Convergence of the stochastic cyclic proximal algorithm
Sketch of the proof
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Given a family of maximal monotone operators {A;}£ ; on a real Hilbert space, Passty [5]
studied among other things the iterative algorithm

Tn1 = (I + 1 AL) 7 (L4 Y1 A2) T+ Vg1 A1)y

where (v,) is a sequence of step sizes belonging to ¢? \ ¢!. When the operator Zf A; is
maximal and when Z (37 4;) = (327 A;)71({0}) is non empty, he showed that the sequence
of weighted averages

= Z? Vil

" S
converges towards an element of Z (Z1L Aj).
In these notes, we replace the operators A; with random maximal monotone operators
A;(&,-) on the Euclidean space RY, where ¢ is a random variable on some probability space

(2, 7,u) (a rigorous definition of these operators is provided in [3]), and we consider the
algorithm

Tpi1 = (I + 1AL Gt ) - (T Y1 42(Ens1, ) T T + Y141 (Eng1, )

where (&,) is a sequence of independent copies of . In the manuscript [6], this algorithm is
referred to as the Stochastic Passty’s Algorithm. For any of the operators A;(s,-), let

Ai() = / Ai(s, ) p(ds)

and assume that the monotone operator > A; is maximal®. Still considering that (v, ) € £2\ ¢!
and assuming that Z2 = Z (ZlL A;) is nonempty, the purpose of these notes is to show that
under some mild conditions, the sequence (z,,) converges almost surely to a random variable
U supported by Z.

In these notes, we shall confine ourselves to the case L = 2. For L > 2, the proofs are
tedious without being essentially different from the case L = 2. Let us define the sets S; for
i = 1,2 similarly as in [3] (in general, we shall reuse the notations of that paper, just adding
the index i to specify which operator we are dealing with).

The following proposition is the analogue of [2, Prop. 1] or [3, Prop. 2.

'The issue of the maximality of the .A; was studied in [3]. The maximality of a finite sum of maximal
monotone operators is a classical question in monotone operator theory, see [4] or [1].



Proposition 0.1. Assume that Z # (). Assume moreover that there exists x, € Z such that
the set

RQ(CC*) = {(9017 QOQ) € 51241(,@*) X 8312(.71.*) : /(801 + 902) d/_,L = 0}
is not empty. Then
1. The sequence (x,,) is bounded almost surely and in L.

2. It holds that

B[S 92 [ (s (vl + [ Ane, (500 = o1 Aty (50)) ) )] < .
n

3. The sequence (||x, — z4||)n converges almost surely.

Proof. Observing that

Tnt+1 = J2,’Yn+1 (’Sn—i-la Jl,’yn+1 (’En—i-la xn))
= J2,’Yn+1 (£n+17 Tn — '7n+1A1,’Yn+1 (£n+17 $n))

=Tn — Y1 A1 7ms1 Gnt 1 Tn) — V142400 Gt 1, Tn — Y1 A1 4000 Ent1, Tn)),
writing
=%, Y=Tnr1s Aty = Ay, (Engr o)
and Ao~ = Ao (Entts Tn — Y1 A1, Ent1, Tn))
and expanding
[Znt1 — x*HQ = [|zn — x*HZ + 2(Tn41 — T, Tn — Tx) + [|Tny1 — an2 )
we obtain

Znr1 = 2ull? = llzn — 2l = 29( A1, 0 — 24) = 29(A2y, 20 — @) + 92 A1y + Aoy ||
= |zn =zl — 29 X1 — 29Xz + 97 X

Considering the functions ¢ and ¢ specified in the statement, and writing Ji y = J1 4, (§nt1, Tn))
and Jp, = J27»Yn+l(§n+1, Ty — *yn+1A17%+1(§n+1, xn)), we have

X = (Al,'y - 1(8), J1y— Ty) + 7<A1,'y —o1(8), Al,'y> +{p1(§), Tn — )
> YA )12 = (p1(€), Ary) + (#1(8), 2n — )

by the monotonicity of A;(s,-), and

Xo = (A2 — 92(8), Joy — ) + ¥(A2y — 92(§), A2y) + V(A2 — 02(E), A1) + (p2(§), T — 74)
> 7<A27’Y - @2(6)7 AQ,'y> + ’7<A2,’y - @2(6)7 Al,'y> + <<P2(§)7 Tn — 55*)
= YAz |1> = (pa(€), A2 ) + (A2, ALy) — V(p2(€), ALy) + (2(), Tn — m4)



by the monotonicity of As(s,-). By expanding the term X3, we obtain altogether

Zn41 = 2all® < llen — 2l =72 ([Aa P + A2y [1%) + 29 {p1(€) + 92(€), ALy) + 29%(02(€), A2,y)
- 27<901 (f) + 902(6)7 Tn — $*>

<l — | =21 = B7H)([|Ar,
- 27<<101 (5) + ()02(€)a Tn — 55*)

where we used the inequality |(a,b)| < (8/2)|la|? + ||b]|?/(28), with 8 > 0 being otherwise

arbitrary.
By assumption,

24+ [|A2411%) +72Bler 11 + 01 (6) + w2(E)IIP)

/(||901(8)||2 +[lp1(s) + pa(s)[1?) p(ds) < oo.
Moreover E,,{(¢1({n+1) + p2(&nt1)s n — +) = 0. Thus,
Ep||zn1 — -77*”2 < lzn — x*HZ

2= 57 [ (At (8 P 8580 = i1 A1 520 ) ) )

+ C”}%H.
Choose 8 > 1. By the supermartingale convergence theorem along with the assumptions
(7n) € £2, the conclusions follow. O
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