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ABSTRACT

In this paper, we revisit recent papers of Honig-Xiao and Trichard
et al. devoted to the asymptotic analysis of reduced rank Wiener
filters. Appropriate connections between the asymptotic behavior
of the Signal to Noise Ratios (SNRs) at the outputs of these filters
and the theory of orthogonal polynomials for the power moment
problem are established. Using some classical results of this the-
ory, it can be established in particular that the reduced rank filter
output SNR converges exponentially in the filter rank toward the
full rank Wiener filter output SNR. The convergence rate is given.
Interestingly, it depends only on the support of the limiting eigen-
value distribution of the observation covariance matrix, but not on
its particular form.

1. INTRODUCTION

In multidimensional signal processing, it is often useful to approx-
imate the Wiener filter by a reduced rank version of this filter. The
latter acts on a projection of the received signal on a judiciously
chosen small dimensional subspace. The use of a reduced rank fil-
ter can be motivated by complexity constraints or, in an adaptive
setting, by fast convergence requirements. It is then of major in-
terest to quantify the SNR loss at the output of this filter due to its
non optimum character.
The Krylov subspaces, widely used as projection subspaces, will
be considered in this paper. To fix our ideas, let us begin with the
generic signal model

y = hs+ x (1)

where y is the received N × 1 signal, s is the unit-variance scalar
signal to be estimated and x is a signal decorrelated with s. The
N × N covariance matrix of x is denoted RI and will be as-
sumed invertible. Recall that the MMSE receiver is described by
the equation sMMSE = hHR−1y where R = hhH + RI is the
received signal y covariance matrix. This receiver will be called
in the sequel the full rank MMSE receiver. Its output SNR that we
index by the number of dimensions of the received signal is given
by the standard expression

β(N) = hHR−1
I h . (2)

The nth Krylov subspace associated to the pair (RI ,h) is
the subspace of CN spanned by the columns of Kn =
[h,RIh, . . . ,R

n−1
I h]. The n-stage reduced rank Wiener filter

considered in this paper is the MMSE estimator of s operating on
the transformed signal ỹn = KH

n y.
The motivation behind choosing the Krylov subspaces and the im-
plementation of the subsequent filters are discussed in a number of

works (see [5] and [4]). In this paper, we focus on the convergence
of their output SNR toward that of the full rank MMSE receiver.
The performance of these filters has been studied by Honig and
Xiao ([5]) and Trichard et. al. ([9], [8]) in the context of a CDMA
transmission. A signal model considered in these papers writes

y = Ws+ v . (3)

s = [s1, . . . , sK ]T is the K × 1 symbol vector where K is the
number of users, W is the N × K code matrix, and v is the
classical noise with covariance matrix ω2IN . The purpose is to
estimate the symbol s1, so this equation appears as a particular
case of (1) : if we partition W and s as W = [w U] and
s = [s1 sTI ]

T , then we replace h by w and x by UsI + v. These
authors assumed that the code matrix W is a random matrix
with centered i.i.d. elements having a variance of 1/N , and
studied the performance of the reduced rank filter in the ”large
system” regime where N tends to infinity in such a way that K/N
converges toward a constant α. They established that in this case,
the Signal to Interference plus Noise Ratio (SINR) at the output
of the reduced rank Wiener filter presented above expresses as
a continued fraction expansion in n and concluded for the rapid
convergence of this SINR toward the full rank SINR.

The purpose of this paper is to precise this convergence in a
broad number of situations where reduced rank filtering is used.
We shall also consider transmission models with large dimensions
and do our study in the asymptotic regime where N → ∞.
Getting back to the general model (1), the main assumption we
need to formulate concerns the quantities s

(N)
k = hHRk

Ih.
Precisely, these are required to converge toward the moments of
some probability measure carried by a compact interval [δ1; δ2]
in (0;∞). Our results rely then on the theory of orthogonal
polynomials for the so called power moment problem.
Section 2 recalls some mathematical results relative to these
polynomials. In section 3, the SNR convergence is studied. Some
examples are then given in section 4.

2. ORTHOGONAL POLYNOMIALS FOR THE POWER
MOMENT PROBLEM

In the sequel, it will be assumed that h is a unit norm vector and
that the Krylov matrix Kn has a full rank n for each n. It can
be easily shown that the SNR β

(N)
n at the output of the n-stage

reduced rank Wiener filter is

β(N)
n = hHKn

(
KH
nRIKn

)−1

KH
n h . (4)



We denote by C
(N)
n = [c

(N)
0 , . . . , c

(N)
n−1] the orthonormal basis ob-

tained by a Gram-Schmidt orthogonalization of the column space
of Kn. Then, β(N)

n can be also be written as

β(N)
n =

[(
C(N)
n

H
RIC

(N)
n

)−1
]
1,1

(5)

where the notation [X]i,j designates the entry (i, j) of a matrix X.
It is useful to recall that, due to the particular structure of Kn, the

positive matrix C
(N)
n

H
RIC

(N)
n is tridiagonal, i.e.

C(N)
n

H
RIC

(N)
n =



a
(N)
0 b

(N)
0 0 . . . 0

b
(N)
0 a

(N)
1 b

(N)
1 0 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . b
(N)
n−2

0 . . . 0 b
(N)
n−2 a

(N)
n−1


.

(6)
As remarked by Honig and Xiao, it is possible to have a better un-
derstanding of the significance of the right hand side of (5) if we
assume that N → +∞. Recall that it will be assumed throughout
the paper that each coefficient hHRk

Ih converges towards a cer-
tain limit sk when N → ∞ (note that s0 = 1 because we have
assumed that ‖h‖ = 1 for each N ). We first mention that the pos-
itive definite n × n matrix KH

nKn is a Hankel matrix with (k, l)
entries given by hHRk+l−2

I h. Because KH
nKn is a positive defi-

nite Hankel matrix for each n ≤ N , the n × n Hankel matrix Sn
defined by

[Sn]k,l = sk+l−2, k, l = 1, . . . , n

is positive. Similarly, the (n − 1) × (n − 1) Hankel matrix
KH
n−1RIKn−1 is positive definite, and the Hankel matrix S̃n−1

defined by [
S̃n−1

]
k,l

= sk+l−1, k, l = 1, . . . , n− 1

is also positive. Consequently (see e.g. [1, p. 76]), the sequence
(sk)k≥0 coincides with the power moment sequence of a certain
probability measure σ (recall that s0 = 1) carried by R+. In other
words, it exists a probability measure σ such that

sk =

∫ ∞
0

λkdσ(λ)

for k ≥ 0. In the following, we assume that this measure is unique
(the moment problem is called determinate in this case, see [1]),
that it is carried by a compact interval [δ1, δ2] with 0 < δ1 < δ2 <
∞, and that it is absolutely continuous with an almost everywhere
strictly positive (Radon-Nykodym) derivative on [δ1, δ2]. When
the measure is not absolutely continuous, weaker results can be
obtained (see [6]). This case will be assessed in a forthcoming
paper.
It is classical to associate to the sequence (sk)k≥0 (or equivalently
to the measure σ) the scalar product on the space L2(σ) defined
by

< f(λ), g(λ) >=

∫ δ2

δ1

f(λ)g(λ)dσ(λ) .

By the very definition of sequence (sk)k≥0, this scalar product
verifies

< λk, λl >= lim
N→∞

hHRk+l
I h = sk+l . (7)

In the following, we denote by (pk(λ))k≥0 the orthonormal poly-
nomials obtained by a Gram-Schmidt orthogonalization of the vec-
tor space generated by {1, λ, . . . , λn−1, . . .). The properties of
these polynomials are well established. We first recall some of
their useful basic properties (see e.g. [1], [7])

Proposition 1 (The three terms recursion relation) The family
of polynomials {pk} satisfies the relation

λpk(λ) = bk−1pk−1(λ) + akpk(λ) + bkpk+1(λ) (8)

where coefficients ak and bk, defined by ak =< λpk(λ), pk(λ) >
and bk =< λpk(λ), pk+1(λ) > are positive. The reccurence
formula is initialized by p0(λ) = 1 and p1(λ) = λ−a0

b0
, with

a0 = s1.

This relation implies that for each n, the n×nmatrix which (k, l)
entry is < λpk−1(λ), pl−1(λ) > coincides with the positive defi-
nite tri-diagonal matrix Tn(σ) given by

Tn(σ) =



a0 b0 0 . . . 0
b0 a1 b1 0 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . bn−2

0 . . . 0 bn−2 an−1

 . (9)

Proposition 2 For each k, the zeros (λn,k)k=1,...,n of pk(λ) are
simple (and thus real) and belong to [δ1, δ2]. Moreover, the
(λn,k)k=1,...,n coincide with the eigenvalues of matrix Tn(σ), the
corresponding unit norm eigenvectors being vectors

1

[
∑n−1
l=0 (pl(λn,l))2]1/2

[p0(λn,k), . . . , pn−1(λn,k)]
T .

We need to introduce the second kind orthogonal polynomi-
als. The second kind orthogonal polynomials (qk(λ))k≥0 are de-
fined from the (pk(λ))k≥0 by

qk(λ) =

∫ δ2

δ1

pk(λ)− pk(u)
λ− u dσ(u) (10)

It is easily seen that deg(qk) = k − 1, and that q0(λ) = 0 and
q1(λ) = 1

b0
. Moreover, the second kind polynomials verify for-

mula (8) with the same coefficients.
Let Gσ(z) the Stieltjes transform of measure σ :

Gσ(z) =

∫ δ2

δ1

1

λ− z dσ(λ)

Gσ is of course analytic in C−[δ1, δ2]. Moreover, Im(Gσ)(z) > 0
if Im(z) > 0, and thus belongs to the so-called Nevanlinna class.
It is clear that for |z| large enough, Gσ(z) can be written as

Gσ(z) = −
∞∑
k=0

sk
zk+1

It is well known that − qn(z)
pn(z)

is a Padé approximant of Gσ(z) in
the sense that

− qn(z)
pn(z)

= −
2n−1∑
k=0

sk
zk+1

+ o(z−(2n))



Moreover, − qn(z)
pn(z)

converges uniformly towards Gσ(z) on com-
pact subsets of C− [δ1, δ2]. We finally note that Gσ(z) admits the
continued fraction expansion

Gσ(z) =
−1

z − a0 − b20

z−a1−
b21

z−a2...

(11)

and that the rational approximant − qn(z)
pn(z)

coincides with the trun-
cation of the above expansion up to order n.

3. APPLICATION TO THE CONVERGENCE OF
REDUCED RANK WIENER FILTERS.

It is clear that (pk)k=0,...,n−1 are the polynomial counterparts
of the limits when N → +∞ of the orthonormal vectors
c
(N)
0 , . . . , c

(N)
n−1. In particular, using relation (7), it is easily

checked that the tridiagonal matrix Tn(σ) coincides with the limit

of matrix C
(N)
n

H
RIC

(N)
n . This remark allows to precise the

asymptotic behavior of the SINR β
(N)
n when N →∞.

Proposition 3 For each n ≥ 0, the SINR β
(N)
n converges when

N →∞ toward βn given by

βn =
[
Tn(σ)

−1]
1,1

(12)

Using the eigenvalue/eigenvector decomposition of Tn(σ) in con-
junction with certains properties of pn(λ) and qn(λ), it can be
shown that

Proposition 4 βn coincides with − qn(0)
pn(0)

.

βn thus converges to the term β = Gσ(0) given by

β =

∫ δ2

δ1

1

λ
dσ(λ)

which also represents the limit as N → ∞ of β(N) given by
(2). The study of the convergence of the reduced rank Wiener fil-
ters thus reduces, in the asymptotic regime, to the convergence of
− qn(0)
pn(0)

toward Gσ(0). The following theorem is the main result
of this paper.

Theorem 1 Let µ = δ2+δ1
δ2−δ1

and denote by φ the term defined by

φ =
1

µ+
√
µ2 − 1

Then, the error en = β − βn satisfies for n large enough the
inequality

Aφ2n ≤ |en| ≤ Bφ2n (13)

where A and B are two strictly positive constants.

This result follows directly from the fact that (see e.g. [7] for the
case of measures carried by [-1, 1])

|pn(0)| ∼ Cφ−n if n→∞ (14)

from some constant C, and that δ−1
2 |pn(0)|−2 ≤ |en| ≤

δ−1
1 |pn(0)|−2 for each n (see e.g. [6] and [2]).

The theorem shows that the convergence of βn towards β
is of exponential type, and that the larger δ2

δ1
is, the smaller is

the convergence rate. It is also quite interesting to remark that
the convergence rate does not depend on the particular form
of the measure σ but on its support only. One should however
notice that in practice, the values of n for which the asymptotic
regime (13) is reached certainly depends on σ: (13) holds
if n is chosen in such a way that |pn(0)|

φ−n is close enough from
the constantC. This point will be developed on an example below.

4. EXAMPLES

The CDMA Equal Power Case
As a first example, we treat the case presented in the introduc-
tion and considered by Honig and Xiao, and compute in closed
form the corresponding orthogonal polynomials pn(x). The pur-
pose is to assess the values on n for which the SNR loss en(0) =
Gσ(0) + (qn(0)/pn(0)) = β − βn attains the asymptotic regime
in n. Recall that this regime is described by equations (14) and
(13).
We recall that in this context (see section 1) , h coincides with w
and RI = UUH+ω2IN where W = [wU] is a randomN×K
matrix with 1/N variance i.i.d. entries. The measure σ defined by∫
λkdσ(λ) = limN→∞,K/N→α hHRk

Ih is the limit eigenvalue
distribution of RI , i.e., the so-called Marchenko-Pastur distribu-
tion. We only consider here the case α ≥ 1, because otherwise, σ
is not absolutely continuous (σ has a mass at ω2) so that the results
of this paper cannot be applied. In this case, δ1 = ω2+(

√
α−1)2

and δ2 = ω2 + (
√
α + 1)2. We recall that the Stieltjes transform

Gσ(z) of this distribution is solution of the equation

Gσ(z) =
−1

z − ω2 − α
1+Gσ(z)

. (15)

Moreover (see e.g. [5] and [9]), the sequence (an)n≥0 is given by

a0 = ω2 + α, an = a = ω2 + α+ 1 for n ≥ 1 (16)

while sequence (bn)n≥0 is reduced to bn = b =
√
α for each

n. It turns out that in this particular case, it is possible to express
pn(0) in closed form, and thus to check for which values of n the
inequality (13) holds.

In order to evaluate pn(0), we denote by Gσ̃(z) the function
defined by the continued fraction expansion

Gσ̃(z) =
−1

z − a− b2

z−a− b2

z−a...

(17)

Using (11) and (16), it is easily seen that Gσ(z) and Gσ̃(z) are
related by the relation

Gσ(z) =
−1

z − a0 + b2Gσ̃(z)
(18)

Moreover, Gσ̃(z) satisfies the equation

Gσ̃(z) =
−1

z − a+ b2Gσ̃(z)

Solving this equation, and using the Stieljes inversion formula, we
get that σ̃ coincides with the Wigner semi-circle law on [δ1, δ2]
with derivative

σ̃
′
(x) =

2

π
× 1

(δ2 − δ1)/2
×

√
1−

(
x− (δ2 + δ1)/2

(δ2 − δ1)/2

)2

(19)



The associated orthogonal polynomials p̃n(x) are well known :
p̃n(x) = pn(

x−(δ2+δ1)/2
(δ2−δ1)/2

) where pn(u) represents the second
kind Tchebyschev polynomials given by

pn(u) =
(zn+1 − z−(n+1))

(z − z−1)

where z is defined as the solution of the equation u = 1
2
(z+ z−1)

which satisfies |z| ≥ 1. From this, we deduce that

p̃n(0) = (−1)n (φ
−(n+1) − φ(n+1))

(φ−1 − φ) (20)

Using the relation

− qn(0)
pn(0)

=
−1

x− a0 − b2 q̃n−1(0)

p̃n−1(0)

(21)

we get that

pn(0) = p̃n(0) +
1√
α
p̃n−1(0) (22)

Therefore, the asymptotic regime (14) is reached for pn(0) if
it is reached for p̃n(0) itself, i.e. if φn−1 is negligible. Hence,
(13) holds if φ2n is small enough. This confirms that, although
N → ∞, close to optimal performance can be achieved by finite
dimensional reduced rank Wiener filters (see [5]).

The unequal powers and the frequency selec-
tive channel cases
Let us now assume that the users in model (3) have different pow-
ers, resulting in the model y = W

√
Ps+v where P is the power

diagonal matrix. The interference signal covariance matrix is then
RI = UQUH + ω2IN where Q is the matrix which remains af-
ter extracting the first row and column of P. The power empirical
distribution is assumed to converge almost surely in distribution to-
ward a distribution carried by the interval [pmin; pmax] of (0;+∞)
when K → ∞. In this situation, the eigenvalue empirical distri-
bution of RI still converges to a certain probability distribution
σ. However, there exist explicit expressions for σ only for a few
particular power distributions. Notice that σ must have an almost
everywhere strictly positive derivative on [δ1, δ2] for our results to
be true. This puts some slight constraints on the power limit dis-
tribution. Furthermore, it is still assumed that α ≥ 1.
The derivation will be restricted here to the asymptotic regime.
More precisely, an upper bound for φ will be given. The support
of the limit distribution of UUH , which is the Marchenko-Pastur
distribution, is [(

√
α − 1)2; (

√
α + 1)2]. It is easy to notice then

that the support [δ1; δ2] of σ satisfies δ1 ≥ pmin(
√
α − 1)2 + ω2

and δ2 ≤ pmax(
√
α+ 1)2 + ω2, so δ2

δ1
≤ ξ with

ξ =
pmax(

√
α+ 1)2 + ω2

pmin(
√
α− 1)2 + ω2

.

Now, φ can be written φ = ((δ2/δ1)− 1) /
(√

δ2/δ1 + 1
)2

, and

this increases with δ2/δ1. In the asymptotic regime, we thus have

φ2n ≤

(
ξ − 1(√
ξ + 1

)2
)2n

. (23)

The narrower is the power spread, the closer ξ is to 1, and the faster
is the convergence rate. In particular, the best rate is obtained when
powers are equal.
Finally, we consider the case where signals of all the users pass
through a frequency selective channel in a downlink setting. This
channel h(z) is assumed to be a polynomial channel with a small
degree relative to the spreading factor N . In this situation, the In-
ter Symbol Interference can be neglected (see [3] for the details)
and the signal model can be approximated in the large system con-
ditions by

y = HW
√
Ps+ v,

where H is a Toeplitz matrix associated to h(z). The interference
and noise covariance matrix is now RI = HUQUHHH+ω2IN .
The matrix HHH , being a Toeplitz matrix associated to the spec-
tral density |h(e2jπf )|2, has an eigenvalue limit distribution sup-
ported by [minf

(
|h(e2jπf )|2

)
;

maxf
(
|h(e2jπf )|2

)
]. (23) is still true if we put

ξ =
maxf

(
|h(e2jπf )|2

)
pmax(

√
α+ 1)2 + ω2

minf (|h(e2jπf )|2) pmin(
√
α− 1)2 + ω2

.

Frequency selectivity slowers the convergence of βn.
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