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Abstract

In this paper, we address the data-aided joint estimation of frequency offsets and channel coefficients

in the uplink transmission of MIMO-OFDMA systems. A compact and informative expression of the

Craḿer-Rao Bound (CRB) is derived for large training sequence sizes. It is proved that the asymptotic

performance bounds depend on the choice of the training sequence only via the asymptotic covariance

profiles. Moreover, it is shown that the asymptotic performance bounds do not depend on the number

of users and the values of the frequency offsets. Next, we bring to the fore the training strategies which

minimize the asymptotic performance bounds and which are therefore likely to lead to accurate estimates

of the parameters. In particular, for a given user, it is shown that accurate frequency offset estimates

are likely to be obtained by introducing relevant correlation between training sequences sent at different

antennas. On the other hand, accurate channel estimation is achieved when training sequences sent at

different antennas are uncorrelated. Simulation results sustain our claims.
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I. I NTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA) has recently become very popular in

wireless communications and already been included in IEEE802.16 specifications for broadband wireless

access at frequencies below11 GHz. In an OFDMA system, each user modulates a certain group

of subcarriers, following a given subcarrier assignment scheme (SAS). The signal transmitted by a

given user is impaired by a frequency selective channel and by a frequency offset. Prior estimation

of channel coefficients and frequency offsets has a considerable impact on further users detection steps.

The computation of accurate estimates is thus a crucial issue in OFDMA systems. Estimation of frequency

offsets and channel coefficients for (single-user) OFDM systems has been investigated in a large number

of works (see, e.g., [1]–[2] and references therein). However, the case of OFDMA uplink usually requires

more involved synchronization and channel estimation methods. In [3]–[5], estimators which are designed

for a specific SAS are proposed. Recent works [6] and [7] investigate the data-aided estimation of

frequency offsets in OFDMA uplink for general SASs.

In this paper, we consider an uplink MIMO-OFDMA transmission involvingNT transmit antennas

per userand NR receive antennas at the base station. IfK denotes the number of users, the receiver

must estimate allK frequency offsets (one for each user) and allK MIMO-channels. We investigate the

performance of the data-aided estimation of channels and frequency offsets at the base station with perfect

knowledge of the training symbols. To that end, we study the Cramér-Rao Bound (CRB) for the joint

data-aided estimation of the set of frequency offsets and channel coefficients. Such an analysis provides

lower bounds on the Mean Square Error (MSE) associated with estimates of the unknown parameters.

Moreover, it emphasizes the parameters which have crucial impact on the performance. In particular, the

CRB depends on the training sequences sent by all users. Once the expression of the CRB has been

obtained under a compact form, it is natural to exploit this result following the general idea of [8], [9]

and [10]. These authors proposed to characterize the training sequences which lead to the lowest CRB.

It is indeed reasonable to believe that the use of such “optimal” training sequences is likely to provide

accurate estimates of the unknown parameters.

We first derive the exact expression of the CRB (Section III). Unfortunately, the exact CRB turns out

to be complicated. In order to obtain a compact and informative expression of the CRB, we assume that

the total numberN of modulated subcarriers tends to infinity. In this case, we obtain a simple expression

of the CRB. Note that the idea of studying the CRB in the asymptotic regime in order to simplify its

expression has been used previously by [8] and [9] in the case of a single-user single-antenna single-carrier

REVISED VERSION November 8, 2006
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transmission and later by [11] for the issue of channel and clock-offset estimation in OFDM systems.

However, a performance study of channel and frequency offsets estimation in the OFDMA case has not

been previously undertaken. One of the main difficulty is to provide a general expression of the asymptotic

CRB which is validfor any OFDMA system: our results should not be specific to a particular resource

allocation strategy. Hence, the asymptotic analysis of the CRB in the multi-user OFDMA scenario is

more involved than the classical single-user case investigated in [8]–[10], and requires the introduction

of novel tools. We emphasize the characteristics of the resource allocation strategy which influence the

asymptotic performance. The asymptotic CRB depends on the choice of the training sequence only via

the frequency power profile of the training sequence and via the correlation possibly introduced between

transmit antennas (due to the possible use of a beamformer at each transmitter side). We also remark that

orthogonal and non-orthogonal SASs both lead to the same performance: it is thus not essential for a

given userk to transmit pilot symbols over all available subcarriers in order to obtain the most accurate

estimates. In the present paper, we furthermore investigate the case of a MIMO transmission. Unlike

[9], we show that the estimation performance crucially depends on the particular beamformer used by

each transmitter. We also prove that the asymptotic CRB associated with the parameters of thekth user

is identical to the asymptotic CRB that one would have obtained in the absence of other usersl 6= k.

Intuitively, there are therefore some close links between the performance in the OFDMA context and the

traditional single-user single-carrier case of [9].

In Section IV, we characterize the training strategies which minimize the asymptotic CRB. In particular,

we investigate which power should be allocated to which subcarriers, and what correlation should be

introduced between training sequences sent at different antennas so as to lead to accurate estimates of

the parameters. Unfortunately, as already noticed by [8][10][12], no single training strategy is likely to

simultaneously provide the most accurate estimates of the frequency offset and, at the same time, the most

accurate estimates of channel coefficients. In practice, one should determine tradeoffs between training

strategies providing accurate frequency offset estimates and training strategies providing accurate channel

estimates. However, the problem of choosing a relevant tradeoff is difficult and crucially depends on the

transmitter and receiver architectures. Although the point is briefly discussed for the sake of completeness,

the proposition of a general procedure for determining such tradeoffs is beyond the scope of this paper.

Finally, simulation results of Section V sustain all our claims.
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II. SIGNAL MODEL

We consider an uplink MIMO-OFDMA transmission. We assume thatK users shareN subcarriers.

Each user hasNT transmit antennas. One symbol sequence is sent by each transmit antennat (t =

1, . . . , NT ) of each userk (k = 1, . . . , K) using an OFDM modulator. The OFDM symbol transmitted by

userk at a given antennat in the frequency domain is represented by sequences
(t)
N,k(0), . . . , s(t)

N,k(N−1).

We omit the block index for the sake of notational simplicity. In the sequel, we assume that for each

k = 1, . . . , K and for eacht = 1, . . . , NT , sequence(s(t)
N,k(j))j is known by the receiver (training

sequence). It is worth noting that in usual OFDMA systems, only a subset of theN available subcarriers

is effectively modulated by a given userk, following a given SAS. For eachj = 0, . . . , N−1, we simply

consider thats(t)
N,k(j) = 0 in the case where subcarrierj is not modulated by userk. However, we do

not specify any subcarrier assignment strategy at this point. In our model, training sequences(s(t)
N,k(j))j

and (s(t′)
N,k(j))j sent at different antennast and t′ are possibly different. For a given userk and a given

antennat, we denote by(a(t)
N,k(n))n the inverse discrete Fourier transform of sequence(s(t)

N,k(j))j :

a
(t)
N,k(n) =

1√
N

N−1∑

j=0

s
(t)
N,k(j)e

2ıπ nj

N (1)

for each integern. Cyclic prefix is added to the above time-domain version of the OFDM block and the

resulting sequence is transmitted over a multipath channel.

We denote byNR the number of receive antennas at the base station. For eachr = 1, . . . , NR, the

complex envelope of the signal received by antennar is sampled at symbol rate. After cyclic prefix

removal, the corresponding received samples can be written for eachn = 0, . . . , N − 1 as

y
(r)
N (n) =

K∑

k=1

eıωkn
NT∑

t=1

L−1∑

l=0

h
(t,r)
k (l)a(t)

N,k(n− l) + v(r)(n). (2)

For eachk = 1, . . . , K, parameterωk is defined asωk = 2πδfkT , where δfk denotes the frequency

offset corresponding to userk and whereT denotes the sampling period. Parameterh
(t,r)
k (l) represents

lth tap of the channel impulse response betweentth transmit antenna of userk andrth receive antenna

of the base station. Each channel is assumed to have no more thanL nonzero taps, where integerL

does not depend onk and does not exceed the length of the cyclic prefix. Sequence(v(r)(n))n denotes

a white Gaussian noise of varianceσ2. Note that equation (2) implicitly assumes that all users are quasi-

synchronous in time as in [7]: all delays of signals transmitted by all users are within the length of

cyclic prefix. In equation (2), we also assume that the (angular) frequency offsetωk is constant with

respect to (w.r.t.) antenna pairs(t, r). We mention that in certain MIMO systems, different frequency

offsets may be associated with each transmit-receive antenna pair. This case is usually considered in
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macro-diversity systems [13]. In the present paper, we consider the classical case (see, e.g., [1] and

references therein) whereωk is constant w.r.t. antenna pairs(t, r). In the sequel, it is quite useful to

make use of a compact matrix representation of (2). To that end, we introduce the following notations.

Defineh(t,r)
k = [h(t,r)

k (0), . . . , h(t,r)
k (L− 1)]T , where(·)T represents the transpose operator. Stacking all

N samplesy(r)
N (n) received by antennar into one column vectory(r)

N = [y(r)
N (0), . . . , y(r)

N (N −1)]T , one

obtains:

y(r)
N =

K∑

k=1

ΓN (ωk)

(
NT∑

t=1

A(t)
N,kh

(t,r)
k

)
+ v(r)

N ,

where v(r)
N = [v(r)(0), . . . , v(r)(N − 1)]T and ΓN (ωk) = diag(1, eıωk , . . . , eıωk(N−1)). In the above

expression, each matrixA(t)
N,k is anN × L matrix containing the time-domain training sequence sent at

the tth transmit antenna of userk. More precisely,

A(t)
N,k =

(
a

(t)
N,k(i− j)

)
0≤i≤N−1
0≤j≤L−1

.

In particular, A(t)
N,k is a circulant matrix: this is due to the fact that cyclic prefix is inserted at the

transmitter side. We finally stack the samples received by all antennas into a singleNNR × 1 vector

yN = [y(1)
N

T
, . . . ,y(NR)

N

T
]T given by

yN =
K∑

k=1

[INR
⊗ (ΓN (ωk)AN,k)]hk + vN , (3)

whereINR
denotes theNR×NR identity matrix,⊗ stands for the Kronecker product,AN,k = [A(1)

N,k, . . . ,A
(NT )
N,k ],

andvN = [v(1)
N

T
, . . . ,v(NR)

N

T
]T is an additive noise vector with independent complex circular Gaussian

random entries of varianceσ2. Here, vectorhk = [h(1,1)
k

T
, . . . ,h(NT ,1)

k

T
, . . . ,h(1,NR)

k

T
, . . . ,h(NT ,NR)

k

T
]T

contains all channel coefficients of a given userk.

In this paper, we address the data-aided estimation of theK unknown frequency offsetsδfk (or

equivalently theK normalized angular frequency offsetsωk) and theKLNRNT unknown channel

coefficients. We denote byθ = [ω1,hT
1 , . . . , ωK ,hT

K ]T the deterministic parameter vector to be estimated.

In the following section, we provide bounds on the performance of estimates ofθ.

Remark 1: In a number of practical OFDMA systems, the receiver needs to estimate the channel’s

response associated with a given userk only at the subcarriers which are effectively modulated by userk.

One may thus be interested in estimating a portion of the frequency response of the channel rather than

the coefficients of the impulse response,i.e., vectorhk. However, the set of frequency taps which should

be estimated in this case can be written as a simple function ofhk. For this reason, we first investigate the
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performance of estimates of initial parameter vectorθ and deduce from this the performance of estimates

of the frequency taps of interest.

III. C RAMÉR-RAO BOUND

We now study the CRB associated withθ. Such an analysis provides performance bounds for estimates

of θ. Moreover, it emphasizes the influence of the choice of the training sequence on the performance.

In this section, we firstly derive the exact CRB for parameterθ. Secondly, we investigate the asymptotic

behavior of the CRB as the number of subcarriers tends to infinity. Using these results, we finally derive

the asymptotic CRB associated with the channels’frequencyresponses.

A. Exact Craḿer-Rao bound

Real parameter vector can be written asθ̃ = [θ̃
T
1 , . . . , θ̃

T
K ]T where for eachk, θ̃k = [ωk,hT

R,k,h
T
I,k]

T

denotes the parameter vector corresponding to a given userk. In the above definition,hR,k and hI,k

respectively represent the real and the imaginary parts of vectorhk. The exact CRB for̃θ is classically

defined as the inverse of the Fisher Information Matrix (FIM)JN . Note that an expression of the FIM

for θ̃ has been recently derived by [7] in the SISO case. Using an approach similar to [10], the FIM for

parameter̃θ can be obtained as the followingK(1 + 2LNRNT )×K(1 + 2LNRNT ) matrix:

JN =
2
σ2

R
[(∇θ̃ηH

N

) (∇θ̃ηH
N

)H
]
, (4)

whereηN =
∑K

k=1 [INR
⊗ (ΓN (ωk)AN,k)]hk. Here, superscript(·)H denotes the transpose-conjugate,

R [x] (resp.I [x]) denotes the real (resp. imaginary) part ofx. For anyn × 1 real column vectorx =

[x1, . . . , xn]T and for a given1 ×m row vectorz(x) = [z1(x), . . . , zm(x)] function of x, matrix ∇xz

is defined as then × m matrix
(

∂zj(x)
∂xi

)
1≤i≤n
1≤j≤m

. After some algebra, we obtain the following “block”

representation of matrixJN :

JN =




JN,1,1 · · · JN,1,K

...
...

...

JN,K,1 · · · JN,K,K


 . (5)

For eachk, l = 1, . . . ,K, JN,k,l is the (1 + 2LNRNT )× (1 + 2LNRNT ) matrix given by

JN,k,l =
2
σ2




αN,k,l I
[
βH

N,l,k

]
R

[
βH

N,l,k

]

−I
[
βN,k,l

]
R [UN,k,l] − I [UN,k,l]

R
[
βN,k,l

]
I [UN,k,l] R [UN,k,l]


 , (6)
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where

UN,k,l = INR
⊗ (

AH
N,kΓN (ωl − ωk)AN,l

)
, (7)

βN,k,l =
[
INR

⊗ (
AH

N,kDNΓN (ωl − ωk)AN,l

)]
hl, (8)

αN,k,l = R
[
hH

k

[
INR

⊗ (
AH

N,kD
2
NΓN (ωl − ωk)AN,l

)]
hl

]
, (9)

and whereDN = diag(0, 1, . . . , N − 1). Expression (6) can be obtained by straightforward derivation

of (4). The proof is omitted due to the lack of space. Unfortunately, the calculation of the exact CRB as

the inverse of (5) seems to be a very difficult task. In order to obtain a more compact and informative

expression of the CRB, we now investigate the case where the numberN of subcarriers increases.

B. Asymptotic Craḿer-Rao Bound

We now study the asymptotic behavior of the CRB forθ̃. We assume thatN tends to infinity while

i) the numberK of users remains constant and whileii) the number of antennas remains constant. In

practice, our results will be valid as long as the numberN of subcarriers is significantly greater than the

total number of unknown parameters,i.e., N À K(LNRNT + 1). We also assume that whenN tends

to infinity, the overall bandwidth is constant. In other words, sampling rate1
T remains constant and as a

result, the subcarrier spacing1NT decreases to zero.

In order to simplify our asymptotic analysis, we make the following assumptions:

i) For a given antennat of a given userk, (s(t)
N,k(j))j is a sequence of independent random variables with

zero mean. Note that this assumption encompasses usual OFDMA training strategies. However, we do

not assume that training symbols are identically distributed. In particular, the varianceE[|s(t)
N,k(j)|2]

of thejth training symbol depends onj. This is motivated by the observation that in practical OFDM

systems, different powers may be allocated to different subcarriers. Moreover, for a given SAS, a

certain number of subcarriers may not be modulated by userk. If j is one of these subcarriers, we

simply consider thatE[|s(t)
N,k(j)|2] = 0.

ii) Furthermore, we assume that training sequences(s(t)
N,k(j))j and (s(t′)

N,k(j))j transmitted by two

different antennast and t′ of a given userk are possibly correlated (due to the possible use of

a beamformer). Therefore, the cross-correlationE[s(t)
N,k(j)s

(t′)
N,k(j)

∗] may be nonzero.

iii) We assume that eight-order moments of random variables(s(t)
N,k(j))j are uniformly bounded,i.e.

sup
N

max
j

E

[∣∣∣s(t)
N,k(j)

∣∣∣
8
]

< M (10)

for eacht, whereM is a constant which is independent ofN .
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iv) Finally, we assume that training sequences sent by two different usersl 6= k are independent.

We now study the asymptotic behavior of the CRB matrix defined asCRBN = J−1
N . Note that for

finite values ofL, it is reasonable to assume that the FIM is non-singular. Due to definitions ofUN,k,l,

βN,k,l andαN,k,l in (7), (8) and (9), it is clear that the behavior of the CRB for largeN only depends

on the asymptotic behavior of matricesAH
N,kD

u
NΓN (ωl − ωk)AN,l for eachu = 0, 1, 2 and for each

k, l = 1, . . . , K. The following lemma provides a simpler expression of the latter matrices asN increases.

Lemma 1:Define vectore(f) = [1, e2ıπf , . . . , e2ıπf(L−1)]T for each f ∈ [0, 1]. For eachk, l =

1, . . . , K and for eachu = 0, 1, 2,

u + 1
Nu+1

AH
N,kD

u
NΓN (ωl − ωk)AN,l − δ(k − l)

N

N−1∑

j=0

E
[
sN,k(j)sN,k(j)

H
]∗
⊗

[
e(

j

N
)e(

j

N
)H

]
N−→ 0 a.s.

(11)

where notation
N−→ 0 stands for the (componentwise) convergence to zero asN tends to infinity, where

“a.s.” stands for “almost surely” and wherex∗ stands for the conjugate ofx. Here, vectorsN,k(j) =

[s(1)
N,k(j), . . . , s

(NT )
N,k (j)]T contains training symbols sent by all antennas of userk at a given subcarrierj.

Coefficientδ(k − l) is equal to 1 ifk = l and to zero otherwise.

The proof of Lemma 1 is given in Appendix I. The presence of factorδ(k− l) in (11) already gives the

insight that elements of non diagonal blocksJN,k,l for k 6= l of the FIM JN become significantly smaller

than the corresponding elements of diagonal blocksJN,k,k asN increases. In order to characterize the

asymptotic behavior of the desired matricesu+1
Nu+1 AH

N,kD
u
NΓN (ωl − ωk)AN,l, it is convenient to rewrite

the second term of (11) using

1
N

N−1∑

j=0

E
[
sN,k(j)sN,k(j)

H
]∗
⊗

[
e(

j

N
)e(

j

N
)H

]
=

∫ 1

0
µN,k(df)⊗ [

e(f)e(f)H
]
, (12)

whereµN,k denotes the following matrix-valued measure [16] defined for any Borel setA of [0, 1] by

µN,k(A) =
1
N

N−1∑

j=0

E
[
sN,k(j)sN,k(j)

H
]∗
IA(

j

N
), (13)

whereIA stands for theindicatorfunction of setA (i.e., IA(f) = 1 if f ∈ A, IA(f) = 0 otherwise).

We denote byµ(t,t′)
N,k (A) the coefficient of thetth row and thet′th column of (13). In order to have some

insights on the meaning of (13), it is interesting to remark that coefficientµ
(1,1)
N,k (A) verifiesµ

(1,1)
N,k (A) =

1
N

∑N−1
j=0 E

[
|s(1)

N,k(j)|2
]
IA( j

N ). Therefore, measureµ(1,1)
N,k can be interpreted as the power profile of the

training sequence sent at the first antenna. In particular,µ
(1,1)
N,k ([0, 1]) represents the total power transmitted

by the first antenna during a whole OFDM block. Generalizing this idea, for any transmit antenna pair

(t, t′), µ
(t,t′)
N,k can be interpreted as the cross-correlation profile of the training sequences respectively
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sent at antennast and t′. Finally, the matrix-valued measureµN,k is in some sense equivalent to the

(conjugate) covariance profile of the multi-dimensional training sequencesN,k(j).

In order to simplify the forthcoming asymptotic study, we now make the following assumption.

Assumption 1:For eachk, we assume that there is a matrix-valued measureµk such thatµN,k

converges weakly toµk asN tends to infinity. Equivalently, for any continuous functionf → F (f), the

integral
∫ 1
0 F (f)µN,k(df) converges to

∫ 1
0 F (f)µk(df) asN tends to infinity.

In the sequel, we refer toµk as theasymptotic covariance profileof the training sequence of userk. The

introduction of the above covariance profile thoroughly simplifies the asymptotic analysis of the CRB.

Furthermore, Assumption 1 encompasses most usual SAS and power allocation strategies for OFDMA

systems. Moreover, we shall see below that the asymptotic CRB associated withθ̃ depends on the

training strategy only viaµk. Hence, the asymptotic covariance profile is sufficient to characterize the

asymptotic CRB. No further assumptions on the particular SAS, the particular power allocation strategy

or the particular correlation between antennas are required.

Remark 2: In order to have more insights on the meaning of measureA → µk(A), focus for instance

on its first componentA → µ
(1,1)
k (A) (i.e., the component at the first row and the first column). This

componentµ(1,1)
k is a classical scalar measure. Assume for the sake of illustration thatµ

(1,1)
k has a

densityP
(1,1)
k (f) w.r.t. the Lebesgue measure on[0, 1] (in other words,dµ

(1,1)
k (f) = P

(1,1)
k (f)df ). In

this case, the densityP (1,1)
k (f) can be interpreted as the amount of power sent at the first antenna of

userk in the neighborhood of frequencyf . With language abuse,P (1,1)
k (f) is in some sense similar to

the power density spectrumof the time-domainsequence transmitted at the first antenna of userk. Of

course, such a statement is somewhat non rigorous: in OFDMA, the time-domain transmitted sequence

is not even stationary and, strictly speaking, its power density spectrum is not well defined. However,

understandingP (1,1)
k (f) as a power density spectrum may be useful in order to interpret the following

results. Generalizing this idea, if theNT×NT matrix-valued measureµk has a matrix densityPk(f), (i.e.,

µk(df) = Pk(f)df ), thenPk(f) can be interpreted as the power density spectrum of theNT -dimensional

sequence sent at allNT antennas of userk.

Lemma 1 along with Assumption 1 and equality (12) immediately leads to the following lemma.

Lemma 2:For eachk, denote byRk the following LNT × LNT matrix

Rk =
∫ 1

0
µk(df)⊗ [

e(f)e(f)H
]
. (14)

Then, for eachu = 0, 1, 2, for eachk, l = 1, . . . , K,

u + 1
Nu+1

AH
N,kD

u
NΓN (ωl − ωk)AN,l

N−→ δ(k − l) Rk a.s. (15)
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Using Lemma 2, one can now easily characterize the asymptotic behavior of each block (6) of the

FIM. For example, due to Lemma 2 and (7), the matrixUN,k,l has the same asymptotic behavior as

Nδ(k − l)INR
⊗ Rk as N tends to infinity. Similarly, from (9), the coefficientαN,k,l has the same

asymptotic behavior asN
3

3 δ(k − l)γk, where

γk = hH
k [INR

⊗Rk]hk

=
NR∑

r=1

∫ 1

0
h

(r)
k (f)Hµk(df)h (r)

k (f). (16)

Here, h (r)
k (f) =

∑L−1
l=0 [h(1,r)

k (l), . . . , h(NT ,r)
k (l)]T e−2ıπlf may be interpreted as the overall frequency

response of the channel “seen” at receive antennar. Following these kind of ideas, it is straightforward

to characterize the asymptotic behavior ofJN and thus ofCRBN . Note that Lemma 2 suggests rather

to study the asymptotic behavior of thenormalizedCRB. We defineCRBN = WNCRBNWN where

WN is theK(1+2LNRNT )×K(1+2LNRNT ) diagonal matrix defined byWN = diag(wT
N , . . . ,wT

N )

wherewT
N denotes the(1 + 2LNRNT ) row vectorwT

N =
[
N3/2, N1/2, . . . , N1/2

]
. Using Lemma 2 in

the way described above, we obtain the following result.

Theorem 1:As N tends to infinity, the normalized CRBCRBN converges almost surely to the

block-diagonal matrixCRB given byCRB = diag(C1, . . . ,CK). For eachk = 1, . . . , K, Ck is the

(1 + 2LNRNT )× (1 + 2LNRNT ) matrix equal to

Ck =
σ2

2




12
γk

6 hT
I,k

γk
−6 hT

R,k

γk

6 hI,k

γk
R

[(
INR

⊗R−1
k

)]
+ 3hI,khT

I,k

γk
−I

[(
INR

⊗R−1
k

)]− 3hI,khT
R,k

γk

−6 hR,k

γk
I

[(
INR

⊗R−1
k

)]− 3hR,khT
I,k

γk
R

[(
INR

⊗R−1
k

)]
+ 3hR,khT

R,k

γk




. (17)

Proof: Using Lemma 2, it can be shown that thenormalizedFIM JN = W−1
N JNW−1

N converges

a.s. to a block-diagonal matrixJ = diag(J1, . . . ,JK) asN →∞. For finite values ofL, it is reasonable

to assume thatJ is non-singular. As functionJN → J−1
N is continuous, the normalized CRB converges

a.s. toCRB = J−1 = diag
(
J−1

1 , . . . ,J−1
K

)
. Final expression of the asymptotic CRB can thus be obtained

by separate inversion ofJ1, . . . ,JK . Using derivations similar to [10], the final result is straightforward.

We now make the following comments.

Comments

• The asymptotic normalized CRB is a block-diagonal matrix. In particular, this implies that for any

asymptotically efficient estimator, the (normalized) estimation errors corresponding to parameters of

distinct users become non correlated asN tends to infinity.
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ASYMPTOTIC CRAMÉR-RAO BOUNDS AND TRAINING DESIGN; S. SEZGINER, P. BIANCHI, AND W. HACHEM. 11

• Theorem 1 provides asymptotic bounds on the Mean Square Error (MSE) for the parameters of

a given userk. In the sequel, in order to simplify the notations,EN [ . ] denotes the conditional

expectation w.r.t. training sequences,i.e., EN [X] = E
[
X/ (sN,1(j))j , . . . , (sN,K(j))j

]
for any

random variableX. In particular, EN [X] is a random variable which depends on the training

sequences.

Corollary 1: For any unbiased estimatêθN of θ, Theorem 1 implies that the following inequalities

hold with probability one (w.p.1).

lim inf
N→∞

N3EN

[
(ω̂N,k − ωk)

2
]
≥ 6σ2

γk
(18)

lim inf
N→∞

NEN

[∥∥∥ĥN,k − hk

∥∥∥
2
]

≥ NRσ2tr
(
R−1

k

)
+

3σ2

2
hH

k hk

γk
(19)

where ω̂N,k and ĥN,k respectively denote the estimates of the (angular) frequency offsetωk and

channel coefficientshk. In the above expression, tr(X) stands for the trace ofX and‖x‖2 = xHx

for any column vectorx.

• The MSE on channel parameters converges to zero at rate1
N while the MSE on frequency offsets

converges to zero at rate1N3 .

• Theorem 1 states that the CRB matrix convergesalmost surelyto a deterministic matrixCRB

whereas most previous results in the field of CRB studies and training sequence design only focus

on the convergence in probability. The almost sure convergence is a much more powerful result.

It means thatfor almost any particular realization of the training sequence, the normalized CRB

converges to the deterministic expression given by Theorem 1. It allows furthermore the statement

of important inequalities such as (18) and (19).

• It is interesting to remark that the expression of the asymptotic CRB (18) associated with the

frequency offset is similar to the bound obtained by [9] in the single-user single-carrier case. In

both cases, the asymptotic CRB is proportional to a certain constantγk which can be interpreted

as theuseful power received by the base station and transmitted by userk. In other words, the

asymptotic CRB6σ2

γk
is proportional to the inverse of thesignal to noise ratioassociated with a given

transmitter.

• For a given userk, the bounds on the MSE for estimates ofθk do not depend on the values of

parametersθl associated with other usersl 6= k and do not depend on the numberK of users.

In other words, the asymptotic CRB associated with parameters of thekth user is identical to the

asymptotic CRB that one would have obtained in the absence of other usersl 6= k.
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• Asymptotic bounds for the MSE of unbiased estimates ofθ depend on the training scheme only

via the asymptotic covariance profilesµk. Different training schemes may have identical asymptotic

covariance profileµk. Hence, different training schemes may lead to similar estimation performance.

In order to illustrate this claim, we consider the following two training examples. The first one in a

non-orthogonal1 training strategy which we callT1. In this case, each userk modulates all subcarriers

j = 0, . . . , N − 1, with equal powerPk. In other words, the proportion of the bandwidth assigned

to userk is equal toNk/N = 1. Now, consider a second training strategyT2 for which each

user k modulates the set ofNK subcarriers having the indices
{

iK + k − 1
/

i = 0, . . . , N
K − 1

}

with equal powerKPk (for the sake of simplicity, ratioN
K is assumed to be an integer). One

usually refer to this orthogonal SAS asinterleavedOFDMA [5]. For the sake of illustration, assume

that training sequences transmitted by different antennas are uncorrelated in both casesT1 andT2.

Then, based on definition (13), it is straightforward to show that for both training schemesT1 and

T2, covariance profileµN,k converges weakly to the asymptotic “frequency flat” covariance profile

µk(A) = PkINT
λ(A), whereλ is the Lebesgue measure on[0, 1]. As a consequence, both training

strategiesT1 andT2 lead to the same asymptotic CRB.

This example illustrates the fact that orthogonal and non-orthogonal SAS both have the same

asymptotic performance bounds, as long as they have an identical asymptotic covariance profile

µk. Intuitively, this means that it is not essential for a given userk to transmit pilot symbols over

all available subcarriers in order to obtain the most accurate estimate ofθk.

• The normalized CRB tends to the limit given by Theorem 1 whenN tends to infinity, while all other

parameters remain constant. This means in particular thatNKL(NT +NR) tends to infinity. In practice,

for finite values ofN , it is therefore reasonable to conjecture that the normalized CRB is close to

the limit of Theorem 1 provided that N
KL(NT +NR) is large enough. Section V provides more details

on this point.

IV. FURTHER SIMPLIFICATIONS, TRAINING SEQUENCESELECTION

Theorem 1 provides asymptotic bounds on the MSE of channels and frequency offsets estimates.

These bounds crucially depend on the training strategies used by each transmitterk via the asymptotic

covariance profilesµk. Thus, following the approach of previous studies [8][10], it is natural to search

for the training strategies which minimize the CRB on the frequency offset and on the channel, the latter

1A given subcarrier is possibly modulated by several users
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being at least measured in a part of the available frequency band as we shall see below. More precisely,

we provide guidelines on the way each user has to design its own training sequence so that (the bound

on) the estimation performance is the smallest. For instance, one may wonder which power should be

allocated to which subcarriers, and what correlation should be introduced between training sequences

sent at different antennas so as to lead to accurate estimates of the parameters.

It is worth noticing that for a givenk, The asymptotic CRB only depends on the training sequence

of userk and depends neither on the training strategiesµl corresponding to other usersl 6= k nor on

parametersθl associated with other users. This remark is of practical importance. Indeed, it implies that

the CRB based selection of the training sequence of a given userk does not require the knowledge of

other users’ training strategies and parameters.

Of course, one would expect from an ideal training strategy that it simultaneously minimizes bounds

on both the frequency offset and the channel. Unfortunately, results of [8][10][12] tend to show that no

single training sequence is likely to jointly minimize both bounds. In order to overcome this problem, [10]

proposes to select training sequences so that a given cost function depending on the CRB is minimum.

However, the problem of choosing a relevant cost function is difficult and crucially depends on the

transmitter and receiver architectures [17]. This issue is out of the scope of the present paper. Here, we

focus on separate minimization of both bounds. We begin with the asymptotic CRB onωk, written

asCRBωk
=

6σ2

γk
(20)

as inequality (18) shows.

A. Minimization ofasCRBωk

We minimizeasCRBωk
under the constraint that the total power transmitted per time sample by user

k does not exceedPk. The latter power constraint is equivalent to the following inequality:

tr (µk([0, 1])) ≤ Pk. (21)

As mentioned in Section III, the above expression of the power constraint is a direct consequence of (13).

Inequality (21) can be motivated by noticing that for finiteN , the total transmit power coincides with

tr(µN,k([0, 1])). In addition to the power constraint, as in [9] we have to put a condition that ensures that

Rk is a regular matrix for the CRB expression (17) to be meaningful. One such condition is to assume

that µk has the form

µk(df) = (ε/NT )INT
df + ρk(df) , (22)
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where ε is a small numberε > 0 and ρk(df) is a matrix-valued positive measure on[0, 1]. With this

assumption,Rk has the form

Rk =
ε

NT
ILNT

+
∫ 1

0
ρk(df)⊗ [

e(f)e(f)H
]

. (23)

As the integral in the right hand side is a non negative matrix,Rk is regular. Training sequences that

minimize the boundasCRBωk
can be selected according to Proposition 1:

Proposition 1: For eachf ∈ [0, 1], recall thath (r)
k (f) =

∑L−1
l=0 [h(1,r)

k (l), . . . , h(NT ,r)
k (l)]T e−2ıπlf . De-

note byλk,max(f) the largest eigenvalue of matrix
∑NR

r=1 h
(r)
k (f)h (r)

k (f)H . Definef
(opt)
k = arg maxf λk,max(f).

Under power constraint (21), along with (22),asCRBωk
is minimum if and only if

ρk = (Pk − ε)
(

ν
(opt)
k ν

(opt)
k

H
)

δf
(opt)
k

, (24)

whereν
(opt)
k is the (unit norm) eigenvector associated withλk,max(f (opt)

k ) and whereδf
(opt)
k

is the Dirac

measure atf (opt)
k .

The proof of Proposition 1 is provided in Appendix II. Proposition 1 states that training sequences which

are likely to lead to the most accurate estimate of the frequency offsetωk have an asymptotic covariance

profile µk defined by (24). In other words, Proposition 1 describes the best use of the available power

Pk for the aim of frequency offset estimation. We now comment this result.

Comments

• Proposition 1 suggests that an accurate estimate ofωk can be obtained by transmitting almost all avail-

able power at the frequency for which the largest eigenvalue of
∑NR

r=1 h
(r)
k (f)h (r)

k (f)H is maximum.

In the single antenna case,i.e., NT = 1, NR = 1, optimal asymptotic covariance profile (24) simply

reduces to the scalar measure(Pk − ε)δf
(opt)
k

wheref
(opt)
k = arg maxf∈[0,1]

∣∣∣∑L−1
l=0 hk(l)e−2ıπfl

∣∣∣
2
.

In this case, Proposition 1 suggests to allocate most of the power at the subcarriers which are close

to the optimal frequencyf (opt)
k . Note that there is of course a close link between the above guideline

and the training strategy obtained by [9] in case of a classical single-carrier transmission. Indeed,

when the training sequence is transmitted in the time-domain, [9] suggests to choose a (stationary)

training sequence whose power spectrum is maximum at frequencyf
(opt)
k .

• Proposition 1 also states thatasCRBωk
is minimum when the covariance matrix between training

sequences sent at different transmit antennas coincides withν
(opt)
k ν

(opt)
k

H
up to a multiplicative

factor (and to the small additive factor(ε/NT )ILNT
). In practice, for finite values ofN and for a

given subcarrierj whose frequencyj/N is close to the optimal frequencyf (opt)
k , this guideline may

be followed by defining the multi-dimensional training sequencesN,k(j) = [s(1)
N,k(j), . . . , s

(NT )
N,k (j)]T
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as sN,k(j) = ν
(opt)
k wN,k(j), wherewN,k(j) is a certain scalar training sequence. Furthermore, the

previous comment suggests to selectwN,k(j) as a sequence which is non zero only at subcarriersj

such that j
N is close tof

(opt)
k .

• The training strategy suggested by Proposition 1 requires some limited channel knowledge consisting

in f
(opt)
k andν

(opt)
k . As explained and discussed in [9], this limited information can be provided to

the transmitter using a downlink control channel.

• The selection of training sequences w.r.t. the guideline provided by Proposition 1 is likely to provide

accurate estimate of the frequency offset. Nevertheless, such a selection may be impractical as

far as channel estimation is concerned. For instance, ifρk is chosen as in (24), then one can

show by inspecting the proof in Appendix II thatasCRBωk
increases withε. But for small values

of ε, matrix Rk given by (23) becomes nearly singular. In this case, the asymptotic bound on

channel estimates given by the righthand side of (19) becomes very large. This practically means

that channel coefficients cannot be properly estimated if training sequence selection is achieved

strictly as dictated by Proposition 1. This observation confirms that no training sequence allows to

jointly provide the most accurate estimates of both the frequency offset and the channel coefficients.

In practice, determination of tradeoffs between accurate frequency offset estimation and accurate

channel estimation is required.

B. Frequency domain estimation of channel parameters

In the present subsection, we further investigate the performance of estimates of channel coefficients. As

mentioned in Section II, one should investigate the case where the OFDMA receiver aims to estimate the

channel’s response associated with a given userk only at the subcarriers which are effectively modulated

by userk, rather than to estimate the time-domain channel coefficientshk. This case is of particular

interest in contexts where a given user is constrained to transmit in a frequency band which is strictly

smaller than the total bandwidth of the system [14]. In such a situation, estimation of the channel outside

the useful frequency band is of little interest. For this reason, we now study the performance of estimates

of the channel only at the frequencies which are effectively used by the user. In the sequel, we consider

a given userk = 1, . . . , K. We denote byΞN,k the subset of{0, . . . , N − 1} corresponding to the

subcarriers modulated by userk. We denote byj0 < j1 < · · · < jNk−1 the elements ofΞN,k. For a given

transmit antennat of userk and for a given receive antennar, we denote by

g(t,r)
N,k (i) =

L−1∑

l=0

h
(t,r)
k (l)e−2ıπlji/N (25)
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the frequency tap of the channel at subcarrierji. Defining g
(t,r)
N,k = [g(t,r)

N,k (0), . . . , g(t,r)
N,k (Nk − 1)]T , one

obtains the following simple relation between the frequency taps of interest and the initial time-domain

channel coefficients:g (t,r)
N,k = ΦN,kh

(t,r)
N,k , whereΦN,k is theNk × L matrix

ΦN,k =
(
e−2ıπlji/N

)
0≤i≤Nk−1
0≤l≤L−1

. (26)

The desired parameter vector for a given userk is defined bygN,k = [g (1,1)
N,k

T
, . . . , g

(NT ,1)
N,k

T
, . . . , g

(1,NR)
N,k

T
,

. . . , g
(NT ,NR)
N,k

T
]T and obtained asgN,k = (INT NR

⊗ΦN,k)hk. ParametergN,k is thus a linear function

of the initial set of parameters. Recall that the CRB associated with any linear functionGθ (whereG is

any matrix) of the initial parameter vectorθ is given byG(CRBN )GT (see [15]). Using this result, it

is straightforward to show that for any unbiased estimatorĝN,k of gN,k, the normalized MSE on channel

frequency taps verifies the following inequality:

1
Nk

EN

[∥∥ĝN,k − gN,k

∥∥2
]
≥ 1

N
tr


CRBN,k,k




0 0LNT NR

T 0LNT NR

T

0LNT NR
INT NR

⊗R [TN,k] −INT NR
⊗ I [TN,k]

0LNT NR
INT NR

⊗ I [TN,k] INT NR
⊗R [TN,k]





 ,

(27)

whereCRBN,k,k represents thekth (2LNT NR +1)× (2LNT NR +1) diagonal block of the normalized

CRB matrix associated with initial parameter vectorθ̃, i.e., CRBN =
(
CRBN,k,l

)
k,l=1,...,K

, and where

TN,k = 1
Nk

ΦN,k
HΦN,k. Notation 0LNT NR

stands for theLNT NR × 1 null vector. We now simplify

(27). Indeed, the righthand side of (27) only depends on two matricesCRBN,k,k andTN,k. Theorem 1

states thatCRBN,k,k converges a.s. toward matrixCk given by (17) asN increases. In order to obtain

a simple expression of (27), the only task is therefore to study the asymptotic behavior ofTN,k. We first

remark that for eachp, q = 0, . . . , L− 1, the coefficient of the(p + 1)th row and the(q + 1)th column

of TN,k can be written as

1
Nk

∑

j∈ΞN,k

e2ıπ(p−q) j

N =
∫ 1

0
e2ıπ(p−q)fνN,k(df) , (28)

where scalar measureνN,k is defined for any Borel setA of [0, 1] by

νN,k(A) =
1

Nk

∑

j∈ΞN,k

IA(
j

N
) . (29)

MeasureνN,k is introduced in order to simplify the asymptotic study of matrixTN,k. For any Borel set

A, νN,k(A) is simply equal to the number of subcarriersj modulated by userk such that j
N lies in A,

divided by the numberNk of modulated subcarriers. In particular,νN,k([0, 1]) = 1. We now make the

following assumption.
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Assumption 2:There is a measureνk such thatνN,k converges weakly toνk as N tends to infin-

ity. Equivalently, for any continuous functionf → F (f), the integral
∫ 1
0 F (f)νN,k(df) converges to

∫ 1
0 F (f)νk(df) asN tends to infinity.

Based on the above assumption, we can directly write that (28) converges to
∫ 1
0 e2ıπ(p−q)fνk(df) asN

tends to infinity. Finally,TN,k converges to the followingL× L matrix Tk defined by

Tk =
∫ 1

0
e(f)e(f)Hνk(df), (30)

where we recall thate(f) = [1, e2ıπf , . . . , e2ıπf(L−1)]T . In the following, we furthermore assume that

limit measureνk has a density w.r.t. the Lebesgue measure on[0, 1] and we denote this density by

Dk(f) (i.e., νk(df) = Dk(f)df ). Intuitively, functionDk(f) can be interpreted as the (limit) density of

subcarriers modulated by userk. This density is normalized in such a way that
∫ 1
0 Dk(f)df = 1. For

instance, if all subcarriers are modulated byk, Dk(f) = 1 for eachf . On the other hand, if userk does not

modulate any subcarrier inside a certain frequency intervalA ⊂ [0, 1], thenDk(f) = 0 for eachf ∈ A.

In the sequel, we denote byDk = {f ∈ [0, 1]/Dk(f) > 0} the part of bandwidth used by transmitter

k. For most practical SAS, it is reasonable to assume that the densityDk(f) of modulated subcarriers

is a constant for eachf ∈ Dk. In this case,Dk(f) coincides with the following “frequency mask”:

Dk(f) = 1
∆k
IDk

(f), where∆k =
∫
Dk

df is a constant equal to the Lebesgue measure ofDk and where

IDk
(f) is the indicator function of setDk. In this case,Tk coincides withTk = 1

∆k

∫
Dk

e(f)e(f)Hdf .

Based on Theorem 1, it is straightforward to show that (27) reduces to:

lim inf
N→∞

N

Nk
EN

[∥∥ĝN,k − gN,k

∥∥2
]
≥ σ2NRtr

(
R−1

k (INT
⊗Tk)

)
+

3σ2

2
βk

γk
, (31)

whereβk = 1
∆k

∑NR

r=1

∫
Dk
‖h(r)

k (f)‖2df. Before commenting this result, it is worth noting that inequality

(31) can be further simplified as long as we assume that the lengthL of the channels impulse responses

is large enough. Indeed, whenL increases, the sizes of matricesRk and Tk in the righthand side of

(31) also increase. Then, as we shall see below, the first term of the righthand side of (31) becomes

predominant, so that the term3σ2

2
βk

γk
can be neglected. Moreover, it can be easily seen thatRk andTk

are both block-Toeplitz matrices. As their sizes increase withL, results on the behavior of large block-

Toeplitz matrices can be used to simplify the first term of the righthand side of (31). Ultimately, such an

analysis will lead us to obtain a lower bound onlim infL→∞
(
lim infN→∞ N

Nk
EN

[∥∥ĝN,k − gN,k

∥∥2
])

.

We infer that this limit will be a relevant performance bound in practical situations whereN andL are

both large, butL ¿ N . This claim will be sustained by simulations of Section V.

Theorem 2:Consider a given userk = 1, . . . , K. Assume thatµk has a matrix-valued densityPk(f)

w.r.t. the Lebesgue measure on[0, 1] (i.e., µk(df) = Pk(f)df ). For eachf , denote byλ(1)
k (f) < · · · <
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λ
(NT )
k (f) the (non-negative) eigenvalues ofPk(f). Assume thatλ(1)

k (f) ≥ ε for eachf ∈ Dk and for

someε > 0. Then,

lim inf
N→∞

N

Nk
EN

[∥∥ĝN,k − gN,k

∥∥2
]
≥ σ2LNR

∆k

NT∑

t=1

∫

Dk

1

λ
(t)
k (f)

df + oL(L) (32)

w.p.1, whereo(L) represents a deterministic term such thato(L)
L tends to zero asL tends to infinity.

Proof: See Appendix III.

In order to illustrate the meaning of Theorem 2, it is useful to investigate the case where each user has

a single transmit antenna:NT = 1. In this case, the densityPk(f) of the asymptotic covariance profile

reduces to a scalar densityPk(f). As mentioned previously, in some sense, the densityPk(f) may be

interpreted as the amount of power transmitted by userk in a neighborhood of frequencyf . In this case,

the bound on the MSE of̂gN,k in the righthand side of equation (32) becomes

σ2LNR

∆k

∫

Dk

1
Pk(f)

df + oL(L).

Therefore, asL increases, the above asymptotic CRB tends to be proportional to the average of the

inverse of the power density.

We now explore the training sequences that minimize the asymptotic CRB

asCRBgN,k
=

σ2LNR

∆k

NT∑

t=1

∫

Dk

1

λ
(t)
k (f)

df (33)

that stems from inequality (32).

C. Minimization ofasCRBgN,k

We now study the training sequences which minimize the boundasCRBgN,k
given by (33) on the

MSE associated with estimates of the (useful) channel frequency taps. Again, the minimization is achieved

under power constraint (21). In order to fit the assumption of Theorem 2 we assume thatµk has a matrix

densityPk(f) whose eigenvalues are denoted byλ
(1)
k (f) < · · · < λ

(NT )
k (f).

Proposition 2: Under power constraint (21),asCRBgN,k
is minimum if and only if for eachf ∈ [0, 1],

Pk(f) = Pk

NT ∆k
INT

IDk
(f), whereINT

is theNT ×NT identity matrix and whereIDk
(f) is the indicator

function of the useful bandwidthDk.

Proof: Based on definition (33), the minimization ofasCRBgN,k
under power constraint (21) is

equivalent to the minimization of
∑NT

t=1

∫
Dk

1
λ

(t)
k (f)

df . For eacht = 1, . . . , NT , Cauchy-Schwarz inequality

implies that ∫

Dk

1

λ
(t)
k (f)

df

∫

Dk

λ
(t)
k (f)df ≥ ∆2

k. (34)
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Note that equality holds in (34) if and only ifλ(t)
k (f) is a constant w.r.t.f in Dk. Using (34) and Jensen’s

inequality, we obtain

asCRBgN,k
≥ σ2LNR∆k

NT∑

t=1

1∫
Dk

λ
(t)
k (f)df

≥ σ2LNR∆k
N2

T∑NT

t=1

∫
Dk

λ
(t)
k (f)df

. (35)

Equality holds in (35) if and only ifi) λ
(t)
k (f) is a constant w.r.t.f ∈ Dk and ii) all elements of(∫

Dk
λ

(t)
k (f)df

)
t=1,...,NT

are identical. This is equivalent to:∀f ∈ Dk, ∀t, λ(t)
k (f) = λk whereλk is a

certain constant. In this case, matrixPk(f) is proportional to the identity matrix,i.e., Pk(f) = λkINT

for eachf ∈ Dk. Finally, the denominator of the righthand side of (35) coincides with tr(
∫
Dk

Pk(f)df).

Thus, it is less than or equal to power constraintPk and achievesPk if and only if λk = Pk

NT ∆k
and

Pk(f) = 0 for f /∈ Dk. Thus,asCRBgN,k
is minimum if and only ifPk(f) = Pk

NT ∆k
INT

IDk
(f).

Comments

• We recall that thenondiagonal elements of matrixPk(f) can be interpreted as the cross-correlation

between training sequences sent at different antennas, in a neighborhood of frequencyf . Proposi-

tion 2 states that for eachf ∈ [0, 1], the asymptotic covariance densityPk(f) is a diagonal matrix.

This suggests in particular that accurate estimates of channel coefficients can be obtained as long

as training sequences sent at different antennas are uncorrelated.

• Proposition 2 indicates that matrixPk(f) should be constant w.r.t.f in the bandwidth of interest

Dk so as to minimizeasCRBgN,k
. In other words, if the lengthL of the channel is large enough,

the uniform power allocation in the modulated part of the bandwidth is likely to provide the most

accurate estimates of the desired channel coefficients.

• Propositions 1 and 2 lead to very different training sequences. This confirms the claim of [8] that

no training sequence is jointly optimal for both channel and frequency offset estimation. Of course,

the final goal would be to construct one single training sequence which would be relevant for both

channel and CFO estimation. However, the selection of such a training sequence is difficult because

it crucially relies on the particular receiver’s architecture. One example of possible approach is for

instance to follow the design criterion of [10]. In our case, this approach would consist in selecting the

training sequence in order to minimize the objective functionmax‖hk‖=ρ

(
asCRBωk

+ asCRBgN,k

)

for a fixed channel normρ. We refer to [10] for more details. Ultimately, an even more relevant

approach would be to select the training sequence which maximizes the capacity or minimize the bit

error rate. An other relevant approach would be to select the training strategy which maximizes the
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signal to noise ratio in data mode. Such optimizations are however out of the scope of the present

paper and will be the subject of future works.

V. SIMULATION RESULTS

In order to sustain our claims, we present simulation results considering MIMO-OFDMA system with

QPSK signaling. We considered either SISO case or MIMO case withNR = 2 and NT = 1 or 2

depending on the context. The shaping pulse is a raised cosine filter with roll-off0.25. For each user and

for each transmit-receive antenna pair, we consider a multipath fading channel withQ independent paths.

For each channel realization, the number of pathsQ is chosen uniformly between2 and 4. Complex

gains associated with each path are assumed to be circular complex Gaussian random variables with zero

mean and unit variance. Delays of all paths are chosen from the uniform distribution on interval[0, 5T ].

Due to the length of the impulse response of the shaping filter, the maximum channel length is about

8T . Hence, we putL = 8. On the other hand, for each userk, the value ofωk is randomly chosen in the

interval [−0.01, 0.01]. In the sequel, without loss of generality, we focus on the results corresponding to

the first userk = 1 and suppose that average transmitted powersPk are equal for all users. All results

are averaged over1000 realizations of the training sequences and the channel parameters.

A. Comparison of exact and asymptotic CRB

First, we study the values ofN for which our asymptotic results provide an accurate approximation of

the exact CRB. The previously mentioned three different training strategies are studied. In the first case,

each user is assumed to use the training strategyT1 depicted in Section III-B (i.e., all subcarriers are

modulated by all users with equal power, training sequences sent at different antennas are uncorrelated).

In the second case, training strategyT2 is used (i.e., subcarriers are assigned following an interleaved

SAS, assigned subcarriers are modulated with equal power, training sequences sent at different antennas

are uncorrelated). Finally, we introduceT3 which is the optimal training strategy for frequency offset

estimation as depicted in Section IV. In the single transmit antenna case, it consists in transmitting the

highest power at the frequencyj such that j
N is close tof

(opt)
1 . In the multiple transmit antenna case,

relevant correlation between antennas given by vectorν
(opt)
1 is furthermore introduced. We have taken

the value ofε as 10−6 to ensure the regularity ofRk. Note thatT3 is not a proper choice for channel

estimation and will be used just for frequency offset estimation. The ratioP1
σ2 between the transmitted

energy per symbol and the noise variance is set to20 dB.
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Fig. 1a compares exact and asymptotic CRB associated tochannelparametersgN,1, for different values

of the numberN of subcarriers. The number of users is equal to2 or 4. The solid line represents the value

1
N asCRBL,gN,1

, whereasCRBL,gN,1
denotes the asymptotic CRB on channel frequency taps equal to

the righthand side of (31). Note that the value of1
N asCRBL,gN,1

is identical forT1 and T2. Indeed,

the asymptotic CRB only depends on the training sequence via the asymptotic covariance profileµ1 and

both training strategiesT1 and T2 lead to the same asymptotic covariance profile. The exact CRB on

channel frequency taps is defined as the righthand side of (27). As shown by Fig. 1a, the exact CRBs

depend on the particular training strategyT1, T2. Fig. 1a shows however that, as long as the numberN of

subcarriers is large enough, exact CRB corresponding toT1 andT2 respectively both fits the asymptotic

CRB. This sustains the claim that both training strategies have a similar performance for largeN . The

dotted line represents the value of1
N asCRBgN,1

, whereasCRBgN,1
is given by (33). Due to Theorem 2,

asCRBgN,1
approximates the asymptotic CRBasCRBL,gN,1

of large values ofL. In Fig. 1a, we observe

however that solid and dotted lines (i.e., respectively asymptotic CRB for finiteL and its dominant term

for largeL) are very close. In the present case, we haveL = 8. This tends to show that the lower bound

given by Theorem 2 is relevant even for moderate values of the lengthL of the channel impulse response.

Fig. 1b compares exact and asymptotic CRB for frequency offset estimation as a function ofN . Now,

we add the performance curves forT3. Again, the solid line represents1N3 asCRBω1 , whereasCRBω1

is defined by (20). Other curves represent the exact CRB forω1, defined as the coefficient at the first

row and the first column ofCRBN . As expected, exact CRBs corresponding respectively to training

strategiesT1 andT2 tend to be identical whenN increases. Moreover, all the exact CRBs fit the respective

asymptotic bounds for largeN . It is also worth noting that the exact CRB is close to the asymptotic

CRB even for moderate values ofN in both cases.

Another interesting point is the behavior of the presented bounds as the number of users increase.

Fig. 2 shows such a relation for both channel and frequency offset variances usingT2. We depict the

curves for bothN = 512 and N = 1024. As expected, the exact bounds fit the asymptotic ones for

both SISO and MIMO cases as long as the number of subcarriers is larger than the number of unknown

parameters (i.e., N larger thanK(NRNT L + 1)). Particularly, in the SISO case, the difference between

the exact and asymptotic bounds is negligible even in the presence of32 users. On the other hand, the

asymptotic regime may no longer be reached in MIMO case for large number of users. For instance,

whenN = 512, the exact bounds deviates from the asymptotic bounds for the number of users greater

than16.

Similar conclusions can be drawn for all training strategies including the ones which introduce a
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correlation between antennas. Fig. 3 shows such an example for an arbitrary sequenceT4. This training

strategy is defined as follows. For each userk, we put sN,k(j) = ΩdN,k(j) where the vectordN,k(j)

has i.i.d. entries and where

Ω =
1√

1 + sin2(θ)


 1 sin(θ)

sin(θ) 1


 ,

for θ = π
6 . As seen in Fig. 3, similar convergence behavior can be deduced forT4. For the sake of

comparison, we have also included the bounds forT2 and T3 which are found to be optimal training

strategies respectively for channel and frequency estimation. The interesting point is the remarkable

difference between the bounds ofT4 and respective optimal training strategies. These results simply

imply that the arbitrarily selected training strategyT4 is a successful choice neither for channel nor for

frequency offset estimation.

B. Estimation Performance

We now study the estimation performance associated to the frequency offset and channel parameters

with K = 2 users andN = 256 subcarriers. The Maximum Likelihood (ML) estimator is used on the

received signal to compute estimates of the unknown parameters. Fig. 4 represents the corresponding MSE

EN [(ω̂N,1−ω1)2] as a function of ratioP1
σ2 , for the training strategiesT2 andT3. The MSE is compared

with the asymptotic CRB 1
N3 asCRBωk

in solid lines. Figs. 4a and 4b illustrate the performance when

the number of transmit antennas is set toNT = 1 or NT = 2 respectively. For both training strategies,

Fig. 4 illustrates the fact that the MSE corresponding to the ML estimate ofω1 is close to the asymptotic

CRB. This motivates the fact that the asymptotic CRB can be interpreted as a relevant indicator of the

estimation performance of practical estimators. Fig. 4a allows to compare the performance associated

with both training strategiesT2 and T3 and for a single transmit antenna. A gain of about2.6 dB in

terms ofP1
σ2 is observed between training strategyT2 andT3. Of course, recall thatT3 can hardly be used

in practice as it does not allow to accurately estimate channel coefficients. However, the CRB obtained

when strategyT3 is used can be interpreted as a the best lower bound on estimates of the frequency

offset. The best gain which can be expected from the use of a “non-uniform” power allocation strategy

instead ofT2 is thus of2.6 dB whenNT = 1. Fig. 4b shows that this gain increases with the number

of transmit antennas. WhenNT = 2, the use of spatially correlated training sequences leads to a gain of

more than5 dB compared to the case of uncorrelated training sequences.

Fig. 5 illustrates the estimation performance associated withgN,1 as a function ofP1
σ2 . SinceT3 is

not relevant for channel estimation, results are given just forT2. Similar to the previous case, the ML
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estimates coincide with exact CRBs and they are very close to the asymptotic bounds both forNT = 1

andNT = 2.

VI. CONCLUSION

The performance of joint data-aided estimators of frequency offsets and channel parameters for MIMO-

OFDMA uplink has been addressed in this paper. When all training sequences sent by all users are

modeled as sequences of random variables, the above CRB can be shown to converge almost surely to a

deterministic matrix as the numberN of subcarriers tends to infinity. The analysis of this asymptotic CRB

matrix allowed to conclude that for any asymptotically efficient estimator, the estimation performance

associated with parameters of a given userk becomes identical to the performance which one would have

obtain if all parameters of all other users were perfectly known. The MSE on channel parameters has

been shown to converge to zero at rate1
N while the MSE on frequency offsets converges to zero at rate

1
N3 . Asymptotic performance bounds have been shown to depend on the training sequence only via its

asymptotic covariance profile. The asymptotic covariance profiles which minimize the asymptotic bounds

have been provided. It has been shown that accurate estimates of channel parameters are obtained by

transmission of spatially uncorrelated training sequences with uniform frequency power profile. Accurate

estimates of the frequency offsets are obtained by allocating most of the power of the training sequence

at the appropriate frequency and by introducing a relevant correlation between transmit antennas.

APPENDIX I

PROOF OFLEMMA 1

Given k, l = 1, . . . , K, transmit antenna pair(t, t′), and u = 0, 1, 2, we denote byζ(t,t′)u
N,k,l (p, q) the

(p + 1, q + 1)th element of matrixu+1
Nu+1 A(t)H

N,k Du
NΓN (ωl − ωk)A

(t′)
N,l. Defining ∆flk = ωl−ωk

2π and using

(1), the coefficientζ(t,t′)u
N,k,l (p, q) can be expressed as

ζ
(t,t′)u
N,k,l (p, q) =

u + 1
Nu+1

N−1∑

n=0

nua
(t)
N,k(n− p)∗a(t′)

N,l(n− q)e2ıπn∆flk

=
1
N

N−1∑

i=0

N−1∑

j=0

s
(t)
N,k(i)

∗s(t′)
N,l(j)e

2ıπ (pi−qj)
N ψN,u(j − i + N∆flk), (36)

where for eachx, ψN,u(x) = u+1
Nu+1

∑N−1
n=0 nue2ıπ nx

N . The following proof relies on the observation that

for eachx such that0 < |x| ≤ N
2 ,

|ψN,u(x)| ≤ Cu

|x| , (37)
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whereCu is a constant. This inequality was recently used by [11]. For the sake of completeness, we

provide a sketch of the proof. The claim can be easily shown forψN,0(x) = eıπ (N−1)x

N
1
N

sin πx
sin πx

N

using the

fact that
∣∣sin πx

N

∣∣ ≥ 2
∣∣ x
N

∣∣ for |x| ≤ N
2 . Whenu = 1, it can be shown that

ψN,1(x) =
ı

N sin (πx
N )

(
e2ıπ (2N−1)x

2N − eıπx sin (πx)
N sin (πx

N )

)
. (38)

To obtain the desired bound (37), we first notice that the term enclosed with parenthesis in (38) is

bounded. Indeed, using the triangular inequality, this term is less than1 +
∣∣∣eiπx sin(πx)

N sin( πx

N
)

∣∣∣ ≤ 2. The case

u = 2 can be treated using similar arguments. The proof is omitted due to the lack of space.

Now, using equation (37), Lemma 1 can be proved as follows. First, consider the casek = l. In this

case, our aim is to prove that for eachp, q,

χN,k,k = ζ
(t,t′),u
N,k,k − 1

N

N−1∑

i=0

E
[
s
(t)
N,k(i)

∗s(t′)
N,k(i)

]
e2ıπ (p−q)i

N
N−→ 0 a.s. (39)

Note that we omitted subscripts(t, t′), u, and indices(p, q) in the above definition for the sake of

readability. In the casek = l, note that∆fk,k = 0 in (36). In order to show (39), we writeχN,k,k as a

sum of two termsχN,k,k = χa
N,k,k + χb

N,k,k where

χa
N,k,k =

1
N

N−1∑

i=0

(
s
(t)
N,k(i)

∗s(t′)
N,k(i)ψN,u(0)− E

[
s
(t)
N,k(i)

∗s(t′)
N,k(i)

])
e2ıπ (p−q)i

N (40)

χb
N,k,k =

1
N

N−1∑

i=0

N−1∑

j=0
j 6=i

s
(t)
N,k(i)

∗s(t′)
N,k(j)e

2ıπ (pi−qj)
N ψN,u(j − i), (41)

and we prove the almost sure convergence to zero of both terms. We first studyχb
N,k,k. In this case,

the proof is quite similar to the proof of [11]. Again, we split the sum in (41) asχb
N,k,k = χb,1

N,k,k +

χb,2
N,k,k + χb,3

N,k,k and prove that each of these terms tends a.s. to zero. Here,χb,1
N,k,k coincides with the

righthand side of (41) except that the inner sum w.r.t.j is restricted to the setE1
i = {j = 0, . . . , N − 1/

j 6= i, |j − i| ≤ N
2 }. Similarly, termsχb,2

N,k,k and χb,3
N,k,k correspond to the restriction of the inner sum

of (41) to the setsE2
i = {j = 0, . . . , N − 1/j 6= i, N

2 < j − i ≤ N − 1} andE3
i = {j = 0, . . . , N − 1/

j 6= i,−N + 1 ≤ j− i < −N
2 } respectively. We now prove thatχb,1

N,k,k
a.s.−→ 0. To that end, we show that
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E[|χb,1
N,k,k|4] ≤ C

N2 , whereC is a constant. We first expandE[|χb,1
N,k,k|4] as follows.

E[|χb,1
N,k,k|4] =

1
N4

∑

(i1,i2,i3,i4,j1,j2,j3,j4)∈V
E

[
4∏

n=1

s
(t)
N,k(in)∗s(t′)

N,k(jn)
(n)

]
4∏

n=1

e
2ıπ(pin−qjn)

N ψN,u(jn − in)
(n)

(42)

≤ 1
N4

∑

(i1,i2,i3,i4,j1,j2,j3,j4)∈V

∣∣∣∣∣E
[

4∏

n=1

s
(t)
N,k(in)∗s(t′)

N,k(jn)
(n)

]∣∣∣∣∣
4∏

n=1

|ψN,u(jn − in)| (43)

≤ C

N4

∑

(i1,i2,i3,i4,j1,j2,j3,j4)∈V

4∏

n=1

1
|jn − in| , (44)

wherex(n) is equal ton if x is odd, and tox∗ if n is even. Inequality (43) comes from the triangu-

lar inequality. Then, applying Cauchy-Schwarz inequality successively and using (37) along with the

assumption (10) leads to (44). Indeed,
∣∣∣∣∣E

[
4∏

n=1

s
(t)
N,k(in)∗s(t′)

N,k(jn)
(n)

]∣∣∣∣∣ =

∣∣∣∣∣E
[

4∏

n=1

s
(t)
N,k(in)∗

(n) 4∏

n=1

s
(t′)
N,k(jn)

(n)
]∣∣∣∣∣

≤
(

E

[
4∏

n=1

|s(t)
N,k(in)|2

]
E

[
4∏

n=1

|s(t′)
N,k(jn)|2

]) 1
2

≤
(

4∏

n=1

E
[
|s(t)

N,k(in)|8
] 4∏

n=1

E
[
|s(t′)

N,k(jn)|8
]) 1

8

≤ (
C4 × C4

) 1
8 = C.

The sum in (42) is considered w.r.t. to all 8-uplet(i1, i2, i3, i4, j1, j2, j3, j4) ∈ V whereV denotes the

set of values ofi1, . . . , i4, j1, . . . , j4 such thati) for eachn = 1, . . . , 4, jn ∈ E1
in

and such thatii)

each value in the 8-uplet appears at least twice. This restriction of the sum is due to the fact that the

expectation in (42) is zero as soon as there exist one value in the 8-uplet(i1, i2, i3, i4, j1, j2, j3, j4) which

appears only once. This is nothing but a direct result of the independence of the training symbols sent

at different subcarriers. For instance, some terms of the sum (44) correspond to the situation where

i1 = i2, i3 = i4, j1 = j2, j3 = j4. The modulus of the corresponding term is given by

C

N4

∑

i1,i3

∑

j1,j3

1
|j1 − i1|2

1
|j3 − i3|2 =

C

N4




N−1∑

i=0

∑

j∈E1
i

1
|j − i|2




2

≤ C

N4




N−1∑

i=0

∑

l 6=0

1
|l|2




2

≤ C ′

N2

whereC ′ is a constant. Other terms can be treated similarly. After some algebra, we obtain thatE[|χb,1
N,k,k|4] ≤

C′′

N2 . Using the Borel-Cantelli Lemma, this implies thatχb,1
N,k,k

a.s.−→ 0. By the same approach and the fact

that ψN,u is anN -periodic function,χb,2
N,k,k andχb,3

N,k,k can be shown to converge almost surely to zero.

The proof of the a.s. convergence to zero ofχa
N,k,k is similar. It can easily be seen using assumption (10)
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that E[|χa
N,k,k|4] can be written as1

N4 times (less than)3N2 bounded terms. ThusE[|χa
N,k,k|4] ≤ C

N2 ,

whereC is a constant. This completes the proof of (39).

The casek 6= l can be treated using similar arguments. Due to the fact thatψN,u is an N -periodic

function, we may assume without restriction thatN∆flk in (36) verifies−N
2 ≤ N∆flk ≤ N

2 . We now

put ζ(t,t′),u
N,k,l (p, q) = ζ

(1)
N,k,l +ζ

(2)
N,k,l +ζ

(3)
N,k,l whereζ

(1)
N,k,l correspond to the righthand side of (36) except that

the inner sum w.r.t.j is restricted toj ∈ Fi, where for eachi = 0, . . . , N − 1, Fi = {j = 0, . . . , N − 1/

|j − i + N∆flk| ≤ N
2 }. Similarly, ζ

(2)
N,k,l andζ

(3)
N,k,l respectively correspond to an inner sum w.r.t. indices

j verifying N
2 < |j − i + N∆flk| ≤ N − 1 + N

2 and−N + 1− N
2 < |j − i + N∆flk| < −N

2 . In order

to prove thatζ(1)
N,k,l

a.s.→ 0, it can be shown as in (44), by expandingE[|ζ(1)
N,k,l|4] and using (37), that

E[|ζ(1)
N,k,l|4] ≤

C

N4

∑

i1,i2,i3,i4

∑

j1,...,j4

4∏

n=1

M(|jn − in + N∆flk|), (45)

where the outer sum is restricted to indicesi1, . . . , i4 such that each value in(i1 . . . i4) appears at least

twice (typically, i1 = i2, i3 = i4), and where the inner sum is the restriction ofFi1 × . . .×Fi4 such that,

again, each value of(j1, . . . , j4) appears at least twice (typically,j1 = j2, j3 = j4). FunctionM(|x|) is

defined as 1
|x| for x 6= 0 andM(0) = 1. By studying each combinations of suchi1, . . . , i4, j1, . . . , j4, it

can be shown as above thatE[|ζ(1)
N,k,l|4] ≤ C′

N2 . This proves thatζ(1)
N,k,l

a.s.→ 0. Termsζ
(2)
N,k,l andζ

(3)
N,k,l can

be treated using the same approach.

APPENDIX II

PROOF OFPROPOSITION1

As asCRBωk
= 6σ2

γk
, the minimization ofasCRBωk

is equivalent to the maximization ofγk. Using

the definition of the Lebesgue integral [16], coefficientγk defined by (16) also coincides with

γk =
ε

NT
‖hk‖2 + sup

(Ai)

∑

i

inf
f∈Ai

[
NR∑

r=1

h
(r)
k (f)Hρk(Ai)h

(r)
k (f)

]
, (46)

where the supremum is taken w.r.t. all decompositions(Ai)i of interval [0, 1]. Let (Ai)i be such a

decomposition. We first note thatρk(Ai) is a non-negative Hermitian matrix. Based on this remark, we

now make use of the following lemma.

Lemma 3:Denote by(xr)r=1,...,NR
a sequence ofNR complex column vectors of sizeNT ×1. Denote

by λmax the largest eigenvalue of matrix
∑NR

r=1 xrxr
H and byν the corresponding eigenvector. For each

NT ×NT non-negative Hermitian matrixM,

NR∑

r=1

xr
HMxr ≤ λmaxtr (M) , (47)
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with equality if and only if (iff) M has the formM = β ννH whereβ is any non-negative real number.

The proof of the above lemma is omitted due to the lack of space. For each integeri, we now use

Lemma 3 withM = ρk(Ai). For eachf ∈ [0, 1], defineλk,max(f) as the maximum eigenvalue of[∑NR

r=1 h
(r)
k (f)Hh

(r)
k (f)

]
andf

(opt)
k = arg maxf (λk,max(f)). Then, using Lemma 3, we have

∑

i

inf
{f∈Ai}

[
NR∑

r=1

h
(r)
k (f)Hρk(Ai)h

(r)
k (f)

]
≤

∑

i

inf
{f∈Ai}

[tr(ρk(Ai))λk,max(f)] (48)

≤
∑

i

tr(ρk(Ai))λk,max(f (opt)
k ) (49)

= tr (ρk([0, 1])) λk,max(f (opt)
k ).

Equation (48) holds with equality iff for eachAi and for eachf , ρk(Ai) has the formρk(Ai) =

β(Ai)νk(f)νk(f)H , where νk(f) represents the eigenvector associated withλk,max(f). As a con-

sequence, equation (49) holds with equality iffi) decomposition(Ai)i contains the one element set

{f (opt)
k }, ii) ρk({f (opt)

k }) = β(f (opt)
k )ν(opt)

k ν
(opt)
k

H
whereν

(opt)
k = νk(f

(opt)
k ), and iii) ρk(Ai) = 0 if

f
(opt)
k /∈ Ai. Considering the supremum of the lefthand side of (48), we obtain thatγk ≤ ε

NT
‖hk‖2 +

tr(ρk([0, 1]))λk,max(f (opt)
k ) with equality iff ρk has the formρk = β(f (opt)

k )ν(opt)
k ν

(opt)
k

H
δf

(opt)
k

. Finally,

introducing the power constraint (21),γk ≤ ε
NT
‖hk‖2 + (Pk − ε)λk,max(f (opt)

k ) with equality iff ρk =

(Pk − ε)ν(opt)
k ν

(opt)
k

H
δf

(opt)
k

.

APPENDIX III

PROOF OFTHEOREM 2

We study the behavior of the righthand side of (31) as the lengthL of the channel increases. It is

worth keeping in mind that (31) is the limit of the normalized CRB associated with the desired channel

coefficients when the numberN of subcarriers tends to infinity. Here, we further study the case where

L (in addition toN ) tends to infinity. In this paragraph, the wordasymptoticthus refers to the case

when L tends to infinity. The main task is the study of the asymptotic behavior of the trace of matrix

R−1
k (INT

⊗ Tk). For this, we make use of classical results on the behavior of large Toeplitz matrices

[18] [20] [21]. More precisely, the proof requires the use of results on largeblock-Toeplitz matrices,

which are direct generalizations of [18] (see [22] and references therein). Note however that the proof

of Theorem 2 requires slightly more general results than those of [22].

Firstly, we study separately the asymptotic behaviors ofRk andTk. Secondly, we deduce from this

the asymptotic behavior of tr(R−1
k (INT

⊗ Tk)). We denote byPk(f) the density of complex matrix-

valued measureµk w.r.t. the Lebesgue measure and byP
(t,u)
k (f) the element of thetth row and the
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uth column ofPk(f). We assume that each componentP
(t,u)
k (f) is a bounded function on[0, 1]. For

eacht, u = 1, . . . , NT , we denote byR(t,u)
k the L × L block of coordinates(t, u) of matrix Rk, i.e.,

Rk =
(
R(t,u)

k

)
t,u=1,...,NT

. We denote byF the L × L Fourier matrixF =
(

1√
L
e−2ıπ ij

L

)
i,j=0,...,L−1

.

Classical results on the asymptotic behavior of large Toeplitz matrices [18] imply that matrixR(t,u)
k is

asymptotically equivalent to matrixΘ(t,u)
k defined by

Θ(t,u)
k = FHΠ(t,u)

k F, (50)

whereΠ(t,u)
k = diag

(
P

(t,u)
k (0), P (t,u)

k ( 1
L), . . . , P (t,u)

k (L−1
L )

)
. By asymptotically equivalent, we mean that

spectral norms ofR(t,u)
k andΘ(t,u)

k are both bounded asL →∞ and that the normalized Frobenius norm

|R(t,u)
k −Θ(t,u)

k | of R(t,u)
k −Θ(t,u)

k tends to zero asL tends to infinity [21]. We recall that the normalized

Frobenius norm|X| of a given n × n matrix X = (xij)i,j=1,...,n verifies |X|2 = 1
n

∑
i

∑
j |xij |2.

From the above claim, it is straightforward to show thatRk is asymptotically equivalent toΘk =(
Θ(t,u)

k

)
t,u=1,...,NT

asL →∞. Based on (50), it is useful to note thatΘk can be written as

Θk =
(
INT

⊗ FH
)
Πk (INT

⊗ F) , (51)

whereΠk =
(
Π(t,u)

k

)
t,u=1,...,NT

. Each blockΠ(t,u)
k of Πk is a diagonal matrix. “Renumbering” the

elements ofΠk as in [22], it is straightforward to show thatΠk is equivalent to a block diagonal matrix

up to a permutation of its rows and columns:

Πk = QT diag

(
Pk(0), . . . ,Pk(

L− 1
L

)
)

Q, (52)

whereQ is a permutation matrix. Since our aim is to study the asymptotic behavior ofR−1
k (INT

⊗Tk),

the most natural approach would consist in studying the asymptotic behavior ofR−1
k andTk, and then

to deduce the asymptotic behavior of the whole desired matrix. Unfortunately, in certain contexts, matrix

Rk may be ill-conditioned asL tends to infinity. A typical example is the case where userk does not

modulate any subcarrier inside a whole frequency interval. In this case, functionf → Pk(f) is zero

inside this interval. In such cases, it can be shown using the same kind of arguments than in [20] that

matrix R−1
k becomes singular asL →∞. In order to overcome this problem, we consider an arbitrarily

small real numberε > 0. Following the approach of [11], we define the “pseudo-inverse” function as the

function Fε defined for any non-negative real numberx by Fε(x) = 1
x if x > ε, Fε(x) = 0 otherwise.

For any non negative Hermitian matrixX = VHdiag(λ1, . . . , λn)V whereV is unitary, we generalize

the above pseudo-inverse function byFε(X) = VHdiag(Fε(λ1), . . . , Fε(λn))V. In the sequel, instead

of studyingR−1
k (INT

⊗Tk) for largeL, we rather study matrixFε(Rk)(INT
⊗Tk). Following [20], it
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is straightforward to show thatFε(Rk) is asymptotically equivalent toFε(Θk) as L → ∞. Using (51)

and (52), we obtain

Fε(Θk) =
(
INT

⊗ FH
)
QT diag

(
Fε (Pk(0)) , . . . , Fε(Pk(

L− 1
L

))
)

Q (INT
⊗ F) . (53)

We now study the asymptotic behavior of matrixTk = 1
∆k

∫
Dk

e(f)e(f)Hdf . Matrix Tk is an L × L

Toeplitz matrix. Using again [18] along with the fact that functionIDk
(f) is bounded, we immediately ob-

tain thatTk is asymptotically equivalent to matrixFHΥF whereΥ = 1
∆k

diag
(IDk

(0), . . . , IDk
(L−1

L )
)
.

As a consequence,INT
⊗Tk is asymptotically equivalent to

diag
(
FHΥF, . . . ,FHΥF

)
=

(
INT

⊗ FH
)
(INT

⊗Υ) (INT
⊗ F) . (54)

Permuting rows and columns ofΥ in the same way as that ofΠk, we obtainINT
⊗Υ = QT (Υ⊗ INT

)Q,

whereQ is the same permutation matrix found in (53). Plugging this equality into (54) and putting (53)

and (54) together, we conclude that matrixFε(Θk)
(
INT

⊗ (FHΥF)
)

coincides with the following matrix

Ψ =
1

∆k

(
INT

⊗ FH
)
QT diag

(
IDk

(0)Fε (Pk(0)) , . . . , IDk
(
L− 1

L
)Fε(Pk(

L− 1
L

))
)

Q (INT
⊗ F) .

Consequently,Fε(Rk)(INT
⊗Tk) is asymptotically equivalent to the above matrix. Classical results [18]

finally yield

lim
L→∞

1
L

tr (Fε(Rk)(INT
⊗Tk)) = lim

L→∞
1
L

tr (Ψ)

= lim
L→∞

1
∆kL

L−1∑

j=0

IDk
(
j

L
)tr

(
Fε(Pk(

j

L
))

)

=
1

∆k

∫

Dk

tr (Fε(Pk(f))) df

=
1

∆k

NT∑

t=1

∫

Dk

Fε(λ
(t)
k (f))df, (55)

whereλ
(1)
k (f) < · · · < λ

(NT )
k (f) are the eigenvalues ofPk(f). We now use the fact that for a given (finite)

value ofL, Rk andTk are positive definite Hermitian matrices. This implies that tr
(
R−1

k (INT
⊗Tk)

) ≥
tr (Fε(Rk)(INT

⊗Tk)). Using (31) and (55), we finally obtain

lim inf
L→∞

1
L

(
lim inf
N→∞

N

Nk
E

[∥∥ĝN,k − gN,k

∥∥2
])

≥ σ2NR

∆k

NT∑

t=1

∫

Dk

Fε(λ
(t)
k (f))df. (56)

The above equation holds for arbitrarily small values ofε. Due to the assumptions of Theorem 2,
∫
Dk

1
λ

(1)
k (f)

df exists. Therefore, the righthand side of (55) has a limit whenε → 0.

This limit coincides withσ2NR

∆k

∑NT

t=1

∫
Dk

1
λ

(t)
k (f)

df . This proves Theorem 2.
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Fig. 1. Exact and asymptotic CRB as a function ofN – P1
σ2 = 20 dB, NT = NR = 2.
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Fig. 2. Exact and asymptotic CRB as a function ofK – P1
σ2 = 20 dB.
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Fig. 3. Exact and asymptotic CRB as a function ofN – P1
σ2 = 20 dB, NT = NR = 2.
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Fig. 4. MSE of the ML estimator ofω1 and CRB as a function ofP1
σ2 – N = 256, K = 2.
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Fig. 5. MSE of the ML estimator ofgN,1 and CRB as a function ofP1
σ2 – N = 256, K = 2.
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