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ABSTRACT identically distributed (iid) random variabfeslin particular,
when the distribution of thé, is exponential(T},) is a Pois-

This paper deals with the detection of a continuous randons1On process. It is furthermore assumed tHay) is indepen-

process described by an Ornstein-Uhlenbeck (O-U) StOChaa'ent of (X (£),¢ > 0). Solving Equation (1) betweef, and

tic differential equation. Randoml_y spac_ed sensors onequi FHH, it is well known that the processt,,) = (X (Tp))n>1
lently a random time sampler which deliver noisy samples o ) ) ! =
is characterized by the difference equation

the process are used for this detection. Two types of tests ar
considered: eithaf0 refers to the presence of th(_a noisy O-U Xpi1i=e "X, +U,, neN 2
process oHO refers to the sole presence of noise. For any
fixed false alarm probability, it is shown that the Type Il er-with the initial conditionX, ~ N(0,¢). The “input pro-
ror probability decreases to zero exponentially in the nemb cess”(U,,) is characterized statistically by the fact that the
of samples. The exponents, which do not depend on the falsequencéU,,, I,,) is an iid sequence independent%§, and
alarm probability, are characterized. This work complétes the distribution ofU,, conditionally to the holding timéd,, is
mer contributions that consider noiseless O-U processavith V' (0, ¢(1 — e~2%/»)). Note that if the holding times are all
random sampling or noisy O-U processes with a regular samequal to a constant, in other words, if the samplingkqt)
pling. is regular, ther{ X,,) is a Gaussian autoregressive process of
order one.
e assume that the sensor’s outputis corrupted by an iiénois
) such thatl/, ~ A/(0,1) and we denote b{},,),—1,...~
the signal received in a window of si2é. We shall consider
in turn the two following hypothesis tests:

Index Terms— Error Exponents, Neyman-Pearson De-
tection, Ornstein-Uhlenbeck Processes, Sensor Network
Stability of Markov Processes.

1. INTRODUCTION

HO : YV, =X,+V,

- Test 1: I T forn=1,...,N.

Problem Description { H1 : Y, =V, "
®)
Let (X (t),t > 0) be the continuous time process defined as HO : Y,=V,
the solution of the Ornstein-Uhlenbeck stochastic diffiis est 2: H1l : YV, =X,+V, forn=1,...,N
equation (4)
dX(t) = —a X (t)dt + bdB(t) (1)  Our performance analysis of these tests will be based on the

. . . . following result. LetY;.ny = (Y1,...,Yy) andTi.n =
whereB(t) is a Brownian motion anda,b) € R x R are (Th,...,Ty), and fori — 0,1, let f, x(y | t) be the den-

known'. It is assumed that the initial valu& (0) is inde- : L . .
pendent of( B(t),t > 0) and follows the law\ (0, c) with sHltly Sfe?:gtjé g;nd|t|onnally toT:. according to hypothesis

¢ = b%/(2a), which ensures that the soluti¢i (¢),t > 0)
of (1) is a strict sense stationary process on the positak re 1 fon(Yin | Ti.N)
line. Let(7,).»en be a random point process (with= T, < LyYin | Tin) = Nl (fl NN | T1-N)) ()

Ty < Ty < ---) which represents the sampling moments of " ' '

X (t). Note that the parametemight be a location param- the associated Log Likelihood Ratio (LLR). Fixe (0, 1),

eter instead of being a time parameter, in which casdthe and denote byj(e) the minimum over all tests of the Type
represent random sensor locations. It will be assumedhbatt Il error probability when the false alarm probability is

so called holding timeg, = T, .1 — T), are independentand constrained to satisfipg < ¢. The minimumg(e) is at-
tained by a Neyman-Pearson (N-P) test. If the sequence

1Eq. (1) is sometimes writteX’ (t) = —a.X (t) + bN (t) whereN (t) is
a “white noise”. 2WhenE[I,,] < oo, procesgT, ) is called a renewal process.




(Ln(Y1.ny | T1.n)) converges in probability towards a con- exists a unique probability measurethat satisfies the

stant¢ asN — oo underHO, then (see for instance [1]) equation
1
S logfe) ——— €. p(du) = [ w(p,du) ).
The constant is called theerror exponenbof the N-P test. Moreover, the support gf is included in[0, c].

The study of the behavior of with respect to parameters _ o
such asi, the Signal to Noise Ratio (SNR), or the probability 2. Lete € (0,1). For a givenN, let 8y () be the mini-

distribution of thel,, leads to interesting guidelines to assess ~ Mum of the Type Il error probabilities over all tests for
the detector performance or the sensor network dimensjonin which the false alarm probability: satisfiesa < e.
Then

There is a number of papers devoted to the detection of

correlated Gaussian signals by means of sensor networks, — —logfn(e) ——

seee.g. the tutorial paper [2]. In this context, contributions N N=oo

[3,4, 5, 6] study the error exponents of N-P or Bayesian tests €Ho:Signal = 1 (c — /1Og (1+p) M(dp))

The closest contributions to this paper are [3] and [6]. Sung 2

et.al.[3] consider Tes? above with regularly spaced sensors. € (0,00). (6)

Following the approach of [7], they develop the LLEy in

terms of an innovation process. Our approach starts from theheorem 2 Assume the setting of Theorem 1 with the differ-

same idea (see Section 2). In [6], sensor location is randoghce that the roles dfil0 and H1 are interchanged (Test 2
and the detector discriminates among two noiseless O-U pretescribed in(4)). Then the following hold true:

cesses (Eqg. (2)). Due to the noisy character of the received

signal, our technique for establishing the existencé afd 1. Foru= (z,p) € RxRy, letlI(u,.) be the probability
for characterizing this error exponent differs substalytia distribution of the random vector
from the one used in [6].
u T p
The main results of the paper will be provided in Section 2 W= [GXP( ah) <p +1 + p+ 1Y1) ’
along with the main ideas of the proofs. Some implications of P
these results will be discussed in Section 3. Some numerical exp(—2al) (m - C) + C]

illustrations will be also shown in Section 3.
where it is recalled that; ~ A/(0,1) andI; are inde-
2 MAIN RESULTS pendent. There exists a unique probability measure
onR x R that satisfies the equation

The asymptotic behaviors of the minimum Type Il error prob-

abilities for Tests 1 and 2 are provided by the two following v(dw) = /H(u, dw) v(du) . @)
theorems:
Theorem 1 Given two real numbers > 0 and¢ > 0, con- 2. The minimum of the Type Il error probabilities satisfies
sider the stochastic proce$X,,) described by Equatio(R) .
where N log BN (¢) ~o
e The initial value X, is independent of the process 1
(Un, I,,) and follows the probability law\'(0, ¢). SHoNoise = 5 /1Og (1+p) u(dp)
e The sequencéU,,I,) is iid with P[I, = 0] < _/ p u(dp) +/ x’ v(dx dp))
1 and the distribution ofU,, conditional to I,, is p+1 p+1 ’
N (0,¢(1 —e2In)), €(0,00) (8)
Let(V,,) be aniid sequence independentd, (Uy, In)nen) where the law: is the one described in the statement of
such thatV;, ~ N(0,1). Consider Test 1 described {3) Theorem 1. It coincides with the marginal laiR, .).

where N samples of the sequen€k,, I,),—1,... n are ob-

served. Then the following assertions hold true: Theorems 1 and 2- Sketch of the Proof

1. Forp € Ry, letw(p, .) be the probability distribution of

In the contexts of both Theorems 1 and 2, we have to prove
the random variablexp(—2al;) (

27— c) +c. There  that£ converges in probability to constant values which will



be &Ho:signal aNd&Ho:noise respectively. that end, some results pertaining to the asymptotic behafio
Denote byfy (resp.fs) the density ofY;.y conditionnallyto  Markov chains are used. Consider for instance the first term
T1.y for the modely;, = V,, (resp. for the modeY,, = X,, + at the right hand side of Eq. (13), denoted@sy. Recall that
V..). Hence, Test 1 assumégs y = fsandfi y = fv while A? = P, + 1 whereP, is decribed by the recursion (10). By
Test 2 assumes the opposite. Let us derive the expressions(@D) the sequencg’,,) forms a homogeneous Markov chain.
these two densities. Obvious}y is the standard multivariate The asymptotic behavior gf; x is intimately related with the

Gaussian density. Consideriifg, we have stability (or ergodicity) of the chaifP,,). Similarly, to prove
Theorem 2, we need to establish the convergence in probabil-
N - = ity of — L towards a constant and characterize this constant,
Fs(Yiw [ Thin) = 11 Is (Y" | (Y"’l’T”)) the conditional density dfy. ;- being this timefy. In this case
" also, the Kalman recursion (9)-(10) generates a homogeneou
where we recall that’,_; = (Y1,...,Y,_1) and T, =  Markov chain whose stability will be established.
(Ty,...,T,). The conditional densities at the right hand sideThe asymptotic behavior of these Markov chains is the core
of this equation are Gaussian, and write of our proof. Eventually, in the setting of Theorem 2 we show

N that theR x R, -valued Markov chair@)?n, P,) given by (9)-
) _ 1 exp <_ (Yo — Yn)2> (10) with Y,, iid ~ A(0,1) is stable and its stationary distri-
V21A2 2A2 butionv is its unique invariant distribution (given as such by
Eq. (7). Let(X o, Px) be a random vector with law. We

whereY,, = E {Yn | Vo1, Tn} is the mean o¥;, conditional ~Show that the error exponegio:noise Writes as

—

,fS (Yn | (Ynflyfn)

to its “past” andA2 = E {(Yn — }7”)2 | Tn} is the innovation 1 Ago - P,
variance of the modéf,, = X,, + V.. SHoNoise = 5 | E [log (14 Px)] +E P+ 1 (14)

As is well known, these two quantities can be calculated re-

cursively with the help of the Kalman filter equations. Récal Similarly, the error exponemtio:signaprovided by Th. 1 is
that the received signal, is decribed by the state equations

1
Xpi1 = e "X, + Uy &Ho:signal = 5 (c—E[log(1+ Px)]) (15)

Yo =Xn+Vo. These equations coincide with Eq. (8) and (6) respectively.

Defining )?n and P, as )?n = E[X, | (Yn,l,fn)] and

give (X, 41, Pyy1) interms of()A(n, P,) are provided b.g.

[8, Prop. 12.2.2]: Comments and consequences of Theorems 1 and 2
—al, p We provide here some observations on the influence of the
Xpi1= c X, +eln "y, (9) system design parameters on the error exponents. The first
Patl Patl parameter we consider is the parameterhich captures the
Py = e 2l P +Qn (10) effects of both the “memory” of the O-U process and the mean
P, +1 sensor spacing (assuming w.l.o[I,,] = 1). Another key

where we puQ,, = E[U2 | I,] = ¢(1 — e~2%1). The condi- parameter is the Signal to _Noise Ratio SNRE[X?] (re-
> call thatE[V;2] = 1). Recalling thatX,, = X (7},) and that
X (t) is stationary and independent frdffi, ) we simply have
oo > =1 o SNR = E[X(T,,)?] = E[X(¢)?] = c. Notice that the error
Y, =E|X,+V,| Yoo, Th| =X, 11 .
[ +Vnl ! } (11) exponents for both Testisand2 are completely determined
A2 _F [(Xn V= X0)? | fn:| —P, +1. (12) by the parameters and SNR and by the probability law of
1

n

tional mean and variancg, andA? are then given by

ne

Using these results, the LLR (5) writes in the setting of TheA few remarks are in order. These assertions will not be

orem 1 (wherefy vy = fsandfi v = fv) proven because of lack of space:
N N > N 1. In the case of a regular sampling, (= 1), we obtain
1 1 Y,-Y,)? 1 e :
Ly =—— E log AZ —— ¥+— E \ i explicit expressions fafio:signal@andéno:noise Note that
2N 2N A2 2N ; oI .
n=1 n=1 n n=1 the expression dfyo:noiseiN this case has been found in
(13) [3, Th. 1].

where the(}A/n, AZ?) are given by Equations (9)-(12).
To prove Theorem 1, we have to study the asymptotic behav- 2. If a is large,i.e., the continuous O-U process (Eq. (1))
ior of L assuming the conditional density Bf.y is fs. To is weakly correlated and/or the sensors are far apart, we
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Fig. 1. Test 1:{no:signaiVsa for SNR= —3,0 and3 dB

have

1
&Ho:signal P B (SNR—1log(1 + SNR)),

1 SNR
&EHo:Noise P B (10g(1 + SNR) — W—l—l) .

3. Inthe setting of Theorem 1, the error exporgptsignal
decreases asincreases. Moreoveim,_.q {Ho:signal =
SNR/2.

One practical implication of this assertion is the fol-

PO|sson
Regular *****

"SNR=3 dB

. SNR=) dB

Fig. 2. Test 2:£Ho:noise VS a for SNR= —3,0 and3 dB

worse than regular sampling for SNRO dB and better than
regular sampling for SNR< 0 dB from the viewpoint of the
error exponent.
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