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Abstract— In Ultra-Wide Band (UWB) communications based
on Time Hopping (TH) Impulse Radio, one of the most frequently
studied detectors is the correlation detector also called Single
User Matched Filter (SUMF). Often the Multi-User Interference
(MUI) at the output of this detector is modeled as a Gaussian
random variable. In order to justify this assumption, the condi-
tions of validity of the central limit theorem have to be studied
in the asymptotic regime where the number of interferers and
the spreading factor grow toward infinity at the same rate. An
asymptotic study is made in this paper based on the so-called
Lindeberg’s condition. Non synchronized users sending their
signals over independent multi-path channels and having possibly
different powers are considered. In the situation where the limit
distribution of the MUI is Gaussian, closed form expressions for
the Signal to Interference plus Noise Ratio are given for TH Pulse
Amplitude Modulation (Th-PAM) and Pulse Position Modulation
(TH-PPM) UWB transmissions.

I. PROBLEM FORMULATION

Let us begin by considering a TH-PAM UWB system [1]. K

being the number of users, we denote by a
(K)
k,m the information

symbol of user k at symbol interval m, having its values in
the set {−1, 1}. This symbol is repeated over Ns frames of
duration Tf = NhTc each, where Tc is the so-called chip
time interval (Ns is therefore the repetition factor, and Nh

is the frame length in chips). The time hopping code for
this user is represented by the sequence (c

(K)
k,l )l∈Z which

elements are discrete random variables equally distributed on
{0, . . . , Nh − 1}. The random variables {c(K)

k,l } k=1,...,K

l∈Z

are
furthermore assumed independent. In the case the receiver is
synchronized on user k, the contribution of this user to the
received signal will be expressed as

y
(K)
k (t) =

√

E(K)
k

Ns

∑

m

a
(K)
k,m

Ns−1
∑

r=0

g
(K)
k (t − mNsTf − rTf − c

(K)
k,mNs+rTc) (1)

In this expression, g
(K)
k (t) is the composite channel associated

to user k. It is written g
(K)
k (t) =

∑D

l=1 γ
(K)
k,l w(t − τ

(K)
k,l )

where w(t) is the unit-energy basic pulse waveform with a
time support included in [0, Tc), γ

(K)
k = [γ

(K)
k,1 , . . . , γ

(K)
k,D ] is

the vector of random path amplitudes of the radio channel
that carries the data of user k, τ

(K)
k = [τ

(K)
k,1 , . . . , τ

(K)
k,D ] is the

vector of the corresponding random path delays, and D is a

uniform upper bound on the number of paths. We assume that
for a given k, the zero-mean random variables {γ(K)

k,l }l=1,...,D

are decorrelated and that
∑D

l=1 E
[

γ
(K)
k,l

2]

= 1. In these

conditions, it is easy to see that E (K)
k is the energy per

received symbol for user k. We further assume that E (K)
k are

uniformly bounded, and that the K vectors {h(K)
k }k=1,...,K

where h
(K)
k = [γ

(K)
k , τ

(K)
k ] represents the kth radio channel,

are independent but not necessarily identically distributed. The
impulse responses g

(K)
k (t) are also assumed causal and the

delays τ
(K)
k,l are uniformly bounded with probability one. As

a consequence, the time supports of these impulse responses
lie in the interval [0, LTc) where L is a uniform upper bound
with probability one on the lengths of these time supports in
chip intervals.
Assuming that the receiver is perfectly synchronized on user
1, the received signal expresses as

y(K)(t) = y
(K)
1 (t) +

K
∑

k=2

y
(K)
k (t − ∆

(K)
k ) + v(t) (2)

where v(t) is a Gaussian noise independent of all other
random variables and having a spectral density of N0/2 in
the frequency band of w(t). The delay ∆

(K)
k accounts for the

absence of synchronization between user k and user 1. It will
be assumed that the delays {∆(K)

k }k=2,...,K are independent
and uniformly distributed over the interval [0, NsNhTc). In
the sequel the superscript (K) will be often dropped when
denoting the quantities associated to user 1.
The impulse response g1(t) being perfectly known at the
receiver, the output of the SUMF for symbol a1,0 is

x =

√

E
Ns

Ns−1
∑

r=0

∫

y(K)(t)g1(t − rNhTc − c1,rTc)dt , (3)

and the decided symbol is â1,0 = sign(x). By plugging (1) and
(2) into (3), the SUMF output can be written x = xu +xISI +
xMUI + xAWGN, where xu, xISI, xMUI and xAWGN are the
”useful” term, the Inter-Symbol Interference term, the Multi-
User Interference term, and the AWGN term respectively. In
particular, xMUI =

∑K

k=2 ξ
(K)
k where ξ

(K)
k is the contribution

of y
(K)
k (t) to the SUMF output.

In the sequel, we consider the asymptotic regime where the
spreading factor N = NhNs and the number of users K grow



toward infinity in such a way that K/N → α, a quantity that
we designate by the system load. Notice that the uniform upper
bound L on channel lengths measured in chip intervals remains
constant. This means in practice that our analysis is suited to
situations where the Inter-Symbol Interference is negligible
thanks to the choice of a large spreading factor.

II. ASYMPTOTIC ANALYSIS

In the remainder, all probabilities are conditioned on a1,0

and h1. It can first be shown that as Nh → ∞, xu converges
in probability toward E1a1,0

∫

|G1(f)|2df where G1(f) is
the Fourier transform of g1(t), and furthermore, that xISI

converges in probability to 0. Concerning the AWGN term
xAWGN, one can easily notice that conditionally to the code
vector [c1,0, . . . , c1,Ns−1] associated to user 1 for his data
symbol a1,0, this term is Gaussian. It can also be proved that
in the asymptotic regime as Nh → ∞, the unconditional dis-
tribution of xAWGN is Gaussian with zero mean and variance
σ2

AWGN = N0

2 E1

∫

|G1(f)|2df .
Let us consider now the MUI term. We shall study two modes
for the asymptotic regime where N = NsNh → ∞ while
K/N → α. We first consider the case where Ns is kept
constant while Nh → ∞, and then the case where both these
parameters grow toward infinity in such a way that Ns

Nh
→ ρ

where ρ is a constant ρ > 0. The first case is treated by the
following proposition :

Proposition 1: Assume Nh → ∞ while Ns is kept
constant. Then as K → ∞ and K/N → α, xMUI does not
converge in distribution toward a Gaussian law.

In our setting, the so-called Lindeberg’s condition

∀ε > 0, lim
K→∞

K
∑

k=2

E
[

ξ
(K)
k

2
1
|ξ

(K)
k

|≥ε

]

= 0 (4)

appears to be a necessary and sufficient condition for xMUI

to converge in distribution toward a Gaussian law. It can
indeed be shown that this condition is not satisfied under the
assumptions of proposition 1.
We now turn to the second case :

Proposition 2: Assume that Ns

Nh
→ ρ > 0, that the empiri-

cal mean of the energies E (K)
= 1

K

∑K
k=1 E

(K)
k converges to

a limit E as K → ∞, and that the random variables ‖γ(K)
k ‖2

are uniformly integrable, i.e., that

lim
a→∞

sup
K

max
k=1,...,K

E
[

‖γ(K)
k ‖2

1
‖γ

(K)
k

‖>a

]

= 0 . (5)

Then xMUI converges in distribution toward a Gaussian ran-
dom variable. The Signal to Interference plus Noise Ratio
(SINR) at the output of the SUMF detector converges in these
conditions to

βPAM =
E1

∫

|G1(f)|2df
N0

2 + αEηPAM

(6)

where ηPAM is given by equation (7) in which W (f) is the
Fourier transform of w(t).

Here also, the proof relies on Lindeberg’s condition. It ap-
pears from this proposition that at high spreading factors, the

Gaussian character is obtained through repetition. However,
a large value of the repetition factor Ns results in a large
value of ρ, and thus in a high MUI variance, as shown by the
expression of the numerator of ηPAM. In other words, a large
repetition factor reduces the multiplexing ability of the UWB
access technique.
Notice that the technical assumption (5) is not restrictive in
practice. In particular, it is satisfied if the vectors γ

(K)
k are

identically distributed.

III. THE TH-PPM CASE

In the Time Hopping - Pulse Position Modulation (TH-
PPM) case (see [2], [3], [4]), equation (1) is replaced by

y
(K)
k (t) =

√

E(K)
k

Ns

∑

m

Ns−1
∑

r=0

g
(K)
k (t − mNsTf − rTf − c

(K)
k,mNs+rTc − da

(K)
k,m) ,

where the symbols {a(K)
k,m} have their values in {0, 1} and d

is the time shift used for position modulation. The description
of the received signal is otherwise unchanged. The output of
the SUMF for the symbol a1,0 expresses here as

x =

√

E
Ns

Ns−1
∑

r=0

∫

y(K)(t)p1(t − rNhTc − c1,rTc)dt .

where p1(t) = g1(t) − g1(t − d), and the decision rule is
â1,0 = 0 if x > 0 and â1,0 = 1 otherwise. Here also we have
x = xu + xISI + xMUI + xAWGN where the terms of the RHS
member play the same role as in section I.
We shall just give the main results concerning the TH-PPM
case. As for the TH-PAM case, when Nh → ∞ and Ns is kept
constant, the MUI term xMUI does not converge in distribution
to a Gaussian random variable. On the other hand, it does if
N → ∞, Ns/Nh → ρ > 0, and K/N → α. The expression
of the limit SINR βPPM at the output of the SUMF is then

βPPM =
E1

∫

|G1(f)|2(1 − cos 2πfd)df

N0 + 2αEηPPM

where ηPPM is given by (8).

IV. SIMULATIONS

Simulations are carried out in the context of TH-PAM
transmissions. In figures 1 and 3, the solid line plots indicate
the Bit Error Rate (BER) versus 2Eb/N0 that result from
the Gaussian approximation in the asymptotic regime. More
precisely, βPAM being the limit SINR predicted by equation
(6), the BER will be Q(

√
β) if the Gaussian approximation

is valid. Here Q(.) is the Gaussian tail function. The dashed
curves are the ones obtained by simulation.
The pertinence of the asymptotic regimes described by propo-
sitions 1 and 2 are first tested on transmissions over single path
channels. The spreading factor is N = 200 and the number
of users is K = 100, resulting in a load of α = 0.5. It is
further assumed that E (K)

1 = · · · = E(K)
K = E . Figure 1 shows

that when Nh = 200 and Ns = 1, then the transmission



ηPAM =

2ρ
3

1
T 2
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Fig. 1. BER for different values of Ns,Nh. Single path channels

Fig. 2. MUI histograms, Single path. Left : Ns = 1, Nh = 200, right :
Ns = 8, Nh = 25.

conditions meet practically the assumptions of proposition
1, and therefore the Gaussian approximation is not valid.
However, when Ns = 8 and Nh = 25, a situation modeled
in equation (6) by ρ = 0.32, then the asymptotic regime of
proposition 2 is practically attained. The empirical histograms
of the random variable xMUI corresponding to these two cases
are shown on figure 2. The centered Gaussian densities with
variances E

[

x2
MUI

]

are also shown on this figure.
Figure 3 represents simulation results for transmissions over

multi-path channels. The channel model is the so-called mo-
dified Saleh-Valenzuela model described in [5]. Channels with
a RMS delay spread of 5ns are considered. The basic pulse
waveform is the second derivative of a Gaussian pulse with
a pulse shape parameter of 0.4ns [6]. The spreading factor
N = 300 and the chip period Tc = 2ns are chosen, resulting
in a data rate of 1.67 Mbit/s per user. The figure shows that
when Nh = 300 and Ns = 1, then the Gaussian approximation
is not valid. However, when Ns = 3 and Nh = 100, then the
detector performance can be predicted reliably by the result
of proposition 2. Like for single path channels, the histograms
of xMUI are also shown.
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Fig. 3. BER for different values of Ns, Nh. Multi-path channels

Fig. 4. MUI histograms, multi-path. Left : Ns = 1, Nh = 300, right :
Ns = 3, Nh = 150

These experiments show that the condition Ns → ∞ impli-
citly required by proposition 2 is somehow theoretical. In most
practical situations, the asymptotic regime of this proposition
is attained for small values of Ns.
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