
A Stochastic Proximal Point Algorithm for Total Variation Regularization
over Large Scale Graphs

Adil Salim, Pascal Bianchi, Walid Hachem and Jérémie Jakubowicz

Abstract— The total-variation (TV) regularizer is often used
to promote the structured sparsity of a given real function
over the vertices of a non-directed graph. Indeed, the proximity
operator associated with TV regularizer promotes sparsity of
the function discrete gradient. Although quite affordable in the
special case of one-dimensional (1D) graphs, the computation
of the proximity operator for general large scale graphs can be
demanding. In this paper, we propose a stochastic algorithm for
solving this problem over large graphs with a moderate iteration
complexity. The algorithm consists in properly selecting random
paths in the graph and computing 1D-proximity operators over
these paths. Convergence of the algorithm is related to recent
results on stochastic proximal point algorithms.

I. INTRODUCTION

In applications such as trend filtering [1], [2], [3] or image
restoration and signal processing [4], [5], [6], a usual task is
to solve on some Euclidean space X an optimization problem
of the form minx∈X L(x)+R(x) where L(x) is a data fitting
term and R(x) is a convex proper lower semicontinuous
regularization term which promotes the structured sparsity
of the solution. Many solvers are based on the computation
of the so-called proximity operator of R defined by

proxR(y) = arg min
x∈X

1

2
‖x− y‖2 +R(x)

for every y ∈ X , where ‖ . ‖ stands for the standard
Euclidean norm. Hence, the performance of the solvers is
intrinsically related to the efficiency of the computation of
the proximity operator.

In this paper, we consider an undirected graph G = (V,E)
with no self loops, where V is a finite set of nodes and E
is the set of edges. The (anisotropic) total variation (TV) of
a function x ∈ RV on the graph G is defined by

TV(x,G) =
∑
{i,j}∈E

|x(i)− x(j)| .

The total variation is a seminorm on RV which is often used
as a regularizer in the programming problems over a graph
where the sparsity of the discrete gradient of the solution
is promoted. The aim of this paper is to compute the TV-
proximity operator proxλTV( . ,G)(y) at a given point y ∈

The first three authors are with LTCI, CNRS, Telecom
ParisTech, Universit Paris-Saclay, 75013 Paris, France. The
fourth author is with Telecom Sud Paris, RST, 91011 Evry,
France. E-mails: adil.salim, pascal.bianchi,
walid.hachem@telecom-paristech.fr,
jeremie.jakubowicz@telecom-sudparis.eu

This research was partially supported by Labex DigiCosme (project Idex
Paris-Saclay ANR-11-IDEX- 0003-02 operated by ANR as part of the
program ”Investissement d’Avenir”).

RV , where λ > 0 is an arbitrary scaling parameter. Otherwise
stated, the aim is to solve

min
x∈RV

1

2
‖x− y‖2 + λTV(x,G). (1)

We refer the reader to [7] for an overview of efficient iterative
algorithms which can be used for that sake. Although the
programming problem can be difficult to solve for general
graphs, fast methods exist for structured graphs. When G is a
1D-graph i.e., a simple path with no repeated node, efficient
algorithms exist. Recently, Condat [8] revisited an algorithm
that is due to Mammen and Van De Geer [9] referred to
as the taut-string algorithm, and that has complexity O(n2)
in the worst-case scenario, and O(n) in the most realistic
cases, where n denotes the number of nodes. In [9] the taut-
string is linked to a total variation regularization problem.
The taut-string algorithm is also supported by a rich literature
and can be traced back to several decades ago, ranging
from problems of isotonic regression [10], to unimodality
tests [11], and to non-parametric statistics [9], [12] (see
also [5], [13], [14]). This algorithm is generalized to 2D-
grids, weighted TV norms and Lp TV norms by A. Barbero
and S. Sra in [15]. To generalize to 2D-grids, they noted
that the TV regularization can be written as a sum of two
terms on which one can apply 1D methods, according to
[16] and [17]. Over general graphs, there is no immediate
way to generalize the taut string method. The problem of
computing the TV-proximity operator is addressed in [1], [2],
[3] where a primal-dual interior point method is proposed,
and in [18] and where a path algorithm is proposed. We
also mention [19] which proposes to solve the problem
distributively over the nodes using the Alternating Direction
Method of Multipliers (ADMM).

The iteration complexity of the above methods can be
a bottleneck as far as very large graphs are concerned. In
this paper, we provide a stochastic approach to solve (1),
where the iteration complexity is controlled by the user.
Our algorithm combines two ingredients. The first one is a
stochastic version of the celebrated proximal point algorithm
which is grounded in the recent works [20], [21], [22]. The
second one is the taut-string optimization method mentioned
above, which is known to be particularly efficient to solve
the TV-proximity problem in the special case of a 1D-graph.
Specifically, our algorithm consists in properly selecting
random paths in the graph and efficiently computing 1D-
proximity operators over these paths.

The paper is organized as follows. First, we provide
a brief description of the proximal stochastic methods in



Section II. Then, in Section III, we describe the proposed
algorithm. Finally, Section IV is dedicated to some numerical
experiments.

II. BACKGROUND ON STOCHASTIC APPROXIMATION

A. The Stochastic Proximal Point Algorithm

In this section, we briefly recall the stochastic proximal
point algorithm and the related convergence results. The aim
is to minimize some integral functional

min
x∈X

E(f(x, ξ)) (2)

where ξ is a random variable (r.v.) on some probability space
(Ω,F ,P) with the expectation E, the mapping f( . , s) is, for
almost every s, a proper lower-semicontinuous (l.s.c.) convex
function, and X is an Euclidean space. We are interested in
the case where the above integral is difficult to compute.
Stochastic approximation methods, such as the celebrated
stochastic (sub)gradient algorithm, consist in iteratively up-
dating an estimate xn of a minimizer using (typically inde-
pendent) copies (ξn)n∈N∗ of the r.v. ξ. Regarding the rich
literature on such methods, we refer for instance to [23].

The stochastic proximal point algorithm is written

xn+1 = proxγn+1f( . ,ξn+1)(xn)

where (γn)n∈N∗ is a sequence of positive step sizes. An early
version of the algorithm was proposed in [24] in the case
where the integral functional in (2) is reduced to a to a
sum (which amounts to choosing ξ as a simple uniformly
distributed r.v.). In addition, the prox operators are chosen
cyclically in [24] instead of randomly. The random case
was studied in [20], and a detailed convergence analysis of
the method can be found in [21], [22] under more general
hypotheses. The assumptions below will be enough for the
present paper:

Theorem 2.1 ([22]): Assume the following:
• The function f is a normal integrand [25] on X × Ω

such that f(·, s) is a l.s.c. convex function with domain
X for P-almost every s.

• ∀x ∈ X ,
∫

Ω
|f(x, s)|P(ds) <∞.

• For every compact set K ⊂ X ,

sup
x∈K

∫
‖∂f0(x, s)‖2 P(ds) < ∞,

where ∂f0(·, s) is the least-norm element of the subd-
ifferential of f(·, s).

• The set Z of minimizers of (2) is nonempty. For any
x ∈ Z , there exists a measurable function Mx : Ω→ R
such that sup{‖z‖ : z ∈ ∂f(x, s)} ≤ Mx(s), and∫

Ω
Mx(s)2 P(ds) <∞.

• (γn) ∈ `2 \ `1.
Then, there exists a random variable x? supported by Z such
that xn converges almost surely to x?.

The assumption
∑
n γ

2
n <∞ implies that the sequence γn

tends to zero, as often assumed in the context of stochastic
optimization methods. The assumption is needed to ensure
the almost sure convergence of the algorithm. The case of

a (non vanishing) step size is as well important in practice,
although not as well explored from a theoretical point of
view. In this case, it is expected that, in its stationary regime,
the algorithm ends up in the vicinity of the set of minimizers.

B. A Stochastic version of Passty’s Algorithm

In this paper, we will use the following variant of the
stochastic proximal point algorithm, which we shall refer to
as the stochastic Passty’s algorithm. Consider the case where
the mapping f is written as the following sum

f(x, s) =

L∑
i=1

fi(x, s)

where L ≥ 1 is an integer and where for every i =
1, . . . , L and P-almost every s, the mapping fi( . , s) is proper
convex l.s.c. The stochastic Passty’s algorithm consists in the
iterations

xn+1 = Tγn+1(xn, ξn+1)

where for every γ > 0 and every s, we set

Tγ( . , s) = proxγfL( . ,s) ◦ · · · ◦ proxγf1( . ,s)

where ◦ stands for composition. In the special case where the
functions fi are constant with respect to s (the algorithm is
deterministic), the above iterations boil down to the standard
Passty’s algorithm [24]. In the case where L = 1, the
methods reduces to the stochastic proximal point algorithm.
In the general case, the convergence of the method can be
studied using similar tools as in [21], [22]. The problem is
addressed in [26].

III. MAIN ALGORITHM

A. Notations

Let L ≥ 0 be an integer. L will control the complexity of
an iteration of the algorithm. We refer to a walk of length
L over the graph G as a sequence s = (v1, v2, . . . , vL+1) in
V L+1 such that for every i = 1, . . . , L, the pair {vi, vi+1}
is an edge of the graph. A walk of length zero is a single
vertex.

We shall often identify s with the graph G(s) whose
vertices and edges are respectively given by the sets V(s) =
{v1, . . . , vL+1} and E(s) = {{v1, v2}, . . . , {vL, vL+1}}. For
every x ∈ RV , we denote by xs = (x(v1), . . . , x(vL+1)) the
restriction of x to s, and by xs the restriction of x to the
complementary set of s in V . We refer to the total variation
of x along the walk s as

TV(xs,G(s)) =

L∑
i=1

|x(vi+1)− x(vi)| .

For every walk s and every u ∈ RV(s), we define

ΠTV(u, s, ρ) = proxρTV( . ,G(s))(u) .

We say that a walk is a simple path if there is no repeated
node that is, all elements in s are different. When s is
a simple path, the quantity ΠTV(u, s, ρ) can be efficiently
computed using e.g. the taut-string method of [8].

Our notations are summarized in Table I



G = (V,E) Graph with no self-loop
d(v) Degree of a vertex v ∈ V
x, y Functions on V → R. Function y is fixed.
s Walk in G

xs, xs Restriction of x to s (resp. V \s)
TV(x,G) Total variation of x on G

ΠTV( . , s, ρ) TV-proximity operator on the walk s

TABLE I
USEFUL NOTATIONS

B. TV as an Expectation over a Random Walk

From now on, y ∈ RV represents a fixed function on
V → R and we seek to solve the programming problem (1).
The key part of this paper is to write the total variation of
a function x ∈ RV as an expectation in order to apply a
stochastic algorithm as described in Section II.

Let L ≥ 1 be an integer. We build a simple random walk
on the graph G, ξ = (v1, . . . ,vL+1) of length L as follows.
The value of the starting node v1 is randomly chosen in V
according to the distribution

P(v1 = v) =
d(v)

2|E|
(3)

for all v ∈ V , where d(v) is the degree of v (the number
of its neighbors) and where |E| is the number of edges.
Recursively for every i = 1, . . . , L, the next node vi+1 is
randomly selected according to

P(vi+1 = w |vi = v) =
1

d(v)
(4)

if w is a neighbor of v and P(vi+1 = w |vi = v) = 0
otherwise. Of course, ξ has no reason to be a simple path.

Proposition 3.1: For every x ∈ RV ,

TV(x,G) =
|E|
L

E(TV(xξ,G(ξ))) .

Proof: First, let (vi)i the stochastic process whose law
is specified by the equations (3) and (4). This process is a
Markov chain on V , and it is easy to show that the function
d

2|E| describes an invariant probability for this Markov chain.
Since the initial distribution of (vi)i is d

2|E| , the Markov
chain (vi)i is stationary, and for all i,

vi ∼
d

2|E|
Then, for all i,

{vi,vi+1} ∼ Uniform(E).

Actually, for all edge e = {v, w},

P({vi,vi+1} = e)

= P(vi = v,vi+1 = w) + P(vi = w,vi+1 = v)

=
d(v)

2|E|
1

d(v)
+
d(w)

2|E|
1

d(w)

=
1

|E|
.

Finally, for all i,

E (|x(vi)− x(vi+1)|) =
1

|E|
TV(x,G)

and

E(TV(xξ,G(ξ))) =
L

|E|
TV(x,G)

by linearity, since the length of G(ξ) is L.
By Proposition 3.1, one is able to cast the proximity prob-
lem (1) into the form (2) where X = RV and the function
f is chosen as

f(x, s) =
1

2
‖x− y‖2 +

λ|E|
L

TV(xs,G(s)) . (5)

In order to minimize E(f(x, ξ)), it is tempting to apply
the stochastic proximal point algorithm. By doing so, the
resulting algorithm would consist in the following two steps
at each iteration n+ 1:

• Generate a random walk ξn+1 as described above,
• Update the estimate xn+1 = proxγn+1f( . ,ξn+1)(xn) .

Of course, the above algorithm is practical only if one is
able to easily implement the proximity operator in the second
step. The following lemma whose proof is left to the reader
sheds some light on that point.

Lemma 3.2: Consider x ∈ RV and a path s in G. Set
α, β, γ > 0 and define p = proxγg(x) where g is the function
given by

g(x) =
α

2
‖x− y‖2 + βTV(xs,G(s)) .

Then, separating the components that pertain to nodes on s
from the complementary set s, it holds that p = (ps, ps),
where

ps = ΠTV

(
xs + γαys

1 + γα
, s,

γβ

1 + γα

)
, and (6)

ps =
xs + γαys

1 + γα
.

It follows from the above Lemma that the computation of
the stochastic proximity operator proxγf( . ,ξ) boils down to
the evaluation of the TV-proximity operator along the walk
ξ. In order to have a fast algorithm, we propose to use the
taut-string method alluded to above. However, the taut-string
method is easy to implement on simple paths, that is, when
the walk ξ contains no repeated node. Of course, the random
walk ξ has no reason to coincide with a simple path.

A first way to circumvent this problem would be to
generate ξ as a loop-erased walk on the graph. Unfortunately,
the evaluation of the corresponding distribution is notoriously
difficult. The generalization of Proposition 3.1 to loop-erased
paths is far from immediate.

As an alternative, we propose to split the simple random
walk ξ into several simple paths.



C. Splitting the Walk ξ into Simple Paths

One can always decompose a walk s = (v1, v2, . . . , vL+1)
of length L into a sequence of simple paths. There exists
several methods to do so. For convergence speed purposes,
these simple paths have to be as long as possible. But,
in order to save memory while using the algorithm, the
main requirement is that it must be possible to split s
online. Thus, after each splitting, we can use and then
forget the visited nodes. In other words, thinking s as the
realization of a stochastic process, the times of splitting
must be stopping times. We propose the following method,
although the convergence of the algorithm still holds with
another method of splitting.

Formally, one way is to recursively define a sequence of
integers (ti(s))i∈N as t0(s) = 1 and for all i ≥ 0,

ti+1(s) = inf{k ∈ {ti + 1, . . . , L} : vk+1 ∈ {vti , · · · , vk}}

if the above set is nonempty, and ti+1 = L+1 otherwise. We
denote by N(s) the smallest integer n such that tn = L+ 1.
It is clear that 1 ≤ N(s) ≤ L. For every i = 1, . . . , N(s),
we define

Ci(s) = (vti−1(s), vti−1(s)+1, . . . , vti(s)) .

By construction, Ci(s) is a simple path. We denote by `i(s)
the length of Ci(s). We remark that

∑N(s)
i=1 `i(s) = L and

moreover

TV(xs,G(s)) =

N(s)∑
i=1

TV(xCi(s),G(Ci(s))) (7)

for every x ∈ RV .

Example. Given a graph with vertices V = {a, b, c, . . . , z}
and a given edge set that is not useful to describe here,
consider the walk s = (c, a, e, g, a, f, a, b, h) with length
L = 8. Then, t1 = 4, t2 = 6, t3 = t4 = · · · = 9, and s can be
decomposed into N(s) = 3 simple paths C1(s) = (c, a, e, g),
C2(s) = (g, a, f) and C3(s) = (f, a, b, h) with respective
lengths `1(s) = 3, `2(s) = 2 and `3(s) = 3.

Let us return to the programming problem (1). From (7),
the function f defined in (5) can be decomposed as

Lf(x, s) =

L∑
i=1

fi(x, s)

where we set

fi(x, s) =
`i(s)

2
‖x− y‖2 + λ|E|TV(xCi(s),G(Ci(s)))

for all 1 ≤ i ≤ N(s) and fi(x, s) = 0 whenever i > N(s).
Hence, Problem (1) can be written as

min
x∈RV

E

(
L∑
i=1

fi(x, ξ)

)
and one can use the stochastic Passty’s algorithm described
in Section II-B.

procedure PROXTV(y)
x← x0 . Initialization
n← 1
while Convergence is not reached do

Choose a node v1 according to (3).
Generate a walk ξ = (v1 . . .vL) according to (4).
Split ξ into N = N(ξ) simple paths C1, . . . , CN
for i = 1 . . . N do

`← length(Ci)
x← x+γn`y

1+γn`

xCi
← ΠTV

(
xCi

, Ci,
γnλ|E|
1+γn`

)
. Taut-string (1D)

end for
n← n+ 1

end while
return x

end procedure

TABLE II
PROPOSED ALGORITHM.

D. Algorithm

The algorithm is summarized in Table II.
Denote by xn the iterate at time n. Consider a positive

step size sequence (γn)n∈N∗ as introduced in Section II. Let
(ξn)n∈N∗ be independent copies of the simple random walk
ξ whose distribution is given by (3) and (4). Define Nn+1 =
N(ξn+1) and for every i = 1 . . . Nn+1, cin+1 = Ci(ξn+1)
and `in+1 = `i(ξn+1).

We introduce the variables x̃in+1 for i = 0 . . . Nn+1

recursively defined by x̃0
n+1 = xn and for every i ≥ 0,

x̃i+1
n+1 = proxγn+1fi+1( . ,ξn+1)(x̃

i
n+1)

The above iteration can be explicited as follows. Let

zi+1
n+1 =

xin+1 + γn+1`
i
n+1y

1 + γn+1`in+1

.

By Lemma 3.2, one has for all v /∈ cin+1

x̃i+1
n+1(v) = zi+1

n+1(v)

whereas the restriction of x̃i+1
n+1 to the simple path cin+1 is

given as a the following TV-1D proximity operator:

ΠTV

(
(zi+1
n+1(v) : v ∈ ci+1

n+1), ci+1
n+1, ρ

i+1
n+1

)
. (8)

where ρi+1
n+1 = γn+1λ|E|

1+γn+1`
i+1
n+1

. Finally, we set xn+1 = x̃
Nn+1

n+1 .
In practice, the computation of (8). is achieved by means
of an efficient black box. Here we propose to use Condat’s
algorithm [8] implemented by Sra and Barbero [15], [7].

IV. NUMERICAL EXPERIMENTS

In order to demonstrate the denoising power of the pro-
posed algorithm we start from a “cartoon”-like model over
graphs. Namely we generate a graph with well-separated
clusters as depicted in Fig. 1. More precisely, we consider N
nodes and a C clusters (also called “communities”) and we
randomly pick a community cv for each node v uniformly
over {1, . . . , C}. The r.v. cv are independent. Then we draw
independently N2 Bernoulli r.v. E(v, w), encoding the edges



of the graph (an edge between v and w is present iff
E(v, w) = 1), such that P{E(v, w) = 1} = P (cv, cw) where{

p(c, c′) = .1 if c = c′

p(c, c′) = .01 otherwise

This model is called the stochastic block model for the matrix
P [27]. It amounts to a blockwise Erdös-Rényi model with
parameters depending only on the blocks. Having defined

Fig. 1. Realization of a stochastic block model with 4 communities and
100 nodes. Each community is represented with a different color.

the graph as a realization of a stochastic block model, we
define the data term y as y(v) = l(cv) + σ(cv)εv where
l(c) is a mapping from the communities to the levels (in
our experiments 0 ≤ l ≤ 255), and εv denotes a standard
Gaussian white noise with σ(c) > 0 as its standard deviation.
In Figure 2 we represent an example of the signal y along
with the sought “signal” l(cv). On figure 3, our method is
compared with two methods: the L-BFGS-B [28] for the dual
problem and the well-known projected gradient method for
the dual problem. The three methods are used with a constant
step size. We sampled a graph according to a stochastic block
model with N = 20000 nodes and C = 10 communities. It
led to about 3.8 × 106 edges. We set the parameter λ at
0.01 in order to ensure that the two terms of the objective
function are significant. We sampled the signal y with the
same scheme as above, i.e y(v) = l(cv)+σ(cv)εv. We chose
the coordinate of the vector l uniformly in [−5, 5] and the
coordinate of the vector σ uniformly in [0, 1]. In Figure 3,
the curves with triangles, squares and circles illustrate the
performance of L-BFGS-B in the dual space, the projected
gradient in the dual space, and our algorithm respectively.

Fig. 2. Left: Signal plus noise function y = l + ε. Right: Cartoon-like
signal l.

Fig. 3. The objective as a function of the time in seconds

Since we are experimenting these algorithms with constant
step size, they reach a long term value in the vicinity of
the set of minimizers. This long term value converges to
the set of minimizers when the step size converges to zero
(this assertion has not been proved yet for stochastic Passty’s
algorithm with constant step size, but is a usual behaviour).
We observe that our method reaches its long term value faster
than the other two algorithms. However, the other algorithms
long term values are slightly better. One can take advantage
of this method when one has a limited time to compute the
proximal operator.

In Figure 4 are plotted two histograms. The red one (Ini-
tialization) is the histogram of the signal at the initialization.
The blue one is the resulting iterate, after applying our
algorithm. It exhibits a piecewise constant signal across the
nodes, due to the sparsity of the discrete gradient of the
signal. The evolution of the TV norm while running the three
algorithms is plotted in figure 5.

We observed the above behaviour on several graphs. For
example with a bigger graph : N = 105 nodes and about
25×106 edges, figure 6 shows similar the results as figure 3
(the legend is the same as in 3).



Fig. 4. Signals across the nodes before and after our algorithm

Fig. 5. The logarithm of the TV norm as a function of the time in seconds

Fig. 6. The objective as a function of the time in seconds

REFERENCES

[1] S-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “`1 trend filtering,”
SIAM review, vol. 51, no. 2, pp. 339–360, 2009.

[2] R. J. Tibshirani, “Adaptive piecewise polynomial estimation via trend
filtering,” The Annals of Statistics, vol. 42, no. 1, pp. 285–323, 2014.

[3] Y-X. Wang, J. Sharpnack, A. Smola, and R. J. Tibshirani, “Trend
filtering on graphs,” arXiv preprint arXiv:1410.7690, 2014.

[4] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock,
“An introduction to total variation for image analysis,” Theoretical
foundations and numerical methods for sparse recovery, vol. 9, no.
263-340, pp. 227, 2010.

[5] W. Hinterberger, M. Hintermüller, K. Kunisch, M. Von Oehsen, and
O. Scherzer, “Tube methods for bv regularization,” Journal of
Mathematical Imaging and Vision, vol. 19, no. 3, pp. 219–235, 2003.

[6] Z. Harchaoui and C. Lévy-Leduc, “Multiple change-point estimation
with a total variation penalty,” Journal of the American Statistical
Association, 2012.

[7] A. Barbero and S. Sra, “Fast newton-type methods for total variation
regularization.,” in ICML, 2011, pp. 313–320.

[8] L. Condat, “A direct algorithm for 1d total variation denoising,” IEEE
Signal Processing Letters, vol. 20, no. 11, pp. 1054–1057, 2013.

[9] E. Mammen and S. van de Geer, “Locally adaptive regression splines,”
The Annals of Statistics, vol. 25, no. 1, pp. 387–413, 1997.

[10] R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk,
Statistical inference under order restrictions: The theory and applica-
tion of isotonic regression, Wiley New York, 1972.

[11] J. A. Hartigan and P. M. Hartigan, “The dip test of unimodality,” The
Annals of Statistics, pp. 70–84, 1985.

[12] P. L. Davies and A. Kovac, “Local extremes, runs, strings and
multiresolution,” Annals of Statistics, pp. 1–48, 2001.

[13] G. Steidl, S. Didas, and J. Neumann, “Relations between higher order
tv regularization and support vector regression,” in Scale Space and
PDE Methods in Computer Vision, pp. 515–527. Springer, 2005.

[14] M. Grasmair, “The equivalence of the taut string algorithm and bv-
regularization,” Journal of Mathematical Imaging and Vision, vol. 27,
no. 1, pp. 59–66, 2007.

[15] A. Barbero and S. Sra, “Modular proximal optimization for multidi-
mensional total-variation regularization,” 2014.

[16] P. L. Combettes, “Iterative construction of the resolvent of a sum of
maximal monotone operators,” J. Convex Anal, vol. 16, no. 4, pp.
727–748, 2009.

[17] S. Jegelka, F. Bach, and S. Sra, “Reflection methods for user-
friendly submodular optimization,” in Advances in Neural Information
Processing Systems, 2013, pp. 1313–1321.

[18] R.J. Tibshirani, J. E. Taylor, E.J. Candes, and T. Hastie, The solution
path of the generalized lasso, Stanford University, 2011.

[19] W. Ben-Ameur, P. Bianchi, and J. Jakubowicz, “Robust distributed
consensus using total variation,” IEEE Trans. on Autmatic Control, to
appear, 2015.

[20] M. Wang and D. P Bertsekas, “Incremental constraint projection-
proximal methods for nonsmooth convex optimization,” Tech. Rep.,
Massachusetts Institute of Technology, 2013.

[21] P. Bianchi, “Ergodic convergence of a stochastic proximal point
algorithm,” ArXiv e-prints, 1504.05400, Apr. 2015.

[22] P. Bianchi and W. Hachem, “Dynamical behavior of a stochas-
tic forward-backward algorithm using random monotone operators,”
arXiv preprint arXiv:1508.02845, 2015.

[23] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust
stochastic approximation approach to stochastic programming,” SIAM
Journal on Optimization, vol. 19, no. 4, pp. 1574–1609, 2009.

[24] G. B. Passty, “Ergodic convergence to a zero of the sum of monotone
operators in Hilbert space,” J. Math. Anal. Appl., vol. 72, no. 2, pp.
383–390, 1979.

[25] R. T. Rockafellar, “Measurable dependence of convex sets and
functions on parameters,” J. Math. Anal. Appl., vol. 28, pp. 4–25,
1969.

[26] A. Salim, P. Bianchi, W. Hachem, and J. Jakubowicz, “A stochastic
version of passty’s algorithm,” Tech. Rep., Work in progress, see
http://perso.telecom-paristech.fr/ hachem/, 2016.

[27] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmod-
els: First steps,” Social networks, vol. 5, no. 2, pp. 109–137, 1983.

[28] R. H. Byrd, P. Lu, J. Nocedal, and C. Y. Zhu, “A limited memory
algorithm for bound constrained optimization,” SIAM J. Sci. Comput.,
vol. 16, no. 5, pp. 1190–1208, 1995.


