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ABSTRACT

This paper deals with the detection of a continuous random
process described by an Ornstein-Uhlenbeck (O-U) stochas-
tic differential equation. Randomly spaced sensors or equiva-
lently a random time sampler which deliver noisy samples of
the process are used for this detection. Two types of tests are
considered: eitherH0 refers to the presence of the noisy O-U
process orH0 refers to the sole presence of noise. For any
fixed false alarm probability, it is shown that the Type II er-
ror probability decreases to zero exponentially in the number
of samples. The exponents, which do not depend on the false
alarm probability, are characterized. This work completesfor-
mer contributions that consider noiseless O-U process witha
random sampling or noisy O-U processes with a regular sam-
pling.

Index Terms— Error Exponents, Neyman-Pearson De-
tection, Ornstein-Uhlenbeck Processes, Sensor Networks,
Stability of Markov Processes.

1. INTRODUCTION

Problem Description

Let (X(t), t ≥ 0) be the continuous time process defined as
the solution of the Ornstein-Uhlenbeck stochastic differential
equation

dX(t) = −a X(t) dt + b dB(t) (1)

whereB(t) is a Brownian motion and(a, b) ∈ R
∗
+ × R are

known1. It is assumed that the initial valueX(0) is inde-
pendent of(B(t), t ≥ 0) and follows the lawN (0, c) with
c = b2/(2a), which ensures that the solution(X(t), t ≥ 0)
of (1) is a strict sense stationary process on the positive real
line. Let(Tn)n∈N be a random point process (with0 = T0 <
T1 < T2 < · · · ) which represents the sampling moments of
X(t). Note that the parametert might be a location param-
eter instead of being a time parameter, in which case theTn

represent random sensor locations. It will be assumed that the
so called holding timesIn = Tn+1 −Tn are independent and

1Eq. (1) is sometimes writtenX′(t) = −aX(t) + bN(t) whereN(t) is
a “white noise”.

identically distributed (iid) random variables2. In particular,
when the distribution of theIn is exponential,(Tn) is a Pois-
son process. It is furthermore assumed that(Tn) is indepen-
dent of(X(t), t ≥ 0). Solving Equation (1) betweenTn and
Tn+1, it is well known that the process(Xn) = (X(Tn))n≥1

is characterized by the difference equation

Xn+1 = e−aInXn + Un, n ∈ N (2)

with the initial conditionX0 ∼ N (0, c). The “input pro-
cess”(Un) is characterized statistically by the fact that the
sequence(Un, In) is an iid sequence independent ofX0, and
the distribution ofUn conditionally to the holding timeIn is
N
(
0, c(1 − e−2aIn)

)
. Note that if the holding times are all

equal to a constant, in other words, if the sampling ofX(t)
is regular, then(Xn) is a Gaussian autoregressive process of
order one.
We assume that the sensor’s output is corrupted by an iid noise
(Vn) such thatVn ∼ N (0, 1) and we denote by(Yn)n=1,...,N

the signal received in a window of sizeN . We shall consider
in turn the two following hypothesis tests:

Test 1:

{
H0 : Yn = Xn + Vn

H1 : Yn = Vn
for n = 1, . . . , N .

(3)

Test 2:

{
H0 : Yn = Vn

H1 : Yn = Xn + Vn
for n = 1, . . . , N

(4)
Our performance analysis of these tests will be based on the
following result. LetY1:N = (Y1, . . . , YN ) and T1:N =
(T1, . . . , TN ), and fori = 0, 1, let fi,N (y | t) be the den-
sity of Y1:N conditionnally toT1:N according to hypothesis
Hi. Denote by

LN (Y1:N | T1:N) =
1

N
log

(
f0,N(Y1:N | T1:N)

f1,N(Y1:N | T1:N)

)
(5)

the associated Log Likelihood Ratio (LLR). Fixε ∈ (0, 1),
and denote byβ(ε) the minimum over all tests of the Type
II error probability when the false alarm probabilityα is
constrained to satisfyα ≤ ε. The minimumβ(ε) is at-
tained by a Neyman-Pearson (N-P) test. If the sequence

2WhenE[In] < ∞, process(Tn) is called a renewal process.



(LN (Y1:N | T1:N)) converges in probability towards a con-
stantξ asN → ∞ underH0, then (see for instance [1])

−
1

N
log β(ε) −−−−→

N→∞
ξ .

The constantξ is called theerror exponentof the N-P test.
The study of the behavior ofξ with respect to parameters
such asa, the Signal to Noise Ratio (SNR), or the probability
distribution of theIn leads to interesting guidelines to assess
the detector performance or the sensor network dimensioning.

There is a number of papers devoted to the detection of
correlated Gaussian signals by means of sensor networks,
seee.g. the tutorial paper [2]. In this context, contributions
[3, 4, 5, 6] study the error exponents of N-P or Bayesian tests.
The closest contributions to this paper are [3] and [6]. Sung
et.al. [3] consider Test2 above with regularly spaced sensors.
Following the approach of [7], they develop the LLRLN in
terms of an innovation process. Our approach starts from the
same idea (see Section 2). In [6], sensor location is random
and the detector discriminates among two noiseless O-U pro-
cesses (Eq. (2)). Due to the noisy character of the received
signal, our technique for establishing the existence ofξ and
for characterizing this error exponent differs substantially
from the one used in [6].

The main results of the paper will be provided in Section 2
along with the main ideas of the proofs. Some implications of
these results will be discussed in Section 3. Some numerical
illustrations will be also shown in Section 3.

2. MAIN RESULTS

The asymptotic behaviors of the minimum Type II error prob-
abilities for Tests 1 and 2 are provided by the two following
theorems:

Theorem 1 Given two real numbersa > 0 andc > 0, con-
sider the stochastic process(Xn) described by Equation(2)
where

• The initial value X0 is independent of the process
(Un, In) and follows the probability lawN (0, c).

• The sequence(Un, In) is iid with P[In = 0] <
1 and the distribution ofUn conditional to In is
N
(
0, c(1 − e−2aIn)

)
.

Let(Vn) be an iid sequence independent of(X0, (Un, In)n∈N)
such thatVn ∼ N (0, 1). Consider Test 1 described in(3)
whereN samples of the sequence(Yn, In)n=1,...,N are ob-
served. Then the following assertions hold true:

1. Forp ∈ R+, letπ(p, .) be the probability distribution of

the random variableexp(−2aI1)
(

p

p+1
− c
)
+c. There

exists a unique probability measureµ that satisfies the
equation

µ(du) =

∫
π(p, du)µ(dp) .

Moreover, the support ofµ is included in[0, c].

2. Letε ∈ (0, 1). For a givenN , let βN (ε) be the mini-
mum of the Type II error probabilities over all tests for
which the false alarm probabilityα satisfiesα ≤ ε.
Then

−
1

N
log βN (ε) −−−−→

N→∞

ξH0:Signal =
1

2

(
c −

∫
log (1 + p)µ(dp)

)

∈ (0,∞) . (6)

Theorem 2 Assume the setting of Theorem 1 with the differ-
ence that the roles ofH0 and H1 are interchanged (Test 2
described in(4)). Then the following hold true:

1. Foru = (x, p) ∈ R×R+, letΠ(u, .) be the probability
distribution of the random vector

Wu =

[
exp(−aI1)

(
x

p + 1
+

p

p + 1
Y1

)
,

exp(−2aI1)

(
p

p + 1
− c

)
+ c

]

where it is recalled thatY1 ∼ N (0, 1) andI1 are inde-
pendent. There exists a unique probability measureν
onR × R+ that satisfies the equation

ν(dw) =

∫
Π(u, dw) ν(du) . (7)

2. The minimum of the Type II error probabilities satisfies

−
1

N
log βN (ε) −−−−→

N→∞

ξH0:Noise=
1

2

(∫
log (1 + p)µ(dp)

−

∫
p

p + 1
µ(dp) +

∫
x2

p + 1
ν(dx, dp)

)

∈ (0,∞) (8)

where the lawµ is the one described in the statement of
Theorem 1. It coincides with the marginal lawν(R, .).

Theorems 1 and 2: Sketch of the Proof

In the contexts of both Theorems 1 and 2, we have to prove
thatLN converges in probability to constant values which will



beξH0:SignalandξH0:Noise respectively.
Denote byfV (resp.fS) the density ofY1:N conditionnally to
T1:N for the modelYn = Vn (resp. for the modelYn = Xn +
Vn). Hence, Test 1 assumesf0,N = fS andf1,N = fV while
Test 2 assumes the opposite. Let us derive the expressions of
these two densities. ObviouslyfV is the standard multivariate
Gaussian density. ConsideringfS, we have

fS(Y1:N | T1:N ) =

N∏

n=1

fS

(
Yn | (~Yn−1, ~Tn)

)

where we recall that~Yn−1 = (Y1, . . . , Yn−1) and ~Tn =
(T1, . . . , Tn). The conditional densities at the right hand side
of this equation are Gaussian, and write

fS

(
Yn | (~Yn−1, ~Tn)

)
=

1√
2π∆2

n

exp

(
−

(Yn − Ŷn)2

2∆2
n

)

whereŶn = E

[
Yn | ~Yn−1, ~Tn

]
is the mean ofYn conditional

to its “past” and∆2
n = E

[
(Yn − Ŷn)2 | ~Tn

]
is the innovation

variance of the modelYn = Xn + Vn.
As is well known, these two quantities can be calculated re-
cursively with the help of the Kalman filter equations. Recall
that the received signalYn is decribed by the state equations

Xn+1 = e−aInXn + Un

Yn = Xn + Vn .

Defining X̂n and Pn as X̂n = E[Xn | (~Yn−1, ~Tn)] and
Pn = E[(Xn − X̂n)2 | ~Tn], the Kalman recursions that
give(X̂n+1, Pn+1) in terms of(X̂n, Pn) are provided bye.g.
[8, Prop. 12.2.2]:

X̂n+1 =
e−aIn

Pn + 1
X̂n + e−aIn

Pn

Pn + 1
Yn (9)

Pn+1 = e−2aIn

Pn

Pn + 1
+ Qn (10)

where we putQn = E[U2
n | In] = c(1 − e−2aIn). The condi-

tional mean and variancêYn and∆2
n are then given by

Ŷn = E

[
Xn + Vn | ~Yn−1, ~Tn

]
= X̂n (11)

∆2
n = E

[
(Xn + Vn − X̂n)2 | ~Tn

]
= Pn + 1 . (12)

Using these results, the LLR (5) writes in the setting of The-
orem 1 (wheref0,N = fS andf1,N = fV)

LN = −
1

2N

N∑

n=1

log ∆2
n−

1

2N

N∑

n=1

(Yn − Ŷn)2

∆2
n

+
1

2N

N∑

n=1

Y 2
n

(13)
where the(Ŷn, ∆2

n) are given by Equations (9)-(12).
To prove Theorem 1, we have to study the asymptotic behav-
ior of LN assuming the conditional density ofY1:N is fS. To

that end, some results pertaining to the asymptotic behavior of
Markov chains are used. Consider for instance the first term
at the right hand side of Eq. (13), denoted asχ1,N . Recall that
∆2

n = Pn + 1 wherePn is decribed by the recursion (10). By
(10) the sequence(Pn) forms a homogeneous Markov chain.
The asymptotic behavior ofχ1,N is intimately related with the
stability (or ergodicity) of the chain(Pn). Similarly, to prove
Theorem 2, we need to establish the convergence in probabil-
ity of −LN towards a constant and characterize this constant,
the conditional density ofY1:N being this timefV. In this case
also, the Kalman recursion (9)-(10) generates a homogeneous
Markov chain whose stability will be established.
The asymptotic behavior of these Markov chains is the core
of our proof. Eventually, in the setting of Theorem 2 we show
that theR×R+-valued Markov chain(X̂n, Pn) given by (9)-
(10) with Yn iid ∼ N (0, 1) is stable and its stationary distri-
butionν is its unique invariant distribution (given as such by
Eq. (7)). Let(X̂∞, P∞) be a random vector with lawν. We
show that the error exponentξH0:Noisewrites as

ξH0:Noise =
1

2

(
E [log (1 + P∞)] + E

[
X̂2

∞ − P∞

P∞ + 1

])
(14)

Similarly, the error exponentξH0:Signalprovided by Th. 1 is

ξH0:Signal =
1

2
(c − E [log (1 + P∞)]) (15)

These equations coincide with Eq. (8) and (6) respectively.

3. DISCUSSION AND NUMERICAL ILLUSTRATION

Comments and consequences of Theorems 1 and 2

We provide here some observations on the influence of the
system design parameters on the error exponents. The first
parameter we consider is the parametera which captures the
effects of both the “memory” of the O-U process and the mean
sensor spacing (assuming w.l.o.g.E[In] = 1). Another key
parameter is the Signal to Noise Ratio SNR= E[X2

n] (re-
call thatE[V 2

n ] = 1). Recalling thatXn = X(Tn) and that
X(t) is stationary and independent from(Tn) we simply have
SNR = E[X(Tn)2] = E[X(t)2] = c. Notice that the error
exponents for both Tests1 and2 are completely determined
by the parametersa and SNR and by the probability law of
In.
A few remarks are in order. These assertions will not be
proven because of lack of space:

1. In the case of a regular sampling (In = 1), we obtain
explicit expressions forξH0:SignalandξH0:Noise. Note that
the expression ofξH0:Noise in this case has been found in
[3, Th. 1].

2. If a is large,i.e., the continuous O-U process (Eq. (1))
is weakly correlated and/or the sensors are far apart, we
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Fig. 1. Test 1:ξH0:Signalvsa for SNR= −3, 0 and3 dB

have

ξH0:Signal −−−→
a→∞

1

2
(SNR− log(1 + SNR)) ,

ξH0:Noise −−−→
a→∞

1

2

(
log(1 + SNR) −

SNR
SNR+ 1

)
.

3. In the setting of Theorem 1, the error exponentξH0:Signal

decreases asa increases. Moreover,lima→0 ξH0:Signal =
SNR/2.
One practical implication of this assertion is the fol-
lowing: from the stand point of the error exponent the-
ory, whenH0 stands for the presence of a noisy O-U
signal, one has an interest in choosing close sensors if
one wants to reduce the Type II error probability. This
probability is reduced by exploiting the correlations be-
tween theXn.

Numerical illustration

We begin this paragraph by describing the simulation tech-
nique. By ergodicity of the Markov process(X̂n, Pn), to
estimate the error exponents, we simply replace the expecta-
tion operators in the equations (14)-(15) above with empirical
means taken on(X̂n, Pn)n=1,...,N , for a large snapshot size
N .
In Fig. 1, the error exponentξH0:Signal is plotted vsa for
SNR = −3, 0 and3 dB. Poisson sampling as well as reg-
ular sampling is considered in this figure. Remarks 2 (for
ξH0:Signal) and 3 are confirmed. One interesting observation is
that the error exponent with Poisson sampling is better than
the error exponent with regular sampling in the context of
Test 1.
In Fig. 2, ξH0:Noise is plotted vsa also for SNR= −3, 0 and
3 dB. We notice thatξH0:Noise increases for SNR= 0 and3
dB while it has a maximum with respect toa for SNR = −3
dB. This behavior has been established in [3] in the case of
a regular sampling. We also notice that Poisson sampling is

.
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worse than regular sampling for SNR> 0 dB and better than
regular sampling for SNR< 0 dB from the viewpoint of the
error exponent.
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