
Snake: a Stochastic Proximal Gradient Algorithm for

Regularized Problems over Large Graphs

Adil Salim1, Pascal Bianchi1, et Walid Hachem2

1LTCI, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France
2CNRS / LIGM (UMR 8049), Université Paris-Est Marne-la-Vallée, France

Résumé

A regularized optimization problem over a large un-
structured graph is studied, where the regularization
term is tied to the graph geometry. Typical examples in-
clude the total variation and Laplacian regularizers. In
the special case where the graph is a simple path without
loops, fast methods are often available. We introduce a
novel algorithm, called Snake, which solves the problem
over large and possibly unstructured graphs. Snake is
a meta-algorithm which take benefits of the existence
of fast 1D-methods. This algorithm is an instance of
a new general stochastic proximal gradient algorithm,
whose convergence is proven. Applications to trend fil-
tering and graph inpainting are provided. Numerical
experiments are conducted over large graphs.

Mots-clef : Stochastic optimization, Graphs.

Introduction

Many applications in the fields of machine learning,
signal and image restoration, or trend filtering require
the solution of the following optimization problem. On
an undirected graph G = (V,E) with no self loops,
where V = {1, . . . , N} represents a set of N nodes
(N ∈ N∗) and E is the set of edges, find

min
x∈RV

F (x) +R(x, φ), (1)

where F is a convex and differentiable function on RV
representing a data fitting term, and where the function
x 7→ R(x, φ) represents a regularization term of the form

R(x, φ) =
∑
{i,j}∈E

φ{i,j}(x(i), x(j)) ,

where φ = (φe)e∈E is a family of convex and symmetric
R2 → R functions. When φe(x, x

′) = we|x− x′| where

w = (we)e∈E is a vector of positive weights, the function
R(., φ) coincides with the weighted total variation (TV)
norm. Another example is the Laplacian regularization
φe(x, x

′) = (x−x′)2, or its normalized version obtained
by rescaling x and x′ by the degrees of each node in e
respectively. The Forward-Backward (or proximal gra-
dient) algorithm is one of the most popular approaches
towards solving problems of the type of Problem (1). It
reads

xn+1 = proxγR(.,φ)(xn − γ∇F (xn)) , (2)

where γ > 0 is a fixed step, and where

proxg(y) = arg min
x

(
g(x) +

1

2
‖x− y‖2

)
is the well-known proximity operator applied to the
proper, lower semicontinuous (lsc), and convex function
g (here ‖ · ‖ is the standard Euclidean norm). However,
the computation of the proximity operator of R(., φ) at
each iteration is a difficult task when the graph is large.

Our first idea is to consider the function R(·, φ) as
an expectation with respect to a random path. At the
moment n, pick a node at random with a probabi-
lity proportional to the degree of this node. Once this
node has been chosen, pick another one at random uni-
formly among the neighbors of the first node. Repeat
the process of choosing neighbors L times, where L > 0
is some fixed integer, and denote as ξn ∈ V L+1 the
path thus obtained at time n. Further, given a path
s = (v0, v1, . . . , vL) where {vi, vi+1} ∈ E, write

R(x, φs) =

L∑
i=1

φ{vi−1,vi}(x(vi−1), x(vi)) .

With this at hand, we get with some elementary Mar-
kov chain formalism that R(x, φ) = (|E|/L)ER(x, φξn).
Thus, Problem 1 can be seen as a problem of minimi-
zing an expectation. We can therefore think of solving

1

this problem by implementing a stochastic version of
Algorithm (2) : by generating an independent sequence
(ξn) of paths chosen as described above, our algorithm
would read

xn+1 = proxγn+1|E|R(·,φξn+1
)(xn − γn+1L∇F (xn)) ,

where the step γ is now replaced with a sequence (γn)
of decreasing steps in order to alleviate the effect of
the randomness incurred by the independent sequence
(ξn). The above algorithm is still difficult to implement.
Indeed, the efficient implementations of the proximity
operator over a path often require this path to be simple,
that is, to bear no repeated node. Among such fast
algorithms, let us cite the so-called taut-string algorithm
[Con13] for total variation minimization, or the fast 1D
Laplacian solvers [Spi10]. Thus, we propose to split the
path ξn into a finite sequence of successive simple paths
ξn = (ξ1n, ξ

2
n, . . .), and to apply the stochastic proximal

gradient algorithm successively on these simple paths,
terming this new algorithm as “Snake”. The algorithm
is a special case of a more general novel stochastic
proximal gradient algorithm which is introduced in
Section 1.

1 General Stochastic Algorithm

We denote by (Ω,F ,P) a probability space and by E
the corresponding expectation. We let (Ξ,X) be an ar-
bitrary measurable space. We denote X some Euclidean
space. We consider the general problem :

min
x∈X

L∑
i=1

E
(
fi(x, ξ

i) + gi(x, ξ
i)
)

(3)

where L is a positive integer, for all i = 1, . . . , L, ξi :
Ω→ Ξ is a random variable (r.v.), for every i = 1, . . . , L,
fi : X× Ξ→ R and gi : X× Ξ→ R satisfy :

Assumption 1. For all i ∈ {1, . . . , L} :

1. The fi and gi are normal convex integrands
[Roc69] s.t. for every x ∈ X, E(|fi(x, ξi)|) < ∞
and E(|gi(x, ξi)|) <∞.

2. For every s ∈ Ξ, fi(·, s) is differentiable. There
exists a measurable map Ki : Ξ → R+ s.t.
E(Ki(ξi)

α) <∞ for all α ≥ 1, and s.t. the follo-
wing holds P-a.e. : for all x, y in X,

‖∇fi(x, ξi)−∇fi(y, ξi)‖ ≤ Ki(ξi)‖x− y‖ .

For every i = 1, . . . , L and every γ > 0, we introduce
the mapping Tγ,i : X× Ξ→ X defined by

Tγ,i(x, s) = proxγgi(·,s)(x− γ∇fi(x, s)) .

We define Tγ : X× ΞL → X by

Tγ(·, (s1, . . . , sL)) = Tγ,L(·, sL) ◦ · · · ◦ Tγ,1(·, s1) .

Let ξ be the random vector ξ = (ξ1, . . . , ξL) with values
in ΞL and let (ξn : n ∈ N∗) be a sequence of i.i.d. copies
of ξ, defined on the same probability space (Ω,F ,P).
For all n ∈ N∗, ξn = (ξ1n, . . . , ξ

L
n). Finally, let (γn) be a

positive sequence. Our aim is to analyze the convergence
of the iterates (xn) recursively defined by :

xn+1 = Tγn+1(xn, ξn+1) , (4)

as well as the intermediate variables x̄in+1 (i = 0 . . . L)

defined by x̄0n+1 = xn, and x̄in+1 = Tγn+1,i(x̄
i−1
n+1, ξ

i
n+1),

(i = 1 . . . L). Let Z be the set of minimizers of Problem
(3). By our assumptions, a point x? belongs to Z iff

0 ∈
∑L
i=1∇E(fi(x?, ξ

i)) + ∂E(gi(x?, ξ
i)) . By [RW82],

this means that there exists L integrable mappings
ϕ1, . . . , ϕL s.t ϕi(ξ

i) ∈ ∂gi(x?, ξi) -a.e. for all i and s.t.

0 =

L∑
i=1

E(∇fi(x?, ξi)) + E(ϕi(ξ
i)) . (5)

When (5) holds, we say that the family
(∇fi(x?, ξi), ϕi(ξi))i=1...L is a representation of
the minimizer x?. In addition, if for some α ≥ 1
and every i = 1 . . . L, E(‖∇fi(x?, ξi)‖α) < ∞ and
E(‖ϕ(ξi)‖α) <∞, we say that the minimizer x? admits
a α-integrable representation. Finally, let ∂g0i (x, ξi) be
the least norm element in ∂gi(x, ξ

i).

Assumption 2. The set Z is non empty. For every
x? ∈ Z, there exists ε > 0 s.t. x? admits a (2 + ε)-
integrable representation (∇fi(x?, ξi), ϕi(ξi))i=1...L.

Assumption 3. For every compact set K ⊂ X,
there exists η > 0 such that for all i = 1 . . . L,
supx∈K E(‖∂g0i (x, ξi)‖1+η) <∞ .

Theorem 1. Let Assumptions 1–3 hold true. Assume
that

∑
γn = +∞,

∑
γ2n < ∞ and γn+1

γn
→ 1. There

exists a r.v. X? s.t. P(X? ∈ Z) = 1 and s.t. (xn)
converges a.s. to X? as n → ∞. Moreover, for every
i = 0 . . . L− 1, x̄in converges a.s. to X?.

The proof follows [BH16] and is omitted.

2 The Snake Algorithm

Let ` ≥ 1 be an integer. We refer to a walk of length
` over the graph G as a sequence s = (v0, v1, . . . , v`) in
V `+1 such that for every i = 1, . . . , `, the pair {vi−1, vi}
is an edge of the graph. A walk of length zero is a

2

single vertex. Let L ≥ 1. We denote by Ξ the set of
all walks over G with length ≤ L. This is a finite set.
Let X be the set of all subsets of Ξ. We consider the
mesurable space (Ξ,X). Let s = (v0, v1, . . . , v`) ∈ Ξ
with 0 < ` ≤ L. We abusively denote by φs the family
of functions (φ{vi−1,vi})i=1,...,`. We say that a walk is
a simple path if there is no repeated node that is, all
elements in s are different or if s is a single vertex. We
assume that when s is a simple path, the computation
of proxR(.,φs) can be done easily.

Formulation of (1) as a stochastic program

Denote by deg(v) the degree of the node v ∈ V ,
i.e., the number of neighbors of v in G. Let π be the

probability measure on V defined as π(v) = deg(v)
2|E| for

all v ∈ V . Define the probability transition kernel P
on V 2 as P (v, w) = 1{v,w}∈E/ deg(v) if deg(v) > 0,
and P (v, w) = 1v=w otherwise, where 1 is the indi-
cator function. We refer to a Markov chain (indexed
by N) over V with initial distribution π and transi-
tion kernel P as an infinite random walk over G. Let
(vk)k∈N be a infinite random walk over G defined on
the canonical probability space (Ω,F ,P), with Ω = V N.
Setting an integer L ≥ 1, we define the random va-
riable ξ from (vk)k∈N as ξ = (v0, v1, . . . , vL). It can be
shown using elementary Markov chain arguments that

R(x, φ) = |E|
L E(R(x, φξ)). Therefore, Problem (1) is

written equivalently

min
x∈RV

LF (x) + |E|E(R(x, φξ)) . (6)

We now split the random walk ξ into several simple
paths. We recursively define a sequence of stopping time
(τi)i∈N as τ0 = 1 and for all i ≥ 0,

τi+1 = min{k ≥ τi : vk ∈ {vτi−1, · · · , vk−1}}

if the above set is nonempty, and τi+1 = +∞ otherwise.
We now define the stopping times ti for all i ∈ N
as ti = min(τi, L + 1). Finally, for all i ∈ N∗ we can
consider the random variable ξi on (Ω,F ,P) with values
in (Ξ,X) defined by

ξi = (vti−1−1, vti−1 , . . . , vti−1).

We denote by N the smallest integer n such that tn =
L+ 1. We denote by `(ξi) the length of the walk ξi. For
every i = 1 . . . L, define the functions fi, gi on RV × Ξ
in such a way that

fi(x, ξ
i) = `(ξi)F (x) (7)

gi(x, ξ
i) = |E|R(x, φξi) . (8)

Note that when i > N(ω) then fi(x, ξ
i(ω)) =

gi(x, ξ
i(ω)) = 0. It si straightforward to see

that LF (x) =
∑L
i=1 E(fi(x, ξ

i) and R(x, φξ) =∑N
i=1R(x, φξi) = |E|−1

∑L
i=1 gi(x, ξ

i). In view of (6),
Problem (1) is equivalent to Problem (3) for the
function fi and gi defined above. We apply the ge-
neral algorithm of Section 1 to this special case, and
refer to Snake as the corresponding algorithm.

Main Algorithm

The corresponding iterations (4) read as xn+1 =
Tγn+1

(xn, ξn+1) where (ξn) are iid copies of ξ. For every
i = 1 . . . L− 1, the intermediate variable x̄in+1 satisfies
x̄in+1 = proxγngi(. ,ξin+1)

(x̄i−1n − γn∇fi(x̄i−1n , ξin+1)) .

Theorem 2. Let the step sizes (γn) be chosen as in
Theorem 1. Assume that Problem (1) admits a minimi-
zer. Assume that the convex function F is differentiable
and that ∇F is Lipschitz continuous. Then, there exists
a r.v. X? s.t. X?(ω) is a minimizer of (1) for all ω P-
a.e., and s.t. the sequence (xn) defined above converges
a.s. to X? as n→∞. Moreover, for every i = 0 . . . L−1,
x̄in converges a.s. to X?.

The proof of Theorem 2 consists in verifying the as-
sumptions of Theorem 1. The pseudocode is as follows :

procedure Snake(x0, L)
z ← x0, n← 0, `← L
e←Rnd oriented edge
while stopping criterion is not met do

c, e← Simple path(e, `)
z ← Prox(z − γnLgth(c)∇F (z), c, |E|γn)
`← `− Lgth(c)
if ` = 0 then

e← Rnd oriented edge
`← L
n← n+ 1

end if
end while
return z

end procedure

The above pseudocode calls the following subroutines.
If c is a finite walk, c[−1] is the last element of c and
Lgth(c) is its length as a walk that is |c| − 1. The pro-
cedure Rnd Oriented Edge returns a tuple of two
nodes randomly chosen (v, w) where v ∼ π and w ∼
P (v, .). For every x ∈ RV , every simple path s and every
α > 0, the procedure Prox(x, s, α) returns the quantity
proxαR(.,φs)(x) . The procedure Simple path(e, `) ge-

3

nerates the first steps of a random walk on G with tran-
sition kernel P initialized at the vertex e[−1], and prefa-
ced by the first node in e. It is described below. It uses
the procedure Uniform Neib(v) which returns a ran-
dom vertex drawn uniformly amongst the neighbors of v.

procedure Simple path(e, `)
c← e
w ← Uniform Neib(e[−1])
while w /∈ c and Lgth(c)< ` do

c← [c, w]
w ← Uniform Neib(w)

end while
return c, [c[−1], w]

end procedure

3 Trend Filtering on Graphs

Consider a vector y ∈ RV . The Graph Trend Filtering
(GTF) estimate on V, is defined in [WSST16] by

ŷ = arg min
x∈RV

1

2
‖x− y‖2 + λ

∑
{i,j}∈E

|x(i)− x(j)|. (9)

where λ > 0. We plot below an example of noisy data
y plotted on the vertices of a general graph (left) and
the GTF estimate ŷ obtained from y (right).

We solve Problem (9) with F (x) = 1
2‖x − y‖

2 using
Snake, and compare with the projected gradient method
in the dual, and L-BFGS-B in the dual. In Snake, the 1D-
proximity is computed using [Con13]. We consider the
Facebook graph which is a network of 4039 nodes and
88234 edges extracted from the Facebook social network
and the Orkut graph with 3072441 nodes and 117185083
edges (for the latter, L-BFGS-B generated a memory
error). The vector y is sampled according to a standardi-
zed Gaussian distribution of dimension |V | and λ is set
such that E(12‖x− y‖

2) = E(λ
∑
{i,j}∈E |x(i)−x(j)|) if

x, y are two independent r.v with standardized Gaussian
distribution. Initialization is set to y, γn = 1/10|E|n
and L = |V |. The following Figures show the objective
function as a function of time for each algorithm. We
obtain speed-ups over L-BFGS-B and the projected

gradient algorithms for the dual problem especially in
the first iterations.

Références

[BH16] Pascal Bianchi and Walid Hachem. Dynamical
behavior of a stochastic forward–backward algo-
rithm using random monotone operators. Jour-
nal of Optimization Theory and Applications,
171(1) :90–120, 2016.

[Con13] L. Condat. A direct algorithm for 1d total varia-
tion denoising. IEEE SPL, 20(11) :1054–1057,
2013.

[Roc69] R Tyrrell Rockafellar. Measurable dependence of
convex sets and functions on parameters. Jour-
nal of Mathematical Analysis and Applications,
28(1) :4–25, 1969.

[RW82] Ralph T Rockafellar and Roger JB Wets. On the
interchange of subdifferentiation and conditional
expectation for convex functionals. Stochastics :
An International Journal of Probability and Sto-
chastic Processes, 7(3) :173–182, 1982.

[Spi10] Daniel A Spielman. Algorithms, graph theory,
and linear equations in laplacian matrices. In
Proceedings of the ICM, volume 4, pages 2698–
2722, 2010.

[WSST16] Yu-Xiang Wang, James Sharpnack, Alex Smola,
and Ryan J Tibshirani. Trend filtering on
graphs. Journal of Machine Learning Research,
17(105) :1–41, 2016.

4

	General Stochastic Algorithm
	The Snake Algorithm
	Trend Filtering on Graphs

