∆2(ρ)
√

γ(v,ρ)
= 1

and limρ→∞ θ(ρ) = 0 due to assumptions (22)- (25). After some algebra, we can easily show

that the following result holds.

lim
ρ→∞

ρ2Po,2(ρ) =
c02c01

α2
0

∫

R
2
+

1 {t1 log(1 + u) + t0 log (1 + u + v) ≤ R} dudv . (47)

We now prove thatlimρ→∞ ρ2Po,3(ρ) = 0. First, recall thatPo,3(ρ) = Pr[t0 log(1+α0ρG02) <

R, E, F, S]. Plugging the definition of eventsE, S andF from (4), (8) and (10) respectively into

the latter equation leads to

Po,3(ρ) =

∫

R3
+

1 {t0 log(1 + α0ρx) ≤ R}1 {t0 log(1 + α0ρy) ≤ R}1
{

1 + α0ρy > ∆2(ρ)
}

× 1

{

t1 log

(

1 +
φ(ρ)z

1 + α0ρx

)

≤ t0Q(ρ)

}

fG02(x)fG01(y)fG12(z)dxdydz ,
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Defining u = α0ρx andv = α0ρy, we get

Po,3(ρ) =
1

α2
0ρ

2

∫

R
3
+

1 {t0 log(1 + u) ≤ R}1 {t0 log(1 + v) ≤ R} 1
{

1 + v > ∆2(ρ)
}

× 1

{

t1 log

(

1 +
φ(ρ)z

1 + u

)

≤ t0Q(ρ)

}

fG02

(

u

α0ρ

)

fG01

(

v

α0ρ

)

fG12(z)dudvdz .

As we did in (45), we write the last indicator as follows.

1

{

t1 log

(

1 +
φ(ρ)z

1 + u

)

≤ t0Q(ρ)

}

= 1 {z ≤ (1 + u)θ(ρ)} ,

whereθ(ρ) is defined by (46). In analogy with the approach we used to computelimρ→∞ ρ2Po,2(ρ),

we defineC1 as the compact subset ofR
3
+ satisfyingC1 =

{

(u, v, z) ∈ R
3
+, t0 log(1 + u) ≤ R,

t0 log(1 + v) ≤ R, z ≤ (1 + u)θ(ρ)
}

. Next, we use the fact thatfG02 , fG01 and fG12 are

right continuous at zero, along withlimρ→∞ θ(ρ) = 0, to show that the function(u, v, z) 7→

fG02

(

u
α0ρ

)

fG01

(

v
α0ρ

)

fG12(z) is bounded onC1 for ρ large enoughi.e., there existρ1 > 0 and

M1 > 0 such that∀ρ ≥ ρ1, fG02

(

u
α0ρ

)

fG01

(

v
α0ρ

)

fG12(z) ≤ M1. It follows that the following

inequalities hold for allρ ≥ ρ1:

ρ2Po,3(ρ) ≤ M1

α2
0

∫

R
2
+

1
{

1 + u ≤ e
R
t0

}

1 {z ≤ (1 + u)θ(ρ)} dudz

≤ M1

α2
0

∫

R+

1
{

z ≤ e
R
t0 θ(ρ)

}

dz ≤ M1

α2
0

∫ e
R
t0 θ(ρ)

0

dz =
M1

α2
0

e
R
t0 θ(ρ) .

Now sincelimρ→∞ θ(ρ) = 0 due to assumptions (22)-(25), it follows thatlimρ→∞ ρ2Po,3(ρ) = 0.

We can prove in the same way and without difficulty thatlimρ→∞ ρ2Po,4(ρ) = 0.
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Putting all pieces together,

lim
ρ→∞

ρ2Po = lim
ρ→∞

ρ2Po,1(ρ) + lim
ρ→∞

ρ2Po,2(ρ) + lim
ρ→∞

ρ2Po,3(ρ) + lim
ρ→∞

ρ2Po,4(ρ)

=
c02c12

α0α1

∫

R
2
+

1{t0 log(1 + u) + t1 log(1 + u + v) ≤ R}dudv

+
c02c01

α2
0

∫

R
2
+

1 {t1 log(1 + u) + t0 log (1 + u + v) ≤ R} dudv . (48)

The remaining task is to prove that the rhs of (48) is equal to the rhs of (21). This can be done

by making the change of variablesx = log(1 + u) and y = log
(

1 + v
1+u

)

in (48). The details

of the proof can be found in [19]. The proof of Theorem 2 is thuscomplete.

APPENDIX C

PROOF OFTHEOREM 3

The outage probability associated with the DoQF protocol was given by (13) as

Po(ρ) = Po,1(ρ) + Po,2(ρ) + Po,3(ρ) + Po,4(ρ) , (49)

where probabilitiesPo,1(ρ), Po,2(ρ), Po,3(ρ) and Po,4(ρ) are respectively defined by (14), (15),

(16) and (17). Inserting (49) into the definition of the DMTd(t0, δ, r) given by (29) leads to

d(t0, δ, r) = − lim
ρ→∞

log (Po,1(ρ) + Po,2(ρ) + Po,3(ρ) + Po,4(ρ))

log ρ

= min {d1(t0, r), d2(t0, δ, r), d3(t0, δ, r), d4(t0, δ, r)} , (50)

where

di(t0, δ, r) = − lim
ρ→∞

log Po,i(ρ)

log ρ
, (51)

DRAFT January 30, 2012



33

for i = 1, 2, 3, 4. Note thatd1(t0, r) is the only term in (50) that does not depend on parameter

δ. The derivation of the DMT associated with the DoQF protocolwill be thus done as follows:

1) Compute the termsd1(t0, r), d2(t0, δ, r), d3(t0, δ, r) and d4(t0, δ, r) for fixed values oft0

andδ as given by (51). This is done in this Subsection.

2) Computet∗0,DoQF(r) and δ∗0,DoQF(r) minimizing d(t0, δ, r) defined from (50) as the mini-

mum of d1(t0, r), d2(t0, δ, r), d3(t0, δ, r) andd4(t0, δ, r).

3) The final DMT of the protocol can be finally obtained by calculatingd(t∗0,DoQF(r), δ∗0,DoQF(r), r).
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Derivation of the term d1(t0, r), i.e., event E is realized:

Recall the definition given by (14) ofPo,1(ρ) as the probability that the destination is in

outage and that the eventE is realized. It is clear from (4) and (14) thatPo,1(ρ) is a function

of parametert0. This is why the DMT termd1(t0, r) associated withPo,1(ρ) is also a function

of this parameter. Following the steps used in Appendix D-A,one can show that the following

result holds.

d1(t0, r) =



























2(1 − r)+ for t0 ≤ 0.5

2 − r
1−t0

for t0 > 0.5 andr < 1 − t0

(1−r)+

t0
for t0 > 0.5 andr ≥ 1 − t0

(52)

Derivation of the term d2(t0, δ, r), i.e., eventsE, S and F are realized:

Note from (10) and (15) thatPo,2(ρ) is a function of parameterst0 and δ. This is why the

DMT d2(t0, δ, r) associated withPo,2(ρ) is function of t0 andδ.

First, consider the caset0 ≥ 0.5.

If parameterδ is chosen such that0 < δ ≤ 1−
(

1 − r
t0

)+

, thend2(t0, δ, r) can be written as

d2(t0, δ, r) =















(1 − r)+ + max

{

(

1 − r
t0

)+

, 1 − r − δ

}

, r
t1
−
(

1 − r
t0

)+

− t0
t1

δ ≤ 1 − r

r
t1
−
(

1 − r
t0

)+

− t0
t1

δ + max

{

1−2r
t0

+ t1
t0

(

1 − r
t0

)+

,
(

1 − r
t0

)+
}

, r
t1
−
(

1 − r
t0

)+

− t0
t1

δ > 1 − r

(53)

As for the choiceδ > 1 −
(

1 − r
t0

)+

, we show in Appendix D-A that eventE&S cannot be

realized in this case for any channel state provided thatρ is sufficiently large. Therefore, there

existsρ0 > 0 such that∀ρ ≥ ρ0, Po,2(ρ) = 0. The corresponding DMTd2(t0, δ, r) will have

no effect on the final DMT of the protocol. The valued2(t0, δ, r) = 2(1 − r)+ is conveniently
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chosen in this case:

d2(t0, δ, r) = 2(1 − r)+ for δ > 1 −
(

1 − r

t0

)+

. (54)

The proof of (53) and (54) is provided in Appendix D-A. We can show using the same arguments

of the latter appendix that

d2(t0, δ, r) = 2(1 − r)+ , for δ ≤ 0 . (55)

Similarly, we can obtain the expression (56) ford2(t0, δ, r) in the caset0 < 0.5.

d2(t0, δ, r) =














(

1 − r
t0

)+

+ max

{

(1 − r)+, 1−r
t1

− t0
t1

(

1 − r
t0

)+

− t0
t1

δ

}

, for t0 < 0.5 and2t0t1 ≤ r

(

1 − r
t0

)+

+ r
t1
−
(

1 − r
t0

)+

− t0
t1

δ, for t0 < 0.5 and2t0t1 > r

(56)

Derivation of the term d3(t0, δ, r), i.e., eventsE, S and F are realized:

By referring to (10) and (16), it becomes clear thatPo,3(ρ) is a function of parameterst0 and

δ. This explains the fact thatd3(t0, δ, r) also depends on these two parameters.

The expression given below ofd3(t0, δ, r) can be derived using the approach used in Ap-

pendix D-A.

d3(t0, δ, r) =















2
(

1 − r
t0

)+

+

(

2
(

1 − r
t0

)+

+ t0
t1

δ − r
t1

)+

for δ ≤ 1 −
(

1 − r
t0

)+

2(1 − r)+ for δ > 1 −
(

1 − r
t0

)+
. (57)

Recall that in the caseδ > 1 −
(

1 − r
t0

)+

, eventE&S cannot be realized, as we saw earlier,

for any channel realization provided thatρ is sufficiently large. In this casePo,3(ρ) = 0 and the
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corresponding DMTd3(t0, δ, r) will have no effect on the final DMT of the protocol. This is

why the valued3(t0, δ, r) = 2(1 − r)+ was conveniently chosen in (57) in this case.

Derivation of the term d4(t0, δ, r), i.e., eventsE and S are realized:

This is the case when the relay does not quantize even if it hasnot succeeded in decoding

the source message. This happens whenα0ρG01 + 1 < ∆2(ρ) which means that the relay stays

inactive. Recall the definition ofPo,4(ρ) as the probability that the destination is in outage and

that eventsE andS are realized. It is straightforward to verify that

d4(t0, δ, r) =















(1 − r)+ + max

{

(

1 − r
t0

)+

, (1 − δ)+

}

for δ > 0

2(1 − r)+ for δ ≤ 0

. (58)

Note that in the caseδ ≤ 0, the conditionα0ρG01 +1 > ∆2(ρ) is always satisfied for sufficiently

large values ofρ for all channel realizations since∆2(ρ)
.
= ρδ ≤ 1. Therefore, there exists in

this caseρ0 > 0 such that∀ρ ≥ ρ0, eventS is never realized andPo,4(ρ) = 0. The corresponding

DMT d4(t0, δ, r) will have therefore no effect on the final DMT of the protocol,and as usual

we can assign it conveniently the valued4(t0, δ, r) = 2(1 − r)+ as done in (58).

Derivation of the final DMT of the DoQF protocol:

At this point, the DMT termsd1(t0, r), d2(t0, δ, r), d3(t0, δ, r) andd4(t0, δ, r) associated with

all the possible cases encountered by the destination have been derived. the DMTd(t0, δ, r)

associated with the DoQF protocol for fixed values oft0 andδ can now be obtained from (29)

as the minimum of the above DMT terms. No closed-form expression of d(t0, δ, r) is given in this

paper. However, Theorem 3 does provide the closed-form expression ofd∗
DoQF(r) obtained by

solving the optimization problemd∗
DoQF(r) = supδ,t0 d(t0, δ, r). We derived∗

DoQF(r) as follows.
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Before proceeding with the proof, we definet∗0,DoQF(r) andδ∗DoQF(r) as the argument of the

supremum ind∗
DoQF(r) = supδ,t0 d(t0, δ, r).

We will first computed∗
DoQF(r) in the caser ≤ 0.25, and then in the caser > 0.25.

The caser ≤ 0.25

Let us plugt0 = 0.5 andδ = 0 into (52), (53), (57) and (58) to obtain

d1(t0, r) = d2(t0, δ, r) = d4(t0, δ, r) = 2(1 − r)+ , (59)

d3(t0, δ, r) = 2(1 − 2r)+ +
(

2(1 − 2r)+ − 2r
)+

= 2 − 8r . (60)

Note thatd3(t0, δ, r) is the only term that may be different from2(1 − r)+. However, one can

verify by referring to (60) thatd3(t0, δ, r) ≥ 2(1 − r)+ ⇔ r ≤ 0.25. We conclude that, for

r ≤ 0.25, d(0.5, 0, r) = 2(1− r)+. We have thus proved that the MISO upper-bound is achieved

by the DoQF forr ≤ 0.25 by choosingt∗0,DoQF(r) = 0.5 andδ∗DoQF(r) = 0.

The caser > 0.25

The first step of the proof in this case is to reduce the size of the set of possible values of

t∗0,DoQF(r) andδ∗DoQF(r). For that sake, we first recall that the DMT of (non-orthogonal) DF in the

general multiple-relay case has been derived in [21]. Denote by Po,DF(ρ) the outage probability

associated with the DF protocol. The DMT of DF for fixed valuesof t0 can thus be defined as

d(t0, r) = − lim
ρ→∞

log Po,DF(ρ)

log ρ
, (61)
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and the final DMT of the protocol asd∗
DF(r) = supt0 d(t0, r). The closed-form expression of

d∗
DF(r) in the case of a single relay is reproduced here by

d∗
DF(r) =















2 − 2
3−

√
5
r for 0 ≤ r ≤

√
5−1√
5+1

(2 − r)(1 − r) for
√

5−1√
5+1

< r ≤ 1 .

(62)

Moreover, the optimal value oft0, as function ofr, that allows to achieve this DMT is given by

t∗0,DF(r) =















2√
5+1

for 0 ≤ r ≤
√

5−1√
5+1

1
2−r

for
√

5−1√
5+1

< r ≤ 1 .

(63)

given the above results, we will prove in particular that thefollowing three lemmas hold.

Lemma 1. For any r ∈ [0, 1], d∗
DoQF(r) ≥ d∗

DF(r).

In other words, Lemma 1 states that the DMT achieved by the DoQF protocol cannot be

worse than the DMT achieved by the DF. The proof of Lemma 1 is given in Appendix D-B.

Lemma 2. For any r ∈ [0, 1], the following inequalities hold true:max{0.5, r} ≤ t∗0,DoQF(r) ≤

t∗0,DF(r).

Here,t∗0,DF(r) is the value oft0 defined by (63) which allows to achieve the DMT of the DF

protocol. The proof of Lemma 2 is given in Appendix D-C.

Lemma 3. Assume thatr > 0.25. The following holds true:0 < δ∗DoQF(r) < 1−
(

1 − r
t∗0,DoQF(r)

)+

.

The proof of Lemma 3 is given in Appendix D-D.

These three lemmas will considerably simplify the derivation of d∗
DoQF(r). Indeed, with the

help of Lemma 2 and Lemma 3, we will derive the DMT of the DoQF firstly in the case when

0.25 < r ≤ 2(
√

5−1)

9−
√

5
, and secondly in the case when2(

√
5−1)

9−
√

5
< r ≤ 1.
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• 0.25 < r ≤ 2(
√

5−1)

9−
√

5
.

We begin with the simplification of the DMT termsd1

(

t∗0,DoQF(r), r
)

, d2

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

,

d3

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

andd4

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

. The final DMTd∗
DoQF(r) can then

be deduced as the minimum of the above terms. Consider first the derivation ofd1

(

t∗0,DoQF(r), r
)

.

Since Lemma 2 states thatt∗0,DoQF(r) ≤ t∗0,DF(r) = 2√
5+1

, it follows from (52) that

d1

(

t∗0,DoQF(r), r
)

= 2 − r

1 − t∗0,DoQF(r)
. (64)

We now proceed to the simplification of the expression ofd2

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

. Thanks

to Lemma 2 and Lemma 3, we will prove that

d2

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

= (1 − r)+ + max

{

1 − r

t∗0,DoQF(r)
, 1 − r − δ∗DoQF(r)

}

. (65)

For that sake, refer to (53) and note that proving (65) is equivalent to proving that

r

1 − t∗0,DoQF(r)
−
(

1 − r

t∗0,DoQF(r)

)+

−
t∗0,DoQF(r)

1 − t∗0,DoQF(r)
δ∗DoQF(r) ≤ 1 − r . (66)

In order to show that (66) holds, we suppose to the contrary that r
1−t∗0,DoQF(r)

−
(

1 − r
t∗0,DoQF(r)

)+

−
t∗0,DoQF(r)

1−t∗0,DoQF(r)
δ∗DoQF(r) > 1−r. Sinceδ∗DoQF(r) > 0 according to Lemma 3, the latter assumption

leads to

r >
2t∗0,DoQF(r)

(

1 − t∗0,DoQF(r)
)

1 + t∗0,DoQF(r)
(

1 − t∗0,DoQF(r)
) . (67)

Moreover, it is straightforward to show that

min
0.5≤t≤ 2√

5+1

2t (1 − t)

1 + t (1 − t)
>

2(
√

5 − 1)

9 −
√

5
, (68)

where the restriction to0.5 ≤ t ≤ t∗0,DF(r) = 2√
5+1

is due to Lemma 2. Now, we can
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combine (67) and (68) in order to getr > 2(
√

5−1)

9−
√

5
, which contradicts the fact thatr ≤

2(
√

5−1)

9−
√

5
. We conclude that expression (65) holds true.

We can further simplify the expression (65) by proving that1−r−δ∗DoQF(r) ≥ 1− r
t∗0,DoQF(r)

.

The proof of this point uses the same arguments as above and isthus omitted. The term

d2

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

can finally be written as

d2

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

= 2(1 − r)+ − δ∗DoQF(r) . (69)

As for d3

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

given by (57), it simplifies to

d3

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

= 4 +
t∗0,DoQF(r)

1 − t∗0,DoQF(r)
δ∗DoQF(r)−

(

4 +
t∗0,DoQF(r)

1 − t∗0,DoQF(r)

)

r

t∗0, DoQF(r)

(70)

The remaining task is to simplify the expression (58) which definesd4

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

.

For that sake, we can resort to Lemma 1 to prove that

d4

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

= (1 − r)+ + (1 − δ∗DoQF(r)) .

It follows that d4

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

≥ d2

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

and that it can thus

be dropped from the derivation of the final DMT of the DoQF. Nowthat the DMT terms

d1

(

t∗0,DoQF(r), r
)

, d2

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

and d3

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

have been ex-

pressed as functions oft∗0,DoQF(r) and t∗0,DoQF(r), we can proceed to the determination of

t∗0,DoQF(r), δ∗DoQF(r), and consequentlyd∗
DoQF(r).

– Determination ofδ∗DoQF(r):

Assume thatt∗0,DoQF(r) has been already determined. It is straightforward to verify

that d2 (t, δ, r) given by (69) is decreasing w.r.tδ, and thatd3 (t, δ, r) given by (70) is

DRAFT January 30, 2012



41

increasing w.r.tδ on R
+. Furthermore,d2 (t, 0, r) > d3 (t, 0, r). We conclude that

d2

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

= d3

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

.

Therefore,δ∗DoQF(r) can be given as a function oft∗0,DoQF(r) as follows

δ∗DoQF(r) =
(

4 − 3t∗0,DoQF(r)
) r

t∗0,DoQF(r)
− (2 + 2r)

(

1 − t∗0,DoQF(r)
)

, (71)

which leads to

d2

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

= d3

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

=

2 − 2r + (2 + 2r)
(

1 − t∗0,DoQF(r)
)

−
(

4 − 3t∗0,DoQF(r)
) r

t∗0,DoQF(r)
. (72)

– Determination oft∗0,DoQF(r):

We can show in the same way thatt∗0,DoQF(r) can be obtained by writing

d1

(

t∗0,DoQF(r), r
)

= d2

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

. (73)

Plugging the expression ofδ∗DoQF(r) from (71) and the expression ofd2

(

t∗0,DoQF(r),

δ∗DoQF(r), r
)

from (72) into (73) leads to equation (32) given in Theorem 3 as

2(1 + r)t∗0,DoQF(r)
3 − (4 + 5r)t∗0,DoQF(r)

2 + 2(1 + 4r)t∗0,DoQF(r) − 4r = 0 .

It can be shown after some algebra that the above equation admits a unique solution

v∗(r) on
[

0.5, 2√
5+1

]

provided thatr ≤ 2(
√

5−1)

9−
√

5
. This explains why the distinction

r ≤ 2(
√

5−1)

9−
√

5
and r > 2(

√
5−1)

9−
√

5
appears in Theorem 3. Once the solutionv∗(r) to the

above equation has been computed, thend∗
DoQF(r), t∗0,DoQF(r) andδ∗DoQF(r) can be easily
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obtained.

• 2(
√

5−1)

9−
√

5
< r ≤ 1.

In this case, we need to prove thatd∗
DoQF(r) = d∗

DF(r). To that end, we can show that

d∗
DoQF(r) > d∗

DF(r) leads to a contradiction. The proof of this point is based on Lemmas 1,

2 and 3 and is omitted due to lack of space.

The proof of Theorem 3 is thus completed.

APPENDIX D

DERIVATION OF d2(t0, δ, r) AND PROOFS OFLEMMAS 1, 2, AND 3

A. Derivation ofd2(t0, δ, r) (for t0 ≥ 0.5 and δ > 0)

First, recall the definition ofd2(t0, δ, r) as d2(t0, δ, r) = − limρ→∞
log(Po,2(ρ))

log ρ
, where the

probability Po,2(ρ) is defined by (15) as

Po,2(ρ) = Pr

[

t1 log(1 + α0ρG02) + t0 log

(

1 + α0ρG02 +
γ(G01, ρ)α0ρG01

γ(G01, ρ) + ∆2(ρ)
√

γ(G01, ρ))

)

≤ R(ρ),

E, F, S

]

, (74)

where γ(G01, ρ) =
(1+α0ρG01−∆2(ρ))

2

(1+α0ρG01)2
, and where eventsE, S and F are defined by (4), (8)

and (10) respectively. Note thatγ(G01, ρ) is positive since eventS i.e., 1 + α0ρG01 ≥ ∆2(ρ), is

realized. Furthermore, we can check that the following result holds.

γ(G01, ρ)

γ(G01, ρ) + ∆2(ρ)
√

γ(G01, ρ)

.
=

1

1 + ∆2(ρ)
.
= ρ−(δ)+ . (75)

In the following, we assume thatR(ρ) = r log ρ in accordance with (1), and we define as

in [20] the exponential orderassociated with channelHij as aij = − log Gij

log ρ
. We can easily
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verify that aij is a Gumbeldistributed random variable with the probability density function

faij
(a) = log ρ eae−e−a log ρ

. By pluggingG01 = ρ−a01 into (4), the probability of the eventE i.e.,

t0 log(1 + α0ρG01) > R(ρ), can be written as

Pr[E]=̇Pr

[

(1 − a01)
+ ≤ r

t0

]

. (76)

Similarly, we can verify that the probability of eventF i.e., t1 log
(

1 + φ(ρ)G12

α0ρG02+1

)

> Q(ρ)t0,

satisfies

Pr[F]=̇Pr

[(

1 +

(

1 − r

t0

)+

− a12 − (1 − a02)
+

)+

≤ r

t1
− t0

t1
δ

]

, (77)

and that the probability ofS satisfies

Pr[S]=̇Pr[δ ≤ (1 − a01)
+] . (78)

By pluggingR(ρ) = r log ρ, G01 = ρ−a01 , G02 = ρ−a02 , G12 = ρ−a12 , (75), (76), (77) and (78)

into (74), the following high SNR result holds forδ > 0.

Po,2(ρ)=̇Pr

[

t1(1 − a02)
+ + t0(1 − min(a02, a01 + δ))+ < r , (1 − a01)

+ <
r

t0
,

(

1 +

(

1 − r

t0

)+

− a12 − (1 − a02)
+

)+

>
r

t1
− t0

t1
δ , δ ≤ (1 − a01)

+

]

, (79)

or, equivalently,

Po,2(ρ)=̇

∫

O

fa01(a01)fa02(a02)fa12(a12)da01da02da12 , (80)
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wherefaij
(.) is the probability density function ofaij and

O =

{

(a01, a02, a12) ∈ R
3 | t1(1 − a02)

+ + t0(1 − min(a02, a01 + δ))+ < r , (1 − a01)
+ <

r

t0
,

(

1 +

(

1 − r

t0

)+

− a12 − (1 − a02)
+

)+

>
r

t1
− t0

t1
δ , δ ≤ (1 − a01)

+

}

. (81)

Plugging the expression offaij
(.) given earlier into (80),Po,2(ρ) can be written as

Po,2(ρ)=̇

∫

O

(log ρ)3ρ−(a01+a02+a12)e−ρ−a01
e−ρ−a02

e−ρ−a12
da01da02da12 .

It can be shown (refer to [20]) that the term(log ρ)3 can be dropped from the latter equation

without losing its exactness. Moreover, integration in thesame equation can be restricted to

positive values ofa01, a02 anda12. DefineO+ = O ∩ R
3
+. The probabilityPo,2(ρ) thus satisfies

Po,2(ρ)=̇

∫

O+

ρ−(a01+a02+a12)da01da02da12 , (82)

and the DMTd2(t0, δ, r) associated withPo,2(ρ) can now be written [20] as

d2(t0, δ, r) = inf
(a01,a02,a12)∈O+

(a01 + a02 + a12) . (83)

In this appendix, the derivation ofd2(t0, δ, r) will be done only in the case characterized by

t0 ≥ 0.5 andδ > 0. The derivation in the caseδ ≤ 0 or t0 < 0.5 follows the same approach.

Consider first the case0 < δ ≤ 1 −
(

1 − r
t0

)+

. The infimum in (83) can be computed by

partitioningO+ into subsets according to whethera01, a02 are smaller or larger than 1.

• a01 > 1. In this case,(1−a01)
+ = 0 and the fourth inequality in (81) reduces toδ ≤ 0. This

result contradicts our assumption thatδ > 0. There is therefore no triples(a01, a02, a12) ∈ O+

such thata01 > 1.
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• a01 ≤ 1, a02 > 1. Since the third inequality in the definition ofO given by (81) contains

the term

(

1 +
(

1 − r
t0

)+

− a12 − (1 − a02)
+

)+

, then we should consider two categories

of triples (a01, a02, a12):

◦ 1 +
(

1 − r
t0

)+

− a12 − (1 − a02)
+ < 0.

For triples(a01, a02, a12) ∈ O+ under this category, the third inequality in (81) can be

reduced toδ > r
t0

, which contradicts the second and the fourth inequalities in (81).

This category can be therefore dropped out.

◦ 1 +
(

1 − r
t0

)+

− a12 − (1 − a02)
+ ≥ 0.

Recall the first inequality in (81)i.e., t1(1−a02)
++t0(1−min(a02, a01+δ))+ < r. Since

δ ≤ (1− a01)
+ due to the fourth inequality in (81), thena01 + δ ≤ a01 + (1− a01)

+ =

1 ≤ a02. The first inequality in (81) reduces thus toa01 ≥
(

1 − r
t0

)+

. We conclude

that

inf
a01≤1,a02>1

(a01 + a02 + a12) = 1 +

(

1 − r

t0

)+

. (84)

One can verify after some simple algebra thatinfa01≤1,a02>1(a01 + a02 + a12) = 1 +
(

1 − r
t0

)+

is always larger thand1(t0, r) given by (52). Therefore, the terminfa01≤1,a02>1(a01+

a02+a12) never coincides with the minimum ind(t0, δ, r) = min{d1(t0, r), d2(t0, δ, r),d3(t0, δ, r),

d4(t0, δ, r)}. As a result, the argument of the infimuminf(a01,a02,a12)∈O+(a01 +a02 +a12)

coincides necessarily with a triple(a01, a02, a12) from the following subset.

• a01 ≤ 1, a02 ≤ 1. Two categories of triples(a01, a02, a12) should be considered.

◦ 1 +
(

1 − r
t0

)+

− a12 − (1 − a02)
+ < 0.

As done before, it is straightforward to verify that there isno triples(a01, a02, a12) ∈ O+

that fall under this category.
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◦ 1 +
(

1 − r
t0

)+

− a12 − (1 − a02)
+ ≥ 0.

The third inequality in (81) leads in this case to

a02 >
r

t1
−
(

1 − r

t0

)+

− t0
t1

δ . (85)

In order to evaluate the first inequality in (81), two subcategories of triples(a01, a02, a12)

should be further examined.

1) a02 < a01+δ. For triples(a01, a02, a12) ∈ O
+ under this category, the first inequality

in (81) leads toa02 > (1 − r)+.

2) a02 ≥ a01 + δ. The first inequality results in this case ina02 + t0
t1

a01 > 1−r
t1

− t0
t1

δ.

Referring to Figures 8 and 9 reveals thatinfa01≤1,a02≤1(a01 + a02 + a12) coincides with

the rhs of (53). We have thus proved thatd2(t0, δ, r) is indeed given by (53).

b1�rt1 � t0t1Æb
1� r

brt1 � �1� rt0�+ � t0t1 Æ
b

�1� rt0�+ b
1� r � Æ

b�Æ

a01

a02b
A

O+

Figure 8. Outage region for the DoQF protocol in the case
r
t1

−

“

1 −
r
t0

”+

−
t0
t1

δ ≤ 1 − r.

b1�rt1 � t0t1Æb
1� r

brt1 � �1� rt0�+ � t0t1 Æ
b

�1� rt0�+ b
1� r � Æ

b�Æ

a01

a02b
B

O+

Figure 9. Outage region for the DoQF protocol in the case

1 − r <
r
t1

−

“

1 −
r
t0

”+

−
t0
t1

δ.

Now consider the caseδ > 1−
(

1 − r
t0

)+

in order to prove that (54) holds. To that end, refer to

the second and the fourth inequalities in the definition ofO given by (81), that is(1−a01)
+ < r

t0

and δ ≤ (1 − a01)
+. Note that(1 − a01)

+ ≤ 1 sincea01 > 0. A necessary condition fora01 to

satisfy the second and the fourth inequalities in (81), and consequently to belong toO+ is thus
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δ ≤ min
{

1, r
t0

}

= 1−
(

1 − r
t0

)+

. This means that if we chooseδ such thatδ > 1−
(

1 − r
t0

)+

,

the setO+ will be empty. In this case,Po,2(ρ) = 0 for sufficiently largeρ. In other words, there

existsρ0 > 0 such that∀ρ ≥ ρ0, the eventE&S cannot be realized and the relay will not be able

to quantize, reducing the DoQF to a classical DF scheme. The corresponding DMTd2(t0, δ, r)

will have no effect in this case on the final DMT of the protocol. We can give it for convenience

the valued2(t0, δ, r) = 2(1 − r)+, which is the upper-bound on the DMT of any single-relay

protocol.

B. Proof of Lemma 1

Assume that parameterst0 andδ of the DoQF protocol are fixed such thatt0 = t∗0,DF(r) and

δ = 1−
(

1 − r
t∗DF(r)

)+

= r
t∗DF(r)

, wheret∗0,DF(r) is defined by (63). In this case, equations (52), (53),

(57) and (58) lead tod1(t0, r) = d4(t0, δ, r) = d∗
DF(r) andd2(t0, δ, r) = d3(t0, δ, r) = 2(1 − r)+,

meaning thatd(t0, δ, r) = d∗
DF(r).

We conclude that the DoQF can be reduced to have the performance of DF by choosing

t0 = t∗0,DF(r) and δ = r
t∗0,DF(r)

. The final DMT d∗
DoQF(r) of the DoQF is therefore necessarily

greater or equal tod∗
DF(r). The proof of Lemma 1 is thus completed.

C. Proof of Lemma 2

Proving Lemma 2 requires proving that the following three inequalities hold:r ≤ t∗0,DoQF(r),

t∗0,DoQF(r) ≤ t∗0,DF(r) and 0.5 ≤ t∗0,DoQF(r). Let us begin with the proof of the inequalityr ≤

t∗0,DoQF(r). Assume to the contrary thatr > t∗0,DoQF(r). In this case,d3(t
∗
0,DoQF(r), δ

∗
DoQF(r), r) =

0 due to (57). This implies that the DMT of the DoQF satisfiesd(t∗0,DoQF(r), δ
∗
DoQF(r), r) =

d3(t
∗
0,DoQF(r), δ

∗
DoQF(r), r) = 0, which is in contradiction with Lemma 1. We conclude thatr ≤

t∗0,DoQF(r) holds true.
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We now show that the inequalityt∗0,DoQF(r) ≤ t∗0,DF(r) also holds true. For that sake, note that

the DMT d∗
DF(r) of DF given by (62) can be written as a function oft∗0,DF(r) defined by (63):

d∗
DF(r) = 2 − r

1 − t∗0,DF(r)
= d1

(

t∗0,DF(r), r
)

, (86)

where the second equality in (86) can be easily checked by referring to (52). On the other hand,

d1

(

t∗0,DoQF(r), r
)

≥ d∗
DoQF(r) (87)

due to (50). Furthermore, Lemma 1 states that

d∗
DoQF(r) ≥ d∗

DF(r) . (88)

Combining (86), (87) and (88) leads tod1

(

t∗0,DoQF(r), r
)

≥ d1

(

t∗0,DF(r), r
)

. Sinced1(t0, r) =

2 − r
1−t0

, we conclude thatt∗0,DoQF(r) ≤ t∗0,DF(r) holds.

In order to prove that inequalityt∗0,DoQF(r) ≥ 0.5 holds, we will show that the best DMT that

can be achieved witht0 < 0.5 i.e., maxt0<0.5 d(t0, δ, r), is less or equal to the DMT that can be

achieved by choosingt0 ≥ 0.5. It can be shown after some algebra that

∀u ≥ 0.5, ∀v < 0.5, d2(v, δ, r) ≤ d2(u, δ, r) ,

whered2(u, δ, r) is given by (53) andd2(v, δ, r) is given by (56). Furthermore, it is straight-

forward to show that functionst 7→ d3(t, δ, r) and t 7→ d4(t, δ, r) defined respectively by (57)

and (58) are increasing w.r.tt. Finally, sinced1(v, r) = 2(1 − r)+ for any v < 0.5 due to (52),

thend(v, δ, r) = min{d2(v, δ, r), d3(v, δ, r), d4(v, δ, r)}. Putting all pieces together, we conclude
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that

∀u ≥ 0.5, ∀v < 0.5, d(v, δ, r) ≤ d(u, δ, r) ,

which in turn means thatt∗0,DoQF ≥ 0.5.

D. Proof of Lemma 3

Lemma 3 states that the following two inequalities hold truefor r > 0.25:

δ∗DoQF(r) < 1 −
(

1 − r
t∗0,DoQF(r)

)+

and0 < δ∗DoQF(r).

Recall from our discussion in Appendix D-A that the first inequality is a necessary condition for

the DMT of the DoQF protocol to be greater or equal to the DMT ofDF. We thus only need

to prove the second inequality. To that end, we will resort toLemma 1 which implies that

d3

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

≥ d∗
DF(r) , (89)

whered3

(

t∗0,DoQF(r), δ
∗
DoQF(r), r

)

= 4+
t∗0,DoQF(r)

1−t∗0,DoQF(r)
δ∗DoQF(r)−

(

4 +
t∗0,DoQF(r)

1−t∗0,DoQF(r)

)

r
t∗0, DoQF(r)

due to (70).

Consider first the case
√

5−1√
5+1

< r ≤ 1. In this case,d∗
DF(r) = (1 − r)(2 − r) due to [21].

Inequality (89) is therefore equivalent to

4 +
t∗0,DoQF(r)

1 − t∗0,DoQF(r)
δ∗DoQF(r) −

(

4 +
t∗0,DoQF(r)

1 − t∗0,DoQF(r)

)

r

t∗0, DoQF(r)
≥ (1 − r)(2 − r) .

It is straightforward to show that the above inequality is equivalent to

t∗0,DoQF(r)

1 − t∗0,DoQF(r)
δ∗DoQF(r) ≥ r2 +

(

4

t∗0,DoQF(r)
+

1

1 − t∗0,DoQF(r)
− 3

)

r − 2 . (90)

One can check after some algebra that the rhs of (90) is strictly positive for
√

5−1√
5+1

< r ≤ 1.

We conclude thatδ∗DoQF(r) > 0 on this interval. The proof of the strict positivity ofδ∗DoQF(r)
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for 0.25 < r ≤
√

5−1√
5+1

can be done without difficulty in the same way, completing theproof of

Lemma 3.
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