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Abstract

In this paper, we address the data-aided joint estimation of frequency offsets and channel coefficients
in the uplink transmission of MIMO-OFDMA systems. A compact and informative expression of the
Cranér-Rao Bound (CRB) is derived for large training sequence sizes. It is proved that the asymptotic
performance bounds depend on the choice of the training sequence only via the asymptotic covariance
profiles. Moreover, it is shown that the asymptotic performance bounds do not depend on the number
of users and the values of the frequency offsets. Next, we bring to the fore the training strategies which
minimize the asymptotic performance bounds and which are therefore likely to lead to accurate estimates
of the parameters. In particular, for a given user, it is shown that accurate frequency offset estimates
are likely to be obtained by introducing relevant correlation between training sequences sent at different
antennas. On the other hand, accurate channel estimation is achieved when training sequences sent at

different antennas are uncorrelated. Simulation results sustain our claims.
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I. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA) has recently become very popular in
wireless communications and already been included in IBEEL6 specifications for broadband wireless
access at frequencies belolt GHz. In an OFDMA system, each user modulates a certain group
of subcarriers, following a given subcarrier assignment scheme (SAS). The signal transmitted by a
given user is impaired by a frequency selective channel and by a frequency offset. Prior estimation
of channel coefficients and frequency offsets has a considerable impact on further users detection steps.
The computation of accurate estimates is thus a crucial issue in OFDMA systems. Estimation of frequency
offsets and channel coefficients for (single-user) OFDM systems has been investigated in a large number
of works (see, e.g., [1]-[2] and references therein). However, the case of OFDMA uplink usually requires
more involved synchronization and channel estimation methods. In [3]—[5], estimators which are designed
for a specific SAS are proposed. Recent works [6] and [7] investigate the data-aided estimation of

frequency offsets in OFDMA uplink for general SASs.

In this paper, we consider an uplink MIMO-OFDMA transmission involviNg transmit antennas
per userand Ny receive antennas at the base stationKlfdenotes the number of users, the receiver
must estimate alK frequency offsets (one for each user) andidIMIMO-channels. We investigate the
performance of the data-aided estimation of channels and frequency offsets at the base station with perfect
knowledge of the training symbols. To that end, we study the €rdRao Bound (CRB) for the joint
data-aided estimation of the set of frequency offsets and channel coefficients. Such an analysis provides
lower bounds on the Mean Square Error (MSE) associated with estimates of the unknown parameters.
Moreover, it emphasizes the parameters which have crucial impact on the performance. In particular, the
CRB depends on the training sequences sent by all users. Once the expression of the CRB has been
obtained under a compact form, it is natural to exploit this result following the general idea of [8], [9]
and [10]. These authors proposed to characterize the training sequences which lead to the lowest CRB.
It is indeed reasonable to believe that the use of such “optimal” training sequences is likely to provide
accurate estimates of the unknown parameters.

We first derive the exact expression of the CRB (Section IIlI). Unfortunately, the exact CRB turns out
to be complicated. In order to obtain a compact and informative expression of the CRB, we assume that
the total numberV of modulated subcarriers tends to infinity. In this case, we obtain a simple expression
of the CRB. Note that the idea of studying the CRB in the asymptotic regime in order to simplify its

expression has been used previously by [8] and [9] in the case of a single-user single-antenna single-carrier
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transmission and later by [11] for the issue of channel and clock-offset estimation in OFDM systems.
However, a performance study of channel and frequency offsets estimation in the OFDMA case has not
been previously undertaken. One of the main difficulty is to provide a general expression of the asymptotic
CRB which is validfor any OFDMA system: our results should not be specific to a particular resource
allocation strategy. Hence, the asymptotic analysis of the CRB in the multi-user OFDMA scenario is
more involved than the classical single-user case investigated in [8]—[10], and requires the introduction
of novel tools. We emphasize the characteristics of the resource allocation strategy which influence the
asymptotic performance. The asymptotic CRB depends on the choice of the training sequence only via
the frequency power profile of the training sequence and via the correlation possibly introduced between
transmit antennas (due to the possible use of a beamformer at each transmitter side). We also remark that
orthogonal and non-orthogonal SASs both lead to the same performance: it is thus not essential for a
given userk to transmit pilot symbols over all available subcarriers in order to obtain the most accurate
estimates. In the present paper, we furthermore investigate the case of a MIMO transmission. Unlike
[9], we show that the estimation performance crucially depends on the particular beamformer used by
each transmitter. We also prove that the asymptotic CRB associated with the parameterktiofuber

is identical to the asymptotic CRB that one would have obtained in the absence of othet #sérs
Intuitively, there are therefore some close links between the performance in the OFDMA context and the

traditional single-user single-carrier case of [9].

In Section IV, we characterize the training strategies which minimize the asymptotic CRB. In particular,
we investigate which power should be allocated to which subcarriers, and what correlation should be
introduced between training sequences sent at different antennas so as to lead to accurate estimates of
the parameters. Unfortunately, as already noticed by [8][10][12], no single training strategy is likely to
simultaneously provide the most accurate estimates of the frequency offset and, at the same time, the most
accurate estimates of channel coefficients. In practice, one should determine tradeoffs between training
strategies providing accurate frequency offset estimates and training strategies providing accurate channel
estimates. However, the problem of choosing a relevant tradeoff is difficult and crucially depends on the
transmitter and receiver architectures. Although the point is briefly discussed for the sake of completeness,
the proposition of a general procedure for determining such tradeoffs is beyond the scope of this paper.

Finally, simulation results of Section V sustain all our claims.
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II. SIGNAL MODEL

We consider an uplink MIMO-OFDMA transmission. We assume tijatisers sharéV subcarriers.

Each user hagVy transmit antennas. One symbol sequence is sent by each transmit ahténaa
., N7) of each usek (k = 1,..., K) using an OFDM modulator. The OFDM symbol transmitted by

userk at a given antennain the frequency domain is represented by sequeﬁ,’Eke(O) s%)k( —1).
We omit the block index for the sake of notational simplicity. In the sequel, we assume that for each
k =1,...,K and for eacht = 1,..., N, sequence(sgf,?k(j))j is known by the receiver (training
sequence). It is worth noting that in usual OFDMA systems, only a subset &V tieailable subcarriers
is effectively modulated by a given userfollowing a given SAS. For each=0,..., N —1, we simply
consider thatsgf,?k(j) = 0 in the case where subcarrigris not modulated by uset. However, we do
not specify any subcarrier assignment strategy at this point. In our model, training seq(né@ges)j
and (s%:)k(j))j sent at different antennasandt’ are possibly different. For a given userand a given

antennat, we denote b)(agf,)k(n))n the inverse discrete Fourier transform of seque(n;{;fék(j))]

7lj

t
ag\f),kn \ﬁz Nk

217r

(1)

for each integen. Cyclic prefix is added to the above time-domain version of the OFDM block and the
resulting sequence is transmitted over a multipath channel.

We denote byNyr the number of receive antennas at the base station. Forreach, ..., Ng, the
complex envelope of the signal received by antenna sampled at symbol rate. After cyclic prefix

removal, the corresponding received samples can be written foreach, ..., N — 1 as

Nr L-1
Ze’“”‘”ZZh‘” — )+ 0 (n). @)
t=1 =0
For eachk = 1,... K, parameterwk is defined asv, = 27dfi. T, wheredf, denotes the frequency

offset corresponding to usérand wherel’ denotes the sampling period. Paramétglf)(l) represents

Ith tap of the channel impulse response betwikrransmit antenna of usérandrth receive antenna

of the base station. Each channel is assumed to have no mord.thanzero taps, where integér

does not depend oh and does not exceed the length of the cyclic prefix. Sequérédn)),, denotes

a white Gaussian noise of variang&. Note that equation (2) implicitly assumes that all users are quasi-
synchronous in time as in [7]: all delays of signals transmitted by all users are within the length of
cyclic prefix. In equation (2), we also assume that the (angular) frequency affsist constant with
respect to (w.r.t.) antenna paifs, ). We mention that in certain MIMO systems, different frequency

offsets may be associated with each transmit-receive antenna pair. This case is usually considered in
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macro-diversity systems [13]. In the present paper, we consider the classical case (see, e.g., [1] and
references therein) wherey, is constant w.r.t. antenna paifs, ). In the sequel, it is quite useful to

make use of a compact matrix representation of (2). To that end, we introduce the following notations.

Defineh{"” = [n{""(0),..., h{"" (L — 1)]”, where(-)" represents the transpose operator. Stacking all
N sampIeSy%) (n) received by antennainto one column vectoy(N”) = | 5\7,") 0),... ,y](\’,’)(N— 1)]7, one
obtains:
K Nr
= 3 rwten) (AL 40
k=1 t=1
where vi?) = [0™(0),...,0®(N — 1)]7 and Ty(w;) = diag(l, e, ..., e=N=1), In the above

expression, each matring,)k is an N x L matrix containing the time-domain training sequence sent at
the tth transmit antenna of usét More precisely,

t 8 ..
Ag\f)k = <a§v),k(2 - j)>0§i§N—1'
0<j<L-1

In particular, Ag\t,)k is a circulant matrix: this is due to the fact that cyclic prefix is inserted at the

transmitter side. We finally stack the samples received by all antennas into a 3ifgtex 1 vector
T (Na) T

yN=[yy »--¥n " JF given by
K
YN =Y [In, ® (Cn(wi)Ang) by + vy, 3)
k=1
wherel y,, denotes théVy x Ny identity matrix,® stands for the Kronecker produdt,y , = [A%’)k, e ,Aggg)],
andvy = [vﬁ)T, . ,v%VR)T]T is an additive noise vector with independent complex circular Gaussian
random entries of variance®. Here, vectoth;, = [h,(ql’l)T, ... ,h,iNT’l)T, . ,h,(j’N”')T, e, h,&NT’NR)T]T

contains all channel coefficients of a given user

In this paper, we address the data-aided estimation ofifhanknown frequency offsetsf; (or
equivalently theK normalized angular frequency offseis,) and the K LNz N7 unknown channel
coefficients. We denote by = [wy,h? ... wp, h}}]T the deterministic parameter vector to be estimated.
In the following section, we provide bounds on the performance of estimat@s of

Remark 1:In a number of practical OFDMA systems, the receiver needs to estimate the channel’'s
response associated with a given usenly at the subcarriers which are effectively modulated by éser
One may thus be interested in estimating a portion of the frequency response of the channel rather than
the coefficients of the impulse response, vectorh,. However, the set of frequency taps which should

be estimated in this case can be written as a simple functibr.dfor this reason, we first investigate the
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performance of estimates of initial parameter veé&@nd deduce from this the performance of estimates

of the frequency taps of interest.

1. CRAMER-RAO BOUND

We now study the CRB associated whSuch an analysis provides performance bounds for estimates
of 8. Moreover, it emphasizes the influence of the choice of the training sequence on the performance.
In this section, we firstly derive the exact CRB for paramé&eBecondly, we investigate the asymptotic
behavior of the CRB as the number of subcarriers tends to infinity. Using these results, we finally derive

the asymptotic CRB associated with the channgtsguencyresponses.

A. Exact Crarmaér-Rao bound

Real parameter vector can be writtenéas: [0, , ..., 0|7 where for eachk, 8, = [wy, hY . 07"
denotes the parameter vector corresponding to a giveniuser the above definitionhg; and hy
respectively represent the real and the imaginary parts of vigtofhe exact CRB fof is classically
defined as the inverse of the Fisher Information Matrix (FIK). Note that an expression of the FIM
for @ has been recently derived by [7] in the SISO case. Using an approach similar to [10], the FIM for
parameteid can be obtained as the following (1 + 2LNgN7) x K(1 + 2LNgNy) matrix:

Iy = %% [(Vgnﬁ) (V(;nﬁ)H] ; (4)

whereny = Zle [In, ® (Tn(wg)Ani) hy. Here, superscript) denotes the transpose-conjugate,

R [z] (resp.T [z]) denotes the real (resp. imaginary) partzofFor anyn x 1 real column vectox =

[x1,...,2,]T and for a givenl x m row vectorz(x) = [z1(x), ..., zn(x)] function of x, matrix Vyz
is defined as ther x m matrix (83'5‘)) 1<i<n - After some algebra, we obtain the following “block”
representation of matrid y: ==
Inig o Inik
In=1| + : (5)
Ivk1 - INKK

For eachk,l =1,..., K, Jy, is the (1 +2LNrN7) x (1 +2LNrN7) matrix given by

) anke I [BNukl RI[BN.L
INkl = pol B Byri] R[Unkd —T[Unpi |- (6)
R([Bynri] TUnpi]  R[Unp
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where
Unigg = In,® (A%,;J‘N(wl — wi)Any) (7)
By = [Ing.® (AN DN (w —wi)Any)] by, (8)
angs = [ Iy, © (AR, DITN(w —wi)Ang)] by, (9)
and whereDy = diag(0,1,..., N — 1). Expression (6) can be obtained by straightforward derivation

of (4). The proof is omitted due to the lack of space. Unfortunately, the calculation of the exact CRB as
the inverse of (5) seems to be a very difficult task. In order to obtain a more compact and informative

expression of the CRB, we now investigate the case where the nukloérsubcarriers increases.

B. Asymptotic Cra@r-Rao Bound

We now study the asymptotic behavior of the CRB forWe assume thal tends to infinity while
i) the numberK of users remains constant and while the number of antennas remains constant. In
practice, our results will be valid as long as the numbveof subcarriers is significantly greater than the
total number of unknown parameteisg., N > K(LNrNr + 1). We also assume that whe¥ tends
to infinity, the overall bandwidth is constant. In other words, sampling %atemains constant and as a
result, the subcarrier spaciqéf decreases to zero.

In order to simplify our asymptotic analysis, we make the following assumptions:

i) For a given antenn@of a given usek;, (sgf,),k(j))j is a sequence of independent random variables with
zero mean. Note that this assumption encompasses usual OFDMA training strategies. However, we do
not assume that training symbols are identically distributed. In particular, the var}é[méé?k(j)\z]
of the jth training symbol depends gn This is motivated by the observation that in practical OFDM
systems, different powers may be allocated to different subcarriers. Moreover, for a given SAS, a
certain number of subcarriers may not be modulated by kisHrj is one of these subcarriers, we
simply consider thaf[|s\/, (j)[2] = 0.

if) Furthermore, we assume that training sequer(cséf%k(j))j and (sgf,l(j))j transmitted by two
different antennag andt’ of a given userk are possibly correlated (due to the possible use of
a beamformer). Therefore, the cross-correlatEi%?k(j) %:L(j)*] may be nonzero.

iii) We assume that eight-order moments of random varia(bﬁé)ﬁ(j))j are uniformly bounded;e.

8
s%pmjaxE “S%)k@)‘ ] <M (10)

for eacht, where M is a constant which is independent &t
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iv) Finally, we assume that training sequences sent by two different ugeksare independent.

We now study the asymptotic behavior of the CRB matrix define@€CRB y . Note that for
finite values ofL, it is reasonable to assume that the FIM is non-singular. Due to definitiohs\;gj,l,
Bk, anday kg, in (7), (8) and (9), it is clear that the behavior of the CRB for largeonly depends
on the asymptotic behavior of matriceﬁsﬁ’kD%FN(wl — wy)An, for eachu = 0,1,2 and for each
k,l=1,..., K. The following lemma provides a simpler expression of the latter matricésiasreases.

Lemma 1:Define vectore(f) = [1,e*/ ... e*/=D|T for each f € [0,1]. For eachk,l =

., K and for eachu =0, 1, 2,

u—+1 Nl

Nu+1

A%kD%I‘N(wz—cuk)AN,z N E[SNk SNk(])H} ®[e(]‘<7 N

' )e(j)H] X0 as.
j=0

(11)
where notation" 0 stands for the (componentwise) convergence to zerdy asnds to infinity, where
“a.s.” stands for “almost surely” and wher¢ stands for the conjugate of. Here, vectorsy (j) =
[sg\l,)k(]) sgg)( )]” contains training symbols sent by all antennas of éisat a given subcarrie.
Coefficientd(k — [) is equal to 1 ifk = [ and to zero otherwise.

The proof of Lemma 1 is given in Appendix |. The presence of faétér—() in (11) already gives the
insight that elements of non diagonal blockg ;. ; for k # [ of the FIM J 5 become significantly smaller
than the corresponding elements of diagonal blaEks; . as NV increases. In order to characterize the
asymptotic behavior of the desired matric#ﬁl—l AﬁykD}(,I‘N(wl —wk)Any, it is convenient to rewrite

the second term of (11) using
| Nl

* 1 : 1
N 2 E [SN,k(j)SN,k(j)H} ® |:e(]‘<7)e(]]\[)H:| :/0 HN,k(df) ® [e(f)e(f)H] 7 (12)

where u ;. denotes the following matrix-valued measure [16] defined for any Boreliseft [0, 1] by

e NZ [SNk: SNk(])HrIA(%% (13)

whereZ 4 stands for théndicator function of setA (i.e, Za(f) =11if f € A, Za(f) = 0 otherwise).

We denote bwg\tf’z)(A) the coefficient of theth row and the’th column of (13). In order to have some
insights on the meaning of (13), it is interesting to remark that coeffieié];it) A) verifies ug\l,’,? (A) =

~ ZN 'E []sN)k( )] }IA( ). Therefore, measure( Y can be interpreted as the power profile of the
training sequence sent at the first antenna. In partlc,wj\éyi, ([0, 1]) represents the total power transmitted

by the first antenna during a whole OFDM block. Generalizing this idea, for any transmit antenna pair

(t,t), ugf,';) can be interpreted as the cross-correlation profile of the training sequences respectively
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sent at antennas and t'. Finally, the matrix-valued measuge, , is in some sense equivalent to the
(conjugate) covariance profile of the multi-dimensional training sequegg&;).

In order to simplify the forthcoming asymptotic study, we now make the following assumption.

Assumption 1:For eachk, we assume that there is a matrix-valued meagyresuch thatuy
converges weakly ta, asN tends to infinity. Equivalently, for any continuous functign— F'(f), the
integral [} F(f)py.(df) converges tof) F(f)u(df) asN tends to infinity.
In the sequel, we refer tp, as theasymptotic covariance profilef the training sequence of uskr The
introduction of the above covariance profile thoroughly simplifies the asymptotic analysis of the CRB.
Furthermore, Assumption 1 encompasses most usual SAS and power allocation strategies for OFDMA
systems. Moreover, we shall see below that the asymptotic CRB associated witpends on the
training strategy only vigu,. Hence, the asymptotic covariance profile is sufficient to characterize the
asymptotic CRB. No further assumptions on the particular SAS, the particular power allocation strategy
or the particular correlation between antennas are required.

Remark 2:In order to have more insights on the meaning of measure u,(A), focus for instance

on its first componentd — M,(Cl’l)(A) (i.e,, the component at the first row and the first column). This

componentugcl’l) is a classical scalar measure. Assume for the sake of iIIustrationu&’é)c has a
densityP,gl’l)(f) w.r.t. the Lebesgue measure @n1] (in other words,dp,(j’l)(f) = P,gl’l)(f)df). In
this case, the density’,gl’l)(f) can be interpreted as the amount of power sent at the first antenna of
userk in the neighborhood of frequency. With language abusei?,gl’l)(f) is in some sense similar to
the power density spectruraf the time-domainsequence transmitted at the first antenna of ésedf
course, such a statement is somewhat non rigorous: in OFDMA, the time-domain transmitted sequence
is not even stationary and, strictly speaking, its power density spectrum is not well defined. However,
understandingjlgl’l)(f) as a power density spectrum may be useful in order to interpret the following
results. Generalizing this idea, if thé; x N matrix-valued measurg,, has a matrix densit®(f), (i.e,
wpi(df) = Pr(f)df), thenP(f) can be interpreted as the power density spectrum oiMha&imensional
sequence sent at aN antennas of uset.

Lemma 1 along with Assumption 1 and equality (12) immediately leads to the following lemma.

Lemma 2:For eachk, denote byR;, the following LNy x LNy matrix

1
R, — /O u(df) @ [e(fe()"]. (14)
Then, for eachu =0, 1,2, for eachk,l=1,... K,
u+1 u
Furt AN DR N (o — wn) Ay M 5(k—1) Ry as. (15)
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Using Lemma 2, one can now easily characterize the asymptotic behavior of each block (6) of the
FIM. For example, due to Lemma 2 and (7), the matfltix ., has the same asymptotic behavior as
Né(k — DIn, ® Ry as N tends to infinity. Similarly, from (9), the coefficienty ;; has the same

asymptotic behavior aé’?é — )k, Where

Ve = hk [N, ® Rg] hy

- Z / (AR (). (16)

Here, h,(f)(f) = f:j)l[h,gl’r)(l),...,h,gNT’ J(]Te~2m may be interpreted as the overall frequency
response of the channel “seen” at receive antenrillowing these kind of ideas, it is straightforward
to characterize the asymptotic behaviorJof and thus of CRB . Note that Lemma 2 suggests rather
to study the asymptotic behavior of thermalizedCRB. We definecCRBy = W yCRBxyW y where
Wy is the K (1+2LNgrNr) x K(1+2LNgNr) diagonal matrix defined by y = diagw?,, ..., wk)
wherewX; denotes the1 + 2LNzN7) row vectorwk = [N3/2, N2 .. N'/2]  Using Lemma 2 in
the way described above, we obtain the following result.

Theorem 1:As N tends to infinity, the normalized CREERBy converges almost surely to the
block-diagonal matrixCRB given by CRB = diag(C;,...,Ck). For eachk = 1,..., K, C; is the
(1+2LNgN7) x (1+2LNrNy) matrix equal to

12 6h?, 6h,
| o 5
Cr="5 | e ®[(Iy, @Ry +3240 3 [(Ty, @Ry Y] - 324k | (A7)
%‘:m I[(In, @R - 31““‘;7:% % [(In, ©R; )] + 3thhR g

Proof: Using Lemma 2, it can be shown that thermalizedFIM Jy = WN JNWN converges
a.s. to a block-diagonal matrik = diag(J1,...,Jx) asN — oco. For finite values of., it is reasonable
to assume thal is non-singular. As functiod y — jf\,l is continuous, the normalized CRB converges
a.s.toCRB =J ' = diag (371, ..., 3%"). Final expression of the asymptotic CRB can thus be obtained
by separate inversion dF, ..., Jk. Using derivations similar to [10], the final result is straightforward.
L]
We now make the following comments.
Comments
« The asymptotic normalized CRB is a block-diagonal matrix. In particular, this implies that for any
asymptotically efficient estimator, the (normalized) estimation errors corresponding to parameters of

distinct users become non correlatedMgends to infinity.
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o Theorem 1 provides asymptotic bounds on the Mean Square Error (MSE) for the parameters of
a given userk. In the sequel, in order to simplify the notation8,/[ . | denotes the conditional
expectation w.r.t. training sequenceés., Ex[X] = E |X/ (SN,1(j))j,---,(SN,K(j))j} for any
random variableX. In particular, Ex[X] is a random variable which depends on the training
sequences.

Corollary 1: For any unbiased estimaégy of 8, Theorem 1 implies that the following inequalities

hold with probability one (w.p.1).

2
lim inf N3 Ey [(wN,k - w,ﬂ > 07 (18)
N—oo Yk
. 2 2hflh
lim inf N Ex [th . th } > Npotr (R 4 27 D b (19)
N—oo ’ 2

wherewy ;, and BN,k respectively denote the estimates of the (angular) frequency affseind
channel coefficientd. In the above expression,(¥X) stands for the trace &X and ||x||? = x'x
for any column vectok.

« The MSE on channel parameters converges to zero atf{famne the MSE on frequency offsets
converges to zero at ratg;.

o Theorem 1 states that the CRB matrix convergégost surelyto a deterministic matrixCRB
whereas most previous results in the field of CRB studies and training sequence design only focus
on the convergence in probability. The almost sure convergence is a much more powerful result.
It means thatfor almost any particular realization of the training sequenbe normalized CRB
converges to the deterministic expression given by Theorem 1. It allows furthermore the statement
of important inequalities such as (18) and (19).

o It is interesting to remark that the expression of the asymptotic CRB (18) associated with the
frequency offset is similar to the bound obtained by [9] in the single-user single-carrier case. In
both cases, the asymptotic CRB is proportional to a certain constanhich can be interpreted
as theuseful power received by the base station and transmitted by kisém other words, the
asymptotic CRB%2 is proportional to the inverse of ttegnal to noise ratiassociated with a given
transmitter.

« For a given uselk, the bounds on the MSE for estimateséf do not depend on the values of
parameterd); associated with other usets# k& and do not depend on the numbEr of users.

In other words, the asymptotic CRB associated with parameters cdftkhaser is identical to the

asymptotic CRB that one would have obtained in the absence of otheriugets
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« Asymptotic bounds for the MSE of unbiased estimate® afepend on the training scheme only
via the asymptotic covariance profilgs.. Different training schemes may have identical asymptotic
covariance profilgs;,. Hence, different training schemes may lead to similar estimation performance.
In order to illustrate this claim, we consider the following two training examples. The first one in a
non-orthogondltraining strategy which we call. In this case, each useémodulates all subcarriers
j=0,...,N —1, with equal powerP;. In other words, the proportion of the bandwidth assigned
to userk is equal toNy/N = 1. Now, consider a second training strate@y for which each
user k modulates the set off subcarriers having the indice%z'KJr k— 1/i =0,..., % — 1}
with equal powerKP;, (for the sake of simplicity, ratio% is assumed to be an integer). One
usually refer to this orthogonal SAS agerleavedOFDMA [5]. For the sake of illustration, assume
that training sequences transmitted by different antennas are uncorrelated in boti,cardg5.
Then, based on definition (13), it is straightforward to show that for both training scHgmesd
Ty, covariance profilg:y , converges weakly to the asymptotic “frequency flat” covariance profile
. (A) = PrIn,. A(A), where) is the Lebesgue measure {ih1]. As a consequence, both training
strategies/; and7» lead to the same asymptotic CRB.

This example illustrates the fact that orthogonal and non-orthogonal SAS both have the same
asymptotic performance bounds, as long as they have an identical asymptotic covariance profile
- Intuitively, this means that it is not essential for a given use&o transmit pilot symbols over

all available subcarriers in order to obtain the most accurate estimd#tg of

« The normalized CRB tends to the limit given by Theorem 1 whetends to infinity, while all other
parameters remain constant. This means in particularﬁ@% tends to infinity. In practice,
for finite values ofN, it is therefore reasonable to conjecture that the normalized CRB is close to
the limit of Theorem 1 provided thaﬁ,m is large enough. Section V provides more details

on this point.

IV. FURTHER SIMPLIFICATIONS, TRAINING SEQUENCESELECTION

Theorem 1 provides asymptotic bounds on the MSE of channels and frequency offsets estimates.
These bounds crucially depend on the training strategies used by each tranknaiiehe asymptotic
covariance profilegs,. Thus, following the approach of previous studies [8][10], it is natural to search

for the training strategies which minimize the CRB on the frequency offset and on the channel, the latter

A given subcarrier is possibly modulated by several users
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being at least measured in a part of the available frequency band as we shall see below. More precisely,
we provide guidelines on the way each user has to design its own training sequence so that (the bound
on) the estimation performance is the smallest. For instance, one may wonder which power should be
allocated to which subcarriers, and what correlation should be introduced between training sequences
sent at different antennas so as to lead to accurate estimates of the parameters.

It is worth noticing that for a giverk, The asymptotic CRB only depends on the training sequence
of userk and depends neither on the training strategiesorresponding to other usefs# k nor on
parameter®); associated with other users. This remark is of practical importance. Indeed, it implies that
the CRB based selection of the training sequence of a giveniudees not require the knowledge of
other users’ training strategies and parameters.

Of course, one would expect from an ideal training strategy that it simultaneously minimizes bounds
on both the frequency offset and the channel. Unfortunately, results of [8][10][12] tend to show that no
single training sequence is likely to jointly minimize both bounds. In order to overcome this problem, [10]
proposes to select training sequences so that a given cost function depending on the CRB is minimum.
However, the problem of choosing a relevant cost function is difficult and crucially depends on the
transmitter and receiver architectures [17]. This issue is out of the scope of the present paper. Here, we
focus on separate minimization of both bounds. We begin with the asymptotic CRB, amritten

2
asCRB,, = 67" (20)
k

as inequality (18) shows.

A. Minimization ofasCRB,,,

We minimizeasC RB,,, under the constraint that the total power transmitted per time sample by user

k does not excee®;. The latter power constraint is equivalent to the following inequality:

tr (p4([0,1])) < Pg. (21)

As mentioned in Section Ill, the above expression of the power constraint is a direct consequence of (13).
Inequality (21) can be motivated by noticing that for finitg the total transmit power coincides with
tr(uey ([0, 1])). In addition to the power constraint, as in [9] we have to put a condition that ensures that
Ry is a regular matrix for the CRB expression (17) to be meaningful. One such condition is to assume

that pt;, has the form
i (df) = (€/Nr)Ingdf + pi(df) (22)
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wheree is a small numbee > 0 and p,(df) is a matrix-valued positive measure @@ 1]. With this
assumptionR; has the form

€

R
FE Ny

1
Ty, + /0 pr(df) @ [e(Ne())] . (23)

As the integral in the right hand side is a non negative makRix,is regular. Training sequences that
minimize the boundisCRB,, can be selected according to Proposition 1:

Proposition 1: For eachf € [0, 1], recall thath,(:)(f) = fzz]l[h,gl7r)(l),...,h,gNT”")(l)]Te‘Q“”f. De-
note by .. (f) the largest eigenvalue of matrjx %, h,(:)(f)h,(:)(f)H. Definef,i"pt) = arg max s A maz(f)-

Under power constraint (21), along with (225C' RB,,, is minimum if and only if
o H
pk = (Pk - 6) <yl(€ Pt),/’(;?l?t) > (Sf]iopt), (24)

whereu,(:’pt) is the (unit norm) eigenvector associated Mmmax(f,iof’t)) and wherej ..., is the Dirac
measure aff ",
The proof of Proposition 1 is provided in Appendix Il. Proposition 1 states that training sequences which
are likely to lead to the most accurate estimate of the frequency affsbave an asymptotic covariance
profile u;, defined by (24). In other words, Proposition 1 describes the best use of the available power
‘P;. for the aim of frequency offset estimation. We now comment this result.
Comments
» Proposition 1 suggests that an accurate estimatg ofn be obtained by transmitting almost all avail-
able power at the frequency for which the largest eigenvallgﬁ_f‘1 hg’)(f)hg’)(f)H is maximum.
In the single antenna casee, Nr = 1, Nr = 1, optimal asymptotic covariance profile (24) simply
reduces to the scalar measufd — )6 o where £\ = arg max (1] }ZZL:‘OI hi(1)e= 2l ‘.
In this case, Proposition 1 suggests to allocate most of the power at the subcarriers which are close

to the optimal frequency,ffpt)

. Note that there is of course a close link between the above guideline
and the training strategy obtained by [9] in case of a classical single-carrier transmission. Indeed,
when the training sequence is transmitted in the time-domain, [9] suggests to choose a (stationary)
training sequence whose power spectrum is maximum at frequﬁ(kﬁ%tfl.

« Proposition 1 also states thatC RB,,, is minimum when the covariance matrix between training

H
sequences sent at different transmit antennas coincidesu&ﬁ'ﬁu}f””

up to a multiplicative
factor (and to the small additive facté¢/Nr)Izn,.). In practice, for finite values oV and for a
given subcarriefj whose frequency /N is close to the optimal frequenq&é"pt), this guideline may

be followed by defining the multi-dimensional training sequesice(j) = [sg\l,?k(j), cee s%\f,f)(j)]T
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assy(j) = ufpt)ka(j), wherewy ;(j) is a certain scalar training sequence. Furthermore, the
previous comment suggests to selegt ;. (j) as a sequence which is non zero only at subcaryiers
such that: is close tof ",

« The training strategy suggested by Proposition 1 requires some limited channel knowledge consisting
in f,EOpt) and u,(:pt). As explained and discussed in [9], this limited information can be provided to
the transmitter using a downlink control channel.

« The selection of training sequences w.r.t. the guideline provided by Proposition 1 is likely to provide
accurate estimate of the frequency offset. Nevertheless, such a selection may be impractical as
far as channel estimation is concerned. For instance, ifis chosen as in (24), then one can
show by inspecting the proof in Appendix Il thatC RB,, increases withke. But for small values
of ¢, matrix Ry given by (23) becomes nearly singular. In this case, the asymptotic bound on
channel estimates given by the righthand side of (19) becomes very large. This practically means
that channel coefficients cannot be properly estimated if training sequence selection is achieved
strictly as dictated by Proposition 1. This observation confirms that no training sequence allows to
jointly provide the most accurate estimates of both the frequency offset and the channel coefficients.
In practice, determination of tradeoffs between accurate frequency offset estimation and accurate

channel estimation is required.

B. Frequency domain estimation of channel parameters

In the present subsection, we further investigate the performance of estimates of channel coefficients. As
mentioned in Section Il, one should investigate the case where the OFDMA receiver aims to estimate the
channel’s response associated with a given ksamly at the subcarriers which are effectively modulated
by userk, rather than to estimate the time-domain channel coefficirptsThis case is of particular
interest in contexts where a given user is constrained to transmit in a frequency band which is strictly
smaller than the total bandwidth of the system [14]. In such a situation, estimation of the channel outside
the useful frequency band is of little interest. For this reason, we now study the performance of estimates
of the channel only at the frequencies which are effectively used by the user. In the sequel, we consider
a given userk = 1,..., K. We denote by=y the subset of{0,..., N — 1} corresponding to the
subcarriers modulated by userWe denote byjy < ji; < --- < jn,—1 the elements 0Ey ;. For a given

transmit antenna of userk and for a given receive antenmawe denote by

L-1
SNOED S U (25)
=0
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the frequency tap of the channel at subcargierDefining ggf,”,;) = [g](\’;’;)(O), . g](\';’;)(Nk —1)]", one
obtains the following simple relation between the frequency taps of interest and the initial time-domain

t,r
’

channel coefficientsgg\, k) = @vah%’?, where® ;. is the Nj, x L matrix

Py = (672mji/N>ogz'§Nkf1 : (26)
0<I<L—1
i - e dofi _ DT (Nz, )T (1L,Ng) T
The desired parameter vector for a given userdefined bygx . = (g - 9Nk - Nk 5

T
...,g%v,f’NR) | and obtained agy ; = (In,n, ® ®n ) hy. Parametey ;. is thus a linear function

of the initial set of parameters. Recall that the CRB associated with any linear fui&lqwhere G is
any matrix) of the initial parameter vectéris given byG(CRBy)G” (see [15]). Using this result, it
is straightforward to show that for any unbiased estimgtgy; of g, the normalized MSE on channel

frequency taps verifies the following inequality:

0 OLNTNRT OLNTNRT
1 . NN U
N BN MQN,k — gl } 25U [ CBRBNkk | Ounene INeNg @R[Te] —Inen, @ T[Twgl | |

Ng
OrneNg IneNg @ T[Tl Ingng @ R[Tri]
(27)

whereCRB i, represents théth (2LN7rNr+ 1) x (2LN7 N + 1) diagonal block of the normalized

CRB matrix associated with initial parameter veoﬁbn’.e., CRBy = (CRBN,,C,Z) e and where

kl=1,...,
Ty = N%‘E'N,kH‘I’N,k- Notation Oy n, v, Stands for theLN7Nr x 1 null vector. We now simplify
(27). Indeed, the righthand side of (27) only depends on two mat@@®B y  » and T ;. Theorem 1
states thaCRB y ;. » converges a.s. toward matr®; given by (17) asV increases. In order to obtain
a simple expression of (27), the only task is therefore to study the asymptotic behaligr,ofWe first
remark that for eachp,q =0, ..., L — 1, the coefficient of thép + 1)th row and the(q + 1)th column

of Ty can be written as

1 SR T
Ny Z 2 (P—a) % :/0 2P q)fVN,k(df) ) (28)

JEENK

where scalar measutey j, is defined for any Borel sed of [0,1] by
1 J
vNE(A) = — Za(==) . (29)
Measurevy , is introduced in order to simplify the asymptotic study of maffiy; ;. For any Borel set
A, vy i(A) is simply equal to the number of subcarrigrsnodulated by usek such that% lies in A,

divided by the numberV, of modulated subcarriers. In particulany ;. ([0, 1]) = 1. We now make the

following assumption.
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Assumption 2:There is a measure;, such thatvy ; converges weakly toy, as N tends to infin-
ity. Equivalently, for any continuous functiofi — F'(f), the integralfolF(f)uN,k(df) converges to
fol F(f)vi(df) as N tends to infinity.

Based on the above assumption, we can directly write that (28) convergfglsdﬁr =Dy (df) as N

tends to infinity. Finally, Ty ; converges to the followind x L matrix T}, defined by

T = [ et nia), (30)
where we recall thae(f) = [1,e*™f, ... 27/(L=U]T |n the following, we furthermore assume that
limit measurev, has a density w.r.t. the Lebesgue measure[on] and we denote this density by
Dy (f) (i.e, vi(df) = Dy(f)df). Intuitively, function Dy (f) can be interpreted as the (limit) density of
subcarriers modulated by uskr This density is normalized in such a way thﬁtDk(f)df = 1. For
instance, if all subcarriers are modulatedihyDy(f) = 1 for eachf. On the other hand, if usérdoes not
modulate any subcarrier inside a certain frequency intedval [0, 1], then D(f) = 0 for eachf € A.

In the sequel, we denote 9, = {f € [0,1]/Dr(f) > 0} the part of bandwidth used by transmitter
k. For most practical SAS, it is reasonable to assume that the debgity) of modulated subcarriers
is a constant for eaclf € Dy. In this case,Dy(f) coincides with the following “frequency mask”:
Dy(f) = %ka(f), whereA; = ka df is a constant equal to the Lebesgue measurB0énd where
Ip,(f) is the indicator function of seDy. In this caseIT'; coincides withT), = Aik ka e(fle(f)df.

Based on Theorem 1, it is straightforward to show that (27) reduces to:

L. N . 2 2 1 302 ﬁk
liminf - By g — anall®] = o*Natr (R (In, @ Ty)) + SRS (31)
where gy, = A%c Zf,vjl Dk||h,(€’")(f)||2df. Before commenting this result, it is worth noting that inequality

(31) can be further simplified as long as we assume that the Idngfhthe channels impulse responses
is large enough. Indeed, whdh increases, the sizes of matricBs, and T}, in the righthand side of
(31) also increase. Then, as we shall see below, the first term of the righthand side of (31) becomes
predominant, so that the terﬁf% can be neglected. Moreover, it can be easily seenRhaand T,
are both block-Toeplitz matrices. As their sizes increase Withesults on the behavior of large block-
Toeplitz matrices can be used to simplify the first term of the righthand side of (31). Ultimately, such an
analysis will lead us to obtain a lower bound Bminf;_ . (lim inf oo N%EN [HQNJC - gN”‘?HQD'
We infer that this limit will be a relevant performance bound in practical situations wNea@d L are
both large, but. < N. This claim will be sustained by simulations of Section V.

Theorem 2:Consider a given usét = 1, ..., K. Assume thaj, has a matrix-valued densily(f)

w.r.t. the Lebesgue measure @n1] (i.e, u.(df) = Pr(f)df). For eachf, denote byA,E})(f) <-e <
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AéNT)(f) the (non-negative) eigenvalues Bf;(f). Assume thatz\g)(f) > ¢ for eachf € Dy and for

somee > 0. Then,

N LN
hmlanEN [HgNk gN’kHQ} TR Z/ df—I-OL( ) (32)

N—oo

A9
w.p.1, whereo(L) represents a deterministic term such tﬁ%ﬁ tends to zero ag tends to infinity.
Proof: See Appendix lll. O

In order to illustrate the meaning of Theorem 2, it is useful to investigate the case where each user has
a single transmit antenn&'r = 1. In this case, the densi®(f) of the asymptotic covariance profile
reduces to a scalar densif§;(f). As mentioned previously, in some sense, the denBjtyf) may be
interpreted as the amount of power transmitted by ésera neighborhood of frequency. In this case,
the bound on the MSE of . in the righthand side of equation (32) becomes

0?LNg 1
Ax  Jp, Pe(f)
Therefore, asl increases, the above asymptotic CRB tends to be proportional to the average of the

df + or(L).

inverse of the power density.

We now explore the training sequences that minimize the asymptotic CRB

2 Nt
asCRB, =2 LNR 3 / Ly (33)
’ Ak i o, )\J(gt)(f)

that stems from inequality (32).

C. Minimization ofasCRB

9Nk

We now study the training sequences which minimize the bawtdRB, , given by (33) on the
MSE associated with estimates of the (useful) channel frequency taps. Again, the minimization is achieved
under power constraint (21). In order to fit the assumption of Theorem 2 we assurpg, thas a matrix
densityP,(f) whose eigenvalues are denotedxﬁj/)(f) - < )\(NT)(f)

Proposition 2: Under power constraint (219sCRBy , is minimum if and only if for eacty € [0, 1],
Pr(f) = NTAk In, Zp, (f), wherely, is the Ny x Np identity matrix and wher&p, (f) is the indicator
function of the useful bandwidti®;,.

Proof: Based on definition (33), the minimization a6CRB, , under power constraint (21) is

equivalent to the minimization tofl ka mdf. Foreach = 1,..., Ny, Cauchy-Schwarz inequality

implies that
| @ T f/ (P > A3, (34)
Di A,
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Note that equality holds in (34) if and onlyh‘ff)(f) is a constant w.r.tf in Dy. Using (34) and Jensen’s

inequality, we obtain
Nr

1
asCRBy, > 0°LNpALY ——————
| = Jo N (P
N2
> o2LNRA, L . (35)

S Jp, N (D
Equality holds in (35) if and only ifi) )\,(f)(f) is a constant w.r.tf € D, andii) all elements of
AD(Fydf are identical. This is equivalent to'f € Dy, ¢, \(f) = A, where ) is a
Dy 'k N k
k t= yeeeyd VT

certain constant. In this case, mati(f) is proportional to the identity matrix,e., Pi(f) = M\ In,

for eachf € Dy. Finally, the denominator of the righthand side of (35) coincides W(tﬁDErPk(f)df).

Thus, it is less than or equal to power constraift and achieves?;, if and only if A\, = kaAk and
Py (f) =0for f ¢ Dy. Thus,asCRBy,, is minimum if and only ifP(f) = &INTID,C(J”). O
Comments

« We recall that thenondiagonal elements of matriR(f) can be interpreted as the cross-correlation

between training sequences sent at different antennas, in a neighborhood of frefjuéncposi-

tion 2 states that for each € [0, 1], the asymptotic covariance densBy(f) is a diagonal matrix.

This suggests in particular that accurate estimates of channel coefficients can be obtained as long
as training sequences sent at different antennas are uncorrelated.

Proposition 2 indicates that matrR(f) should be constant w.r.f in the bandwidth of interest

Dy, so as to minimizeisCRBy . In other words, if the lengtli of the channel is large enough,

the uniform power allocation in the modulated part of the bandwidth is likely to provide the most
accurate estimates of the desired channel coefficients.

Propositions 1 and 2 lead to very different training sequences. This confirms the claim of [8] that
no training sequence is jointly optimal for both channel and frequency offset estimation. Of course,
the final goal would be to construct one single training sequence which would be relevant for both
channel and CFO estimation. However, the selection of such a training sequence is difficult because
it crucially relies on the particular receiver’s architecture. One example of possible approach is for
instance to follow the design criterion of [10]. In our case, this approach would consist in selecting the
training sequence in order to minimize the objective functiox,, |-, (asCRBwk + asCRBgN,k)

for a fixed channel normp. We refer to [10] for more details. Ultimately, an even more relevant
approach would be to select the training sequence which maximizes the capacity or minimize the bit

error rate. An other relevant approach would be to select the training strategy which maximizes the
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signal to noise ratio in data mode. Such optimizations are however out of the scope of the present

paper and will be the subject of future works.

V. SIMULATION RESULTS

In order to sustain our claims, we present simulation results considering MIMO-OFDMA system with
QPSK signaling. We considered either SISO case or MIMO case Wigh= 2 and Np = 1 or 2
depending on the context. The shaping pulse is a raised cosine filter with r6IR6ffFor each user and
for each transmit-receive antenna pair, we consider a multipath fading channé) wittependent paths.

For each channel realization, the number of pathss chosen uniformly betweef and 4. Complex

gains associated with each path are assumed to be circular complex Gaussian random variables with zero
mean and unit variance. Delays of all paths are chosen from the uniform distribution on ifite5Z3l

Due to the length of the impulse response of the shaping filter, the maximum channel length is about
8T. Hence, we puf = 8. On the other hand, for each uderthe value ofv, is randomly chosen in the

interval [-0.01, 0.01]. In the sequel, without loss of generality, we focus on the results corresponding to
the first userk = 1 and suppose that average transmitted poWRrare equal for all users. All results

are averaged ovelr000 realizations of the training sequences and the channel parameters.

A. Comparison of exact and asymptotic CRB

First, we study the values @¥ for which our asymptotic results provide an accurate approximation of
the exact CRB. The previously mentioned three different training strategies are studied. In the first case,
each user is assumed to use the training strafggglepicted in Section IlI-B i(e., all subcarriers are
modulated by all users with equal power, training sequences sent at different antennas are uncorrelated).
In the second case, training stratefly is used [e., subcarriers are assigned following an interleaved
SAS, assigned subcarriers are modulated with equal power, training sequences sent at different antennas
are uncorrelated). Finally, we introdu@g which is the optimal training strategy for frequency offset
estimation as depicted in Section IV. In the single transmit antenna case, it consists in transmitting the

highest power at the frequengysuch that% is close to fl("pt)

. In the multiple transmit antenna case,
relevant correlation between antennas given by V&Zﬁ?ﬁj) is furthermore introduced. We have taken
the value ofe as107% to ensure the regularity dRy. Note that7} is not a proper choice for channel
estimation and will be used just for frequency offset estimation. The %étitt»etween the transmitted

energy per symbol and the noise variance is se0talB.
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Fig. 1a compares exact and asymptotic CRB associateddoneparametergy 1, for different values
of the numberNV of subcarriers. The number of users is equal to 4. The solid line represents the value
~asCRBL 4., WhereasCRBL 4, denotes the asymptotic CRB on channel frequency taps equal to
the righthand side of (31). Note that the valuejbhsCRBngN)l is identical for7; and T5. Indeed,
the asymptotic CRB only depends on the training sequence via the asymptotic covarianceuprafite
both training strategie$; and T, lead to the same asymptotic covariance profile. The exact CRB on
channel frequency taps is defined as the righthand side of (27). As shown by Fig. 1a, the exact CRBs
depend on the particular training stratéfy T>. Fig. 1a shows however that, as long as the nunberf
subcarriers is large enough, exact CRB correspondiriy tand 7> respectively both fits the asymptotic
CRB. This sustains the claim that both training strategies have a similar performance foNlaiidge
dotted line represents the value tisC RBy,_ , whereasCRB,, | is given by (33). Due to Theorem 2,
asCRByg, . approximates the asymptotic CRBCRB 4, of large values of.. In Fig. 1a, we observe
however that solid and dotted linese(, respectively asymptotic CRB for finiteé and its dominant term
for large L) are very close. In the present case, we hbve 8. This tends to show that the lower bound
given by Theorem 2 is relevant even for moderate values of the ldngttthe channel impulse response.

Fig. 1b compares exact and asymptotic CRB for frequency offset estimation as a funciioriNafwv,
we add the performance curves f§. Again, the solid line represen%asCRBwl, whereasCRB,,
is defined by (20). Other curves represent the exact CRBofordefined as the coefficient at the first
row and the first column ofCRBy. As expected, exact CRBs corresponding respectively to training
strategied; andT; tend to be identical wheV increases. Moreover, all the exact CRBs fit the respective
asymptotic bounds for larg&/. It is also worth noting that the exact CRB is close to the asymptotic
CRB even for moderate values of in both cases.

Another interesting point is the behavior of the presented bounds as the number of users increase.
Fig. 2 shows such a relation for both channel and frequency offset variancesTusikige depict the
curves for bothNV = 512 and N = 1024. As expected, the exact bounds fit the asymptotic ones for
both SISO and MIMO cases as long as the number of subcarriers is larger than the number of unknown
parametersie., N larger thanK (NyNrL + 1)). Particularly, in the SISO case, the difference between
the exact and asymptotic bounds is negligible even in the preserg® wders. On the other hand, the
asymptotic regime may no longer be reached in MIMO case for large number of users. For instance,
when N = 512, the exact bounds deviates from the asymptotic bounds for the number of users greater
than 16.

Similar conclusions can be drawn for all training strategies including the ones which introduce a
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correlation between antennas. Fig. 3 shows such an example for an arbitrary sefjuéhus training
strategy is defined as follows. For each usewe putsy ;(j) = 2dy x(j) where the vectody x(7)
has i.i.d. entries and where
q_ 1 1 sin(0)

1+sin®(0) | sin(g) 1
for 6 = %. As seen in Fig. 3, similar convergence behavior can be deduced;fdfor the sake of
comparison, we have also included the boundsfiprand 75 which are found to be optimal training
strategies respectively for channel and frequency estimation. The interesting point is the remarkable
difference between the bounds ®f and respective optimal training strategies. These results simply
imply that the arbitrarily selected training strategly is a successful choice neither for channel nor for

frequency offset estimation.

B. Estimation Performance

We now study the estimation performance associated to the frequency offset and channel parameters
with K = 2 users andV = 256 subcarriers. The Maximum Likelihood (ML) estimator is used on the
received signal to compute estimates of the unknown parameters. Fig. 4 represents the corresponding MSE
En[(&n1—w1)?] as a function of ratio%, for the training strategies, and7s. The MSE is compared
with the asymptotic CR%asCRBwk in solid lines. Figs. 4a and 4b illustrate the performance when
the number of transmit antennas is setNl@ = 1 or N = 2 respectively. For both training strategies,

Fig. 4 illustrates the fact that the MSE corresponding to the ML estimatg @f close to the asymptotic

CRB. This motivates the fact that the asymptotic CRB can be interpreted as a relevant indicator of the
estimation performance of practical estimators. Fig. 4a allows to compare the performance associated
with both training strategie$, and 75 and for a single transmit antenna. A gain of ab@u dB in

terms of% is observed between training stratéfyandT5. Of course, recall thafs can hardly be used

in practice as it does not allow to accurately estimate channel coefficients. However, the CRB obtained
when strategyls is used can be interpreted as a the best lower bound on estimates of the frequency
offset. The best gain which can be expected from the use of a “non-uniform” power allocation strategy
instead ofT5 is thus of2.6 dB when Ny = 1. Fig. 4b shows that this gain increases with the number

of transmit antennas. Whel; = 2, the use of spatially correlated training sequences leads to a gain of
more than5 dB compared to the case of uncorrelated training sequences.

Fig. 5 illustrates the estimation performance associated with as a function of%. SinceTs is

not relevant for channel estimation, results are given justiforSimilar to the previous case, the ML
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estimates coincide with exact CRBs and they are very close to the asymptotic bounds bgth-fot

and Ny = 2.

VI. CONCLUSION

The performance of joint data-aided estimators of frequency offsets and channel parameters for MIMO-
OFDMA uplink has been addressed in this paper. When all training sequences sent by all users are
modeled as sequences of random variables, the above CRB can be shown to converge almost surely to a
deterministic matrix as the numbar of subcarriers tends to infinity. The analysis of this asymptotic CRB
matrix allowed to conclude that for any asymptotically efficient estimator, the estimation performance
associated with parameters of a given uséecomes identical to the performance which one would have
obtain if all parameters of all other users were perfectly known. The MSE on channel parameters has
been shown to converge to zero at r%;eNhiIe the MSE on frequency offsets converges to zero at rate
%. Asymptotic performance bounds have been shown to depend on the training sequence only via its
asymptotic covariance profile. The asymptotic covariance profiles which minimize the asymptotic bounds
have been provided. It has been shown that accurate estimates of channel parameters are obtained by
transmission of spatially uncorrelated training sequences with uniform frequency power profile. Accurate
estimates of the frequency offsets are obtained by allocating most of the power of the training sequence

at the appropriate frequency and by introducing a relevant correlation between transmit antennas.

APPENDIX |
PrRoOOF OFLEMMA 1

Given k,l = 1,..., K, transmit antenna paift, '), andu = 0,1,2, we denote by;l\'i}i)l“( p.q) the

(p+1,q+ 1)th element of matrlxﬁj}1 A(t) DY Ty (wy — wk)Agf,% Defining Afy, = “5* and using

(1), the coefﬂmen(N’k / “(p,q) can be expressed as

u—+1

CJ(\%)Z“(p, q) = NeTl Z n aNk(n p)* a%g(n_q)emﬂnAflk
n=0
1 N—-1N-1 e
% (), - o Pi=ad) q]
- N §V)k( ) 85\7,3(])62 YNu(j— i+ NAfig), (36)
i=0 j=0

where for eachr, ¥y ,(z) = ;,‘j}l fj’ol n*e?™ "~ . The following proof relies on the observation that

for eachz such that < |z| < &,

Cu
[N ()] < Tl (37)
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where C, is a constant. This inequality was recently used by [11]. For the sake of completeness, we

(N—1)z

Lsinmz \sing the

provide a sketch of the proof. The claim can be easily shown)fep(z) = '™ N sin

fact that|sin ZZ| > 2 |£| for |z| < §. Whenu = 1, it can be shown that

B ? @YDz € sin (rx)
Yni(x) = N o (72 s (52 (e — ) . (38)

To obtain the desired bound (37), we first notice that the term enclosed with parenthesis in (38) is

< 2. The case

bounded. Indeed, using the triangular inequality, this term is Iess]lha}‘ei” Ni?ff(rg)

u = 2 can be treated using similar arguments. The proof is omitted due to the lack of space.

Now, using equation (37), Lemma 1 can be proved as follows. First, consider thé& easgeln this

case, our aim is to prove that for eaghy,

! * rle=oi N
Xk = N — & Z E { s\) (2)} "N =50 as. (39)

7

Note that we omitted subscriptg,¢'),u, and indices(p,q) in the above definition for the sake of
readability. In the casé = [, note thatAf; , = 0 in (36). In order to show (39), we writgx ;. » as a

sum of two termsyy k. x = X%k + Xi i Where

a 1 N % o (P9
ks = w3 (S0 b0 a0) — B [s8, 05 0)] ) 275 (40)
=0
1 N—-1N-1 wia)
t . o (Pi—a7) qJ
X?\/,k,k = N ng),k() 5&,2(])62 YNu(f — 1), (41)
=0 70
VE)

and we prove the almost sure convergence to zero of both terms. We first gtudy. In this case,
. : o : : : b1
the proof is quite similar to the proof of [11]. Again, we split the sum in (41))(%,%,c = XNkk T
X% 1 + X%, and prove that each of these terms tends a.s. to zero. Kéte, coincides with the
righthand side of (41) except that the inner sum wjris restricted to the sef! = {j =0,...,N -1/
#i,0j—i| < %}. Similarly, termsxﬂ’fm and XNM correspond to the restriction of the inner sum

of (41) to the set€? = {j =0,...,N—-1/j #i,J <j—i<N-1}and& ={j=0,....N -1/
j#i,—N+1<j—i<—X} respectively. We now prove that;’, , == 0. To that end, we show that
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[\XNM 41 < £, whereC is a constant. We first expariaUXNkk 1] as follows.

HXNkal]:% Z

(%1,92,13,4,41,52,73,Ja) EV

. DI (n) 227 (pin —gjn) K (n)
H *S%k ]n ] He N wNu( n_Zn) (42)

(

4
1 ) o) o
<7 > B | TT sWklin) sk (Gn) ] TT 1w — i) (43)
(1,82,83,14,71,J2,73,J4) EV n=1 n=1
c
<~ 44
ST H m—zn\ (44)

(%1,82,83,04,71,]2,]3,Ja) EV
wherez(™ is equal ton if = is odd, and toz* if n is even. Inequality (43) comes from the triangu-
lar inequality. Then, applying Cauchy-Schwarz inequality successively and using (37) along with the

assumption (10) leads to (44). Indeed,

4 (

H in)* 5 (in)

The sum in (42) is considered w.r.t. to all 8-uplét, i, i3, %4, J1, 2, j3,J4) € V Where) denotes the
set of values ofiy,...,i4,71,...,j4 such thati) for eachn = 1,....4, j, € 8} and such thati)
each value in the 8-uplet appears at least twice. This restriction of the sum is due to the fact that the
expectation in (42) is zero as soon as there exist one value in the 8tupbgt is, i4, ji1, j2, J3, ja) Which
appears only once. This is nothing but a direct result of the independence of the training symbols sent
at different subcarriers. For instance, some terms of the sum (44) correspond to the situation where
i1 = 19,13 = 14, J1 = j2,j3 = j4. The modulus of the corresponding term is given by

2 2

1 !
N4ZZU1—21!2\]3—23\2:N4 ZZU—ZP —N4 ZZM? Sﬁ

1,13 J1,J3 =0 je&} i=0 [#0

whereC"” is a constant. Other terms can be treated similarly. After some algebra, we obtaiti|sHd. , |*] <
% Using the Borel-Cantelli Lemma, this implies tha?;,lkk 2%, 0. By the same approach and the fact
that+y,, is an N-periodic function,xl]’\’,k  and XNk 1 can be shown to converge almost surely to zero.

The proof of the a.s. convergence to zerof, , is similar. It can easily be seen using assumption (10)
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thatE[\Xf,‘V,M]‘*] can be written asg; times (less thany N2 bounded terms. ThUEHX?V,k,k\Ll] < &,
whereC' is a constant. This completes the proof of (39).

The casek # | can be treated using similar arguments. Due to the factsthal is an N-periodic
function, we may assume without restriction tHan\ f;, in (36) verifies—— < NAfy < . We now
put CJ(\';:Z}’“(p, q) = C](\}’),C’lJrC](\?’),CJJrCﬁ),CJ Wheregj(\}?k?l correspond to the righthand side of (36) except that
the inner sum w.r.tj is restricted toj € F;, where foreachi =0,..., N-1, 7, ={j=0,...,N—-1/
lj —i+ NAfy| < I} Similarly, (1(\?)“ and (ﬁ)kl respectively correspond to an inner sum w.r.t. indices
j verlfymg <|lj—i+ NAf < N—1+— and N+1— 5 <l|j—i+ NAfix]| < —5. In order
to prove that.{N’k’l “20, it can be shown as in (44), by expandlﬁg|CNkl| | and using (37), that

B¢l N4 > > HM|Jn—zn+NAfm|> (45)

11,92,83,84 J1,---,Ja n=1

where the outer sum is restricted to indides. . ., i4 such that each value ifi; ...i,) appears at least
twice (typically,i; = i, i3 = i4), and where the inner sum is the restrictionaf x ... x F;, such that,
again, each value dfjy, ..., js) appears at least twice (typicallyy = jo, j3s = j4). Function M(|z|) is
defined aslﬁl| for = # 0 and M(0) = 1. By studying each combinations of su¢h. .., i4, j1,..., 4, it
can be shown as above thEﬂCNkl] ] < £.. This proves tha(Nkl 2 0. Terms(ﬁ?m and C](\i),ﬁl can

be treated using the same approach.

APPENDIX I

PROOF OFPROPOSITION1

As asCRB,, = %‘: the minimization ofasCRB,, is equivalent to the maximization of,. Using

the definition of the Lebesgue integral [16], coefficieptdefined by (16) also coincides with

Nr

€
= ) +sup Y inf [T RS(HT oAk ()] 46
T = 7 sl b 2 2 k()7 pr(Ai)hy (f) (46)

r=1

where the supremum is taken w.r.t. all decompositioAs); of interval [0, 1]. Let (4;); be such a
decomposition. We first note thaf.(A4;) is a non-negative Hermitian matrix. Based on this remark, we
now make use of the following lemma.

Lemma 3:Denote by(x,),_; y, &sequence aVz complex column vectors of siz&¥r x 1. Denote
by Anaz the largest elgenvalue of matrEr %%, and byv the corresponding eigenvector. For each
Nr x Np non-negative Hermitian matrid,

R
D % Mx, < Apaatt (M), (47)
r=1
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with equality if and only if (iff) M has the formM = 3 v’ whereg is any non-negative real number.
The proof of the above lemma is omitted due to the lack of space. For each infegernow use
Lemma 3 withM = p,(4;). For eachf < [0,1], define Ay ;4. (f) as the maximum eigenvalue of
[Efjl 3 )(f)Hh,(;)(f)} and £{" = arg max(Mmaz(f)). Then, using Lemma 3, we have

ngth 25 D NCCTERITSE TR
<ZU% )M maz (F7) (49)

:m%@w»Mmmﬁ%

Equation (48) holds with equality iff for eacd; and for eachf, p,(4;) has the formp,(4;) =
B(ANvL(five(f)™, where vy (f) represents the eigenvector associated With..(f). As a con-
sequence, equation (49) holds with equality j)ffdecomposition(4;); contains the one element set
Y, i) o)) = SO W™ wherew ) = vy (1), andiii) py(Ai) = 0 if
f,iOpt) ¢ A;. Considering the supremum of the lefthand side of (48), we obtainthat N—THthQ +
60 (pp ([0, 11)) Memaa (£ with equality iff py, has the formp, = 8(f0) (D0 5 oo - Finally,
introducing the power constraint (21, < - [[hg[|* + (P — e))\k,mm(fk"pt ) with equality iff p, =
(opt)  (opt)
(Pr — G)I/k v, (5f,iopf,>.
APPENDIXIII

PROOF OFTHEOREM 2

We study the behavior of the righthand side of (31) as the leiigtsf the channel increases. It is
worth keeping in mind that (31) is the limit of the normalized CRB associated with the desired channel
coefficients when the numbe¥ of subcarriers tends to infinity. Here, we further study the case where
L (in addition to N) tends to infinity. In this paragraph, the woesymptoticthus refers to the case
when L tends to infinity. The main task is the study of the asymptotic behavior of the trace of matrix
R;l(INT ® Ty). For this, we make use of classical results on the behavior of large Toeplitz matrices
[18] [20] [21]. More precisely, the proof requires the use of results on l@igek-Toeplitz matrices,
which are direct generalizations of [18] (see [22] and references therein). Note however that the proof
of Theorem 2 requires slightly more general results than those of [22].

Firstly, we study separately the asymptotic behavior®efand T,. Secondly, we deduce from this
the asymptotic behavior of @®; ' (In, ® Ty)). We denote byP(f) the density of complex matrix-

valued measurge;, w.r.t. the Lebesgue measure and By’“)(f) the element of theth row and the
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uth column of P, (f). We assume that each componérif’“)(f) is a bounded function of0, 1]. For

eacht,u = 1,..., Np, we denote byR,(f’“) the L x L block of coordinatest, «) of matrix Ry, i.e,
R, = (R(t’”)) . We denote byF the L x L Fourier matrixF = (i ‘2”%) .
k ko ) tu=t,. Nr W % VL© 4.j=0,...L—1

Classical results on the asymptotic behavior of large Toeplitz matrices [18] imply that rRafoﬁQ is

asymptotically equivalent to matri@,(f’“) defined by
e\ — FATITF, (50)

whereTT{""") = diag (P,gt’“)(o), Py, ,P,Et’“)(%)). By asymptotically equivalentve mean that
spectral norms oRff’“) and @,(f’“) are both bounded as — oo and that the normalized Frobenius norm
R — @ of R — @' tends to zero a% tends to infinity [21]. We recall that the normalized
it verifies | X[2 = L5757 )

From the above claim, it is straightforward to show th&f is asymptotically equivalent t®, =

Frobenius norm|X| of a givenn x n matrix X = (z;)

(@,(f’“)) _ as L — oo. Based on (50), it is useful to note th@t, can be written as
t,’ll/: ey VT
O; = (I, ® F") I (Iy, ® F), (51)

whereII; = (HS’“)> . Each bIockaf’“) of Il is a diagonal matrix. “Renumbering” the

t,u:l,...,NT

elements oflI; as in [22], it is straightforward to show th&l; is equivalent to a block diagonal matrix

up to a permutation of its rows and columns:

m, — Q7 diag(Pk<0>7...,Pk<L; 1)) Q, (52)

whereQ is a permutation matrix. Since our aim is to study the asymptotic behaviBr,o6fIy, ® Ty),

the most natural approach would consist in studying the asymptotic behavRJg‘]ofand T}, and then

to deduce the asymptotic behavior of the whole desired matrix. Unfortunately, in certain contexts, matrix
R may be ill-conditioned ad. tends to infinity. A typical example is the case where uUseloes not
modulate any subcarrier inside a whole frequency interval. In this case, funttienP(f) is zero

inside this interval. In such cases, it can be shown using the same kind of arguments than in [20] that
matrix R,;l becomes singular a6 — . In order to overcome this problem, we consider an arbitrarily
small real numbet > 0. Following the approach of [11], we define the “pseudo-inverse” function as the
function F. defined for any non-negative real numheby F,(z) = 1 if © > ¢, F.(z) = 0 otherwise.

For any non negative Hermitian matrX = V¥ diag(\1,...,\,)V whereV is unitary, we generalize

the above pseudo-inverse function By(X) = VHdiag(F.()\1), ..., F.(\,))V. In the sequel, instead

of studyingR; ' (In, ® Ty) for large L, we rather study matriF,(R)(In, ® Ty). Following [20], it
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is straightforward to show thaf, (Ry) is asymptotically equivalent té,(®;) as L — oo. Using (51)
and (52), we obtain

L—-1
L

Fe<@k>=(1NT@FH)QTdiag(ﬂ(Pk(o»,...,F€<Pk< >>)Q<INT®F>. (53)

We now study the asymptotic behavior of matiy, = A% ka e(fle(f)df. Matrix T is anL x L
Toeplitz matrix. Using again [18] along with the fact that functifs) ( f) is bounded, we immediately ob-
tain thatT}, is asymptotically equivalent to matriR” YF whereX = A-diag(Zp, (0),...,Zp, (5:1)).
As a consequencd,;, ® T}, is asymptotically equivalent to

diag(F”YF,...,FI/YF) = (Iy, 9 F7) (In, ® Y) (In, ® F). (54)

Permuting rows and columns of in the same way as that &1, we obtainly, Y = Q” (Y ® Iy,) Q,
whereQ is the same permutation matrix found in (53). Plugging this equality into (54) and putting (53)
and (54) together, we conclude that matfiX®;,) (In, ® (F¥YF)) coincides with the following matrix

1 . L-1 L-1
¥ =+ (v, @ F) Q' diag (ka<o>Fe (PL(0)).. .. Ip, () Fe(Pr(~— >>) Q(Iy, ®F).
ConsequentlyF(Ry)(In, ® Tk) is asymptotically equivalent to the above matrix. Classical results [18]
finally yield
lim —tr (F,(Ry)(Ty, ® T4)) = lim ~tr (@)
oo L e\ ) (e @ L I ey
L-1 ]
= Jim g ST (Rl
—+ [ wEEnn
k ,Dk
I\ (1)
= E. AP ()dr, 55
a2, P (55)

whereA,gl)(f) < < /\,(CNT)(f) are the eigenvalues @f;(f). We now use the fact that for a given (finite)
value of L, Ry, andT, are positive definite Hermitian matrices. This implies théﬂgl(INT ® Ty)) =
tr (Fe(Ry)(In, ® Ty)). Using (31) and (55), we finally obtain

lim inf% <lim inf ]]\>;E {

L—oo N—oo

0'2 N
INk— QN,kHQD > A]ZR Z/D F€<)‘](<;t)(f)>df' (56)
t=1 7/ Dx

The above equation holds for arbitrarily small valueseofDue to the assumptions of Theorem 2,

—L—df exists. Therefore, the righthand side of (55) has a limit when 0.
Pr ()

This limit coincides with=z Y [ mdf. This proves Theorem 2.
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Fig. 4. MSE of the ML estimator of; and CRB as a function of} — N = 256, K =2,
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