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Abstract

In this paper, a distributed stochastic approximation algorithm is studied. Applications of such

algorithms include decentralized estimation, optimization, control or computing. The algorithm consists

in two steps: a local step, where each node in a network updates a local estimate using a stochastic

approximation algorithm with decreasing step size, and a gossip step, where a node computes a local

weighted average between its estimates and those of its neighbors. Convergence of the estimates toward

a consensus is established under weak assumptions. The approach relies on two main ingredients: the

existence of a Lyapunov function for the mean field in the agreement subspace, and a contraction

property of the random matrices of weights in the subspace orthogonal to the agreement subspace. A

second order analysis of the algorithm is also performed under the form of a Central Limit Theorem.

The Polyak-averaged version of the algorithm is also considered.

I. INTRODUCTION

Stochastic approximation has been a very active research area for the last sixty years (see

e.g. [1], [2]). The pattern for a stochastic approximation algorithm is provided by the recursion

θn = θn−1 + γnYn, where θn is typically a Rd-valued sequence of parameters, Yn is a sequence

of random observations, and γn is a deterministic sequence of step sizes. An archetypal example

of such algorithms is provided by stochastic gradient algorithms. These are characterized by the

fact that Yn = −∇g(θn−1) + ξn where g is a function to be minimized, and where (ξn)n≥0 is a

noise sequence corrupting the observations.

In the traditional setting, sensing and processing capabilities needed for the implementation of
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a stochastic approximation algorithm are centralized on one machine. Alternatively, distributed

versions of these algorithms where the updates are done by a network of communicating nodes

(or agents) have recently aroused a great deal of interest. Applications include decentralized

estimation, control, optimization, and parallel computing.

In this paper, we consider a network composed by N nodes (sensors, robots, computing

units, ...). Node i generates a Rd-valued stochastic process (θn,i)n≥1 through a two-step iterative

algorithm: a local and a so called gossip step. At time n:

[Local step] Node i generates a temporary iterate θ̃n,i given by

θ̃n,i = θn−1,i + γn Yn,i , (1)

where γn is a deterministic positive step size and where the Rd-valued random process (Yn,i)n≥1

represents the observations made by agent i.

[Gossip step] Node i is able to observe the values θ̃n,j of some other j’s and computes

the weighted average:

θn,i =
N∑
j=1

wn(i, j) θ̃n,j ,

where the wn(i, j)’s are scalar non-negative random coefficients such that
∑N

j=1 wn(i, j) = 1

for any i. The sequence of random matrices Wn := [wn(i, j)]Ni,j=1 represents the time-varying

communication network between the nodes. These matrices are called row-stochastic, since they

have non negative elements and satisfy Wn1 = 1 where 1 is the N×1 vector whose components

are all equal to one.

This paper analyzes the convergence of this algorithm under some mild assumptions. In

particular, due to the matrices Wn, the estimates will eventually reach the consensus in the

sense that the differences θn,i − θn,j between the estimates of any two nodes i and j almost

surely converge to zero as n→∞. Asymptotic fluctuations of the estimates will also be studied

through Central Limit Theorems.

There is a rich literature on distributed estimation and optimization algorithms, see [3],[4], [5],

[6], [7], [8] as a non exhaustive list. Among the first gossip algorithms are those considered in the

treatise [9] and in [10]. The case where the gossip matrices are random and the observations are

noiseless is considered in [11]. The authors of [7] solve a constrained optimization by also using

noiseless estimates. The contributions [6] and [8] consider the framework of linear regression
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models. In [12], stochastic gradient algorithms are considered in the case the matrices (Wn)n are

doubly stochastic gossip i.e. Wn1 = W T
n 1 = 1. This contribution assumes in addition that the

gradients are bounded and considers rather stringent assumptions on the conditional variances

of the observation noises.

The contributions of this paper are summarized as follows:

• The distributed stochastic approximation algorithm introduced above is studied under very

general assumptions. In particular, the algorithm is not required to be of gradient type.

Stability and convergence are established with the help of a Lyapunov function. It is shown

that the sequences of estimates at all nodes converge unanimously to an equilibrium set of

the noiseless recursion seen as a dynamical system.

• The random gossip matrices Wn are assumed to be row stochastic and, column stochastic in

the mean, i.e., Wn1 = 1 and 1TE[Wn] = 1T . Observe that the row stochasticity constraint

Wn1 = 1 is local, since it simply requires that each agent makes a weighted sum of

the estimates of its neighbors with weights summing to one. Alternatively, the column

stochasticity constraint 1TWn = 1T which is assumed in many contributions (see e.g.

[13], [7], [12], [14]) requires a coordination at the network level (nodes must coordinate

their weights). This constraint is not satisfied by a large class of gossip algorithms. As an

example, the well known broadcast gossip matrices [15] (see also Section II-B below) are

only column stochastic in the mean.

• The unanimous convergence of the estimates is also established in the case where the

frequency of information exchange between the nodes converges to zero at some controlled

rate. In practice, this means that matrices Wn become more and more likely to be equal

to identity as n → ∞. The benefits of this possibility in terms of power devoted to

communications are obvious.

• Finally, we establish a Central Limit Theorem (CLT) on the estimates in the case where the

Wn are doubly stochastic. We show in particular that the node estimates tend to fluctuate

synchronously for large n, i.e., the disagreement between the nodes is negligible at the CLT

scale. Interestingly, the distributed algorithm under study has the same asymptotic variance

as its centralized analogue.

• We also consider a CLT on the sequences averaged over time as introduced in [16]. We

show that averaging always improves the rate of convergence and the asymptotic variance.
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This paper is organized as follows. In Section II, we state and comment our basic assumptions.

The algorithm convergence is studied in Section III. The second order behavior of the algorithm is

described in Section IV. Section VI is devoted to the proofs. An application relative to distributed

estimation is described in Section V, along with some numerical simulations. The appendix

contains some technical details.

II. THE MODEL AND THE BASIC ASSUMPTIONS

Let us start by writing the distributed algorithm described in the previous section in a more

compact form. Define the RdN -valued random vectors θn and Y n by θn := (θTn,1, . . . , θ
T
n,N)T

and Y n := (Y T
n,1, . . . , Y

T
n,N)T where AT denotes the transpose of the matrix A. The algorithm

reduces to:

θn = (Wn ⊗ Id) (θn−1 + γnY n) , (2)

where ⊗ denotes the Kronecker product and Id is the d× d identity matrix.

Note that we always assume E|θ0|2 < ∞ throughout the paper, where | . | represents the

Euclidean norm.

Remark 1: Following [16], we also consider the averaged sequence (θ̄n)n≥1 given by

θ̄n,i =
1

n

n∑
k=1

θk,i (3)

at any instant n for node i. We will show in Section IV-B that this averaging technique improves

the convergence rate of the distributed stochastic approximation algorithm. Similarly, we note

θ̄n := (θ̄Tn,1, . . . , θ̄
T
n,N)T . In this paper, we analyze the asymptotic behavior of both sequences θ̄n

and θn as n→∞.

A. Observation and Network Models

Let (µθ)θ∈RdN be a family of probability measures on RdN endowed with its Borel σ-field

B(RdN) such that for any A ∈ B(RdN), θ 7→ µθ(A) is measurable from B(RdN) to B([0, 1])

where B([0, 1]) denotes the Borel σ-field on [0, 1]. For any θ ∈ RdN , we denote by Eθ the

expectation with respect to (w.r.t.) the distribution µθ.

We consider the case when the random variables (r.v.) (Y n,Wn)n≥1 are defined on a filtered

probability space (Ω,A,P, (Fn)n≥0) and satisfy

March 8, 2012 DRAFT



5

Assumption 1: a) (Wn)n≥1 is a sequence of N × N random matrices with non-negative

elements such that:

• Wn is row stochastic: Wn1 = 1,

• E(Wn) is column stochastic: 1TE(Wn) = 1T ,

b) For any positive measurable functions f, g and any n ≥ 0,

E[f(Wn+1)g(Y n+1)|Fn] = E[f(Wn+1)]Eθn [g(Y )] . (4)

c) The sequence (Wn)n≥1 is identically distributed and the spectral norm ρ of matrix E(W T
1 (IN−

11T/N)W1) satisfies ρ < 1.

Assumptions 1a) and 1c) capture the properties of the gossiping scheme within the network.

Following the work of [11], random gossip is assumed in this paper. Assumption 1a) has been

commented in the introduction. The assumption on the spectral norm in Assumption 1c) is a

connectivity condition of the underlying network graph which will be discussed in more details

in Section II-B. Assumption 1b) implies that (i) the r.v. Wn and Yn are independent conditionally

to the past, (ii) the r.v. (Wn)n≥1 are independent and (iii) the conditional distribution of Y n+1

given the past is µθn .

It is also assumed that the step-size sequence (γn)n≥1 in the stochastic approximation scheme

(1) satisfies the following conditions which are rather usual in the framework of stochastic

approximation algorithms [2]:

Assumption 2: The deterministic sequence (γn)n≥1 is positive and such that limn γn/γn+1 = 1,∑
n γn =∞ and

∑
n γ

2
n <∞.

B. Illustration: Some Examples of Gossip Schemes

We describe two standard gossip schemes so called pairwise and broadcast schemes. The

reader can refer to [17] for a more complete picture and for more general gossip strategies. The

network of agents is represented as a non-directed graph (E,V) where E is the set of edges and

V is the set of N vertices.

1) Pairwise Gossip: This example can be found in [11] on average consensus (see also [18]).

At time n, two connected nodes – say i and j – wake up, independently from the past.

Nodes i and j compute the weighted average θn,i = θn,j = 0.5θ̃n,i + 0.5θ̃n,j; and for k /∈ {i, j},

the nodes do not gossip: θn,k = θ̃n,k. In this example, given the edge {i, j} wakes up, Wn is
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equal to IN − (ei − ej)(ei − ej)T/2 where ej denotes the ith vector of the canonical basis in

RN ; and the matrices (Wn)n≥0 are i.i.d. and doubly stochastic. Assumption 1a) is obviously

satisfied. Conditions for Assumption 1c) can be found in [11]: the spectral norm ρ of the matrix

E(Wn(IN − 11T/N)W T
n ) is in [0, 1) if and only if the weighted graph (E,V,W) is connected,

where the wedge {i, j} is weighted by the probability that the nodes i, j communicate.

2) Broadcast Gossip: This example is adapted from the broadcast scheme in [15]. At time n,

a node i wakes up at random with uniform probability and broadcasts its temporary update θ̃n,i

to all its neighbors Ni. Any neighbor j computes the weighted average θn,j = βθ̃n,i+(1−β)θ̃n,j .

On the other hand, the nodes k which do not belong to the neighborhood of i (including i itself)

sets θn,k = θ̃n,k. Note that, as opposed to the pairwise scheme, the transmitter node i does not

expect any feedback from its neighbors. Then, given i wakes up, the (k, `)th component of Wn

is given by:

wn(k, `) =


1 if k /∈ Ni and k = ` ,

β if k ∈ Ni and ` = i ,

1− β if k ∈ Ni and k = ` ,

0 otherwise.

This matrix Wn is not doubly stochastic but 1TE(Wn) = 1T (see for instance [15]). Thus, the

matrices (Wn)n≥1 are i.i.d. and satisfy the assumption 1a). Here again, it can be shown that the

spectral norm ρ of E(Wn(IN − 11T/N)W T
n ) is in [0, 1) if and only if (E,V) is a connected

graph (see [15]).

III. CONVERGENCE RESULTS

In this section, we address the asymptotic behavior when n→∞ of the algorithm (2) and of

its averaged version (3). We prove in Theorem 1 that all agents eventually reach an agreement

on the value of their estimate: the limit points of (θn)n≥1 (resp. (θ̄n)n≥1) given by (2) (resp.

(3)) are of the form 1⊗ θ?.

A. Notations

Denote by |x| the Euclidean norm of a vector x and by ∇ the gradient operator (on Rd). Let

J := (11T/N)⊗ Id , J⊥ := IdN − J , (5)
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be resp. the projector onto the consensus subspace
{
1⊗ θ : θ ∈ Rd

}
and the projector onto the

orthogonal subspace. For any vector x ∈ RdN , define the vector of Rd

〈x〉 :=
1

N
(1T ⊗ Id)x , (6)

so that Jx = 1⊗〈x〉. Note that 〈x〉 = (x1 + · · ·+xN)/N in case we write x = (xT1 , . . . , x
T
N)T ,

xi in Rd. Set

x⊥ := J⊥x (7)

so that x = 1⊗ 〈x〉+ x⊥. We will refer to θ⊥,n := J⊥θn as the disagreement vector.

B. Assumptions on the distributions µθ

In order to derive the convergence results, assumptions on the probability measures (µθ)θ∈RdN

have to be introduced. Define the function h : Rd → Rd by:

h(θ) := E1⊗θ [〈Y 〉] . (8)

We shall refer to h as the mean field. The key ingredient to prove the convergence of a stochastic

approximation procedure is the existence of a Lyapunov function V for the mean field h i.e., a

function V : Rd → R+ such that ∇V T h ≤ 0.

It is assumed:

Assumption 3: There exists a function V : Rd → R+ such that:

a) V is differentiable and ∇V is a Lipschitz function.

b) For any θ ∈ Rd, ∇V (θ)Th(θ) ≤ 0, where h is given by (8).

c) There exists a constant C1, such that for any θ ∈ Rd, |∇V (θ)|2 ≤ C1(1 + V (θ)).

d) For any M > 0, the level set {θ ∈ Rd : V (θ) ≤M} is compact.

e) The set L := {θ ∈ Rd : ∇V (θ)Th(θ) = 0} is non-empty and bounded.

f) V (L) has an empty interior.

Assumption 3c) implies that the Lyapunov function V increases at most at a quadratic rate when

|θ| → ∞. Assumption 3f) is trivially satisfied when L is finite.

When h is a gradient field i.e. h = −∇g, a natural candidate for the Lyapunov function is

V = g. In this case, L = {∇g = 0}; when g is d-times differentiable, the Sard’s theorem implies

that g({∇g = 0}) has an empty interior. If g is strictly convex with optimum θ?, the function

θ 7→ |θ − θ?|2 is also a Lyapunov function. In this case, L = {θ?}.
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Assumption 4: a) There exists a constant C2 such that for any θ ∈ RdN ,

Eθ

[
|Y |2

]
≤ C2

(
1 + V (〈θ〉) + |θ⊥|2

)
, (9)∣∣Eθ〈Y 〉 − E1⊗〈θ〉〈Y 〉

∣∣ ≤ C2|θ⊥| . (10)

b) The function h is continuous on Rd.

Condition (9) implies that |h(θ)|2 ≤ C2(1 + V (θ)) (set θ = 1⊗ θ and use Jensen’s inequality).

Combined with assumption 3, this means that h(θ) is at most linearly increasing when |θ| → ∞.

C. Almost sure convergence of the distributed algorithm

Define d(θ, A) := inf{|θ − ϕ| : ϕ ∈ A} for any θ ∈ Rd and A ⊂ Rd.

Theorem 1: Under Assumptions 1, 2, 3 and 4, w.p.1,

lim
n→∞

d(〈θn〉,L) = 0 , lim
n
θ⊥,n = 0 , (11)

where L is given by Assumption 3. Moreover, w.p.1, (〈θn〉)n≥1 converges to a connected

component of L.

Theorem 1 states that, almost surely, the vector of iterates θn given by (2) converges to the

consensus space as n→∞ so that the network asymptotically achieves consensus.

The assumptions of Theorem 1 imply that w.p.1, the sequence {V (〈θn〉)}n≥0 converges to a

(random) point υ? ∈ V (L). This can be used to show that (〈θn〉)n≥0 converges to a connected

component of {θ ∈ L : V (θ) = υ?}. In general, this does not imply that (〈θn〉)n≥0 converges

w.p.1 to some (random point) θ? ∈ L. Note nevertheless that this holds true w.p.1 when L is

finite.

Along any sequence (θn)n≥0 converging to 1 ⊗ θ? for some θ? ∈ L, the Cesaro’s lemma

implies that the averaged sequence (θ̄n)n≥0 converges w.p.1 to 1⊗ θ?. Therefore, the averaged

sequence (3) and the original sequence (2) have the same limiting value, if any.

D. Case of a vanishing communication rate

Theorem 1 still holds true when the r.v. (Wn)n≥1 are not identically distributed. An interesting

example is when Wn is the identity matrix with a probability that tends to one as n→∞. From

a communication point of view, this means that the exchange of information between agents

becomes rare as n → ∞. This context is especially interesting in case of wireless networks,
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where it is often required to limit as much as possible the amount of communication between

the nodes.

In such cases, Assumption 1c) does no longer hold true. We prove a convergence result for the

algorithms (2) and (3) when the spectral norm ρn of the matrix Wn and the step size sequence

(γn)n≥1 satisfy the following assumption:

Assumption 5:
∑

n γn =∞ and there exists α > 1/2 such that:

lim
n→∞

nαγn = 0 , lim
n→∞

n1+αγn = +∞ , (12)

lim inf
n→∞

1− ρn
nαγn

> 0 , (13)

where ρn is the spectral norm of the matrix E(W T
n (IN − 11T/N)Wn).

Note that under Assumption 5, limn n(1−ρn) = +∞. A typical framework where this assumption

is useful is the following. Let (Bn)n be a Bernoulli sequence of independent r.v. with P(Bn =

1) = pn and lim infn pn/(n
αγn) = +∞: replace the matrices Wn described by Assumption 1

with BnWn + (1−Bn)IN . Here pn represents the probability that a communication between the

nodes takes place at time n.

We also have
∑

n γ
2
n < ∞ so that the step-size sequence (γn)n≥1 satisfies the standard

conditions for stochastic approximation scheme to converge.

An example of sequences (γn)n≥1, (ρn)n≥1 satisfying Assumption 5 is given by 1−ρn = a/nη

and γn = γ0/n
ξ with η, ξ such that 0 ≤ η < ξ − 1/2 ≤ 1/2. In particular, ξ ∈ (1/2, 1] and

η ∈ [0, 1/2).

When the r.v. (Wn)n≥1 are i.i.d., the spectral norm ρn is equal to ρ for any n, and (13) implies

ρ < 1: one is back to Assumption 1c). From this point of view, Assumption 5 is weaker than

Assumption 1c). Nevertheless, stronger constraints than Assumption 1c) are needed on the step

size (γn)n≥1.

When substituting Assumption 1c) by Assumption 5, we have

Theorem 2: The statement of Theorem 1 remains valid under Assumptions 1a-b), 3, 4 and 5.

Theorem 2 is proved in Section VI-C.

IV. CONVERGENCE RATES

In this section, we derive the convergence rate in L2 of the disagreement sequence (θ⊥,n)n

defined θ⊥,n := J⊥θn (see (5) and (7)). We also derive Central Limit Theorems for the
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sequences (θn)n and (θ̄n)n: we show that averaging always improves the convergence rate and

the asymptotic variance.

A. Convergence rate of the disagreement vector θ⊥,n

Whereas Theorem 1 states that θ⊥,n → 0 almost surely, Theorem 3 provides an information

on the convergence rate: θ⊥,n tends to zero in L2 at rate 1/γn.

Theorem 3: Under Assumptions 1, 2, 3 and 4,

γ−2
n E

(
|θ⊥,n|2

)
≤ ρ C

(1−√ρ)2
+O

(
ρn/2γ−2

n

)
(14)

where ρ is given by Assumption 1c) and C := lim supn→∞ E(|Y⊥,n|2) is finite.

B. Central Limit Theorems

We derive Central Limit Theorems for sequences (θn)n and (θ̄n)n converging to a point 1⊗θ?
for some θ? ∈ L. To that goal, we restrict our attention to the case when the matrix (Wn)n are

doubly stochastic i.e. 1TWn = 1T . The general case is far more technical and out of the scope

of this paper. We also assume that the point θ? and the r.v. Y satisfy

Assumption 6: a) θ? ∈ L.

b) The mean field h : Rd → Rd given by (8) is twice continuously differentiable in a neighbor-

hood of θ?.

c) ∇h(θ?) is a Hurwitz matrix i.e. the largest real part of its eigenvalues is −L for some L > 0.

Assumption 7: a) There exist δ > 0 and τ > 0 such that sup|θ−1⊗θ?|≤δ Eθ [|〈Y 〉|2+τ ] <∞.

b) The function θ 7→ Eθ

[
〈Y 〉〈Y 〉T

]
is continuous in a neighborhood of 1⊗ θ?.

We finally strengthen the assumptions on the step-size sequence (γn)n≥0 and assume that

Assumption 8: a) (γn)n is a positive deterministic sequence such that either log(γk/γk+1) =

o(γk), or log(γk/γk+1) ∼ γk/γ? for some γ? > 1/(2L).

b)
∑

n γn =∞ and
∑

n γ
2
n <∞.

c) limn nγn = +∞ and

lim
n

1√
n

n∑
k=1

γ
−1/2
k

∣∣∣∣1− γk
γk+1

∣∣∣∣ = 0 , lim
n

1√
n

n∑
k=1

γk = 0 .

The step size γn ∼ γ?/n
ξ satisfies Assumptions 8a-b) for any 1/2 < ξ ≤ 1 since log(γk/γk+1) ∼

ξ/k. Similarly, if γn ∼ γ?/n, Assumption 8a) holds provided that γ? > (1/2L). Observe that
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when the sequence (γn)n is ultimately non-increasing, then the condition limn nγn = +∞ implies

limn

√
n
−1∑n

k=1 γ
−1/2
k |1− (γk/γk+1)| = 0 (see e.g. [19, Theorem 26, Chapter 4]).

Set

Υ := E1⊗θ?
[
〈Y 〉〈Y 〉T

]
− E1⊗θ? [〈Y 〉]E1⊗θ? [〈Y 〉]T .

Theorem 4: Let Assumptions 1, 3, 4, 6, 7, 8a-b) hold true. Assume in addition that 1TWn =

1T w.p.1. Then under the conditional probability P(·| limk θk = 1 ⊗ θ?), the sequence of r.v.

(γ
−1/2
n (θn − 1 ⊗ θ?))n≥0 converges in distribution to 1 ⊗ Z where Z is a centered Gaussian

distribution with covariance matrix Σ solution of the Lyapunov equation: ∇h(θ?)Σ + Σ∇h(θ?)
T = −Υ if log(γk/γk+1) = o(γk) ,

(I + 2γ?∇h(θ?)) Σ + Σ
(
I + 2γ?∇h(θ?)

T
)

= −Υ if log(γk/γk+1) ∼ γk/γ? .
The proof of Theorem 4 is postponed to Section VI-E.

The asymptotic variance can be compared to the asymptotic variance in a centralized algorithm:

formally, such an algorithm is obtained by setting Wn = 11T/N⊗Id. Interestingly, the distributed

algorithm under study has the same asymptotic variance as its centralized analogue.

Theorem 4 shows that when γn ∼ γ?/n
α for some α ∈ (1/2, 1], then the rate in the CLT is

O(1/nα/2). Therefore, the maximal rate of convergence is achieved with γn ∼ γ?/n and in this

case, the rate is O(1/
√
n). Unfortunately, the use of such a rate necessitates to choose γ? as a

function of ∇h(θ?) (through the upper bound L, see Assumption 8a)), and in practice ∇h(θ?)

is unknown. We will show in Theorem 5 that the optimal rate O(1/
√
n) can be reached by

applying the averaged procedure (3) with γn ∼ γ?/n
α whatever α ∈ (1/2, 1).

A second question is the scaling of the observations in the local step. Observe that during

each local step of the algorithm (see (1)), each agent can use a common invertible matrix gain

Γ and update the temporary iterate θ̃n,i as

θ̃n,i = θn−1,i + γn ΓYn,i . (15)

It is readily seen that the new mean field h̃ : θ 7→ E1⊗θ[〈(Γ ⊗ IN)Y 〉] is equal to Γh and

Assumptions 3 and 4 remain valid with (Y , h, V ) replaced by ((Γ⊗IN)Y ,Γh,Γ−1V ). Therefore,

introducing a gain matrix Γ does not change the limiting points of the algorithm (2) (and thus

(3)) but changes the asymptotic variance. In the case of the optimal rate in Theorem 4 (i.e. the

case γn ∼ γ?/n for some γ? > 1/(2L)), it can be proved following the same lines as in [20]
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(see also [1, Proposition 4, Chapter 3, Part I]), that the optimal choice of the gain matrix is

Γ? = −γ−1
? ∇h(θ?)

−1. By optimal, we mean that, when weighting the observations by Γ? as

in (15), the asymptotic covariance matrix Σ? obtained through Theorem 4 is smaller than the

limiting covariance ΣΓ associated with any other gain matrix Γ i.e., ΣΓ − Σ? is nonnegative.

Moreover, Σ? is equal to:

γ−1
? ∇h(θ?)

−1Υ∇h(θ?)
−T .

Otherwise stated, (
√
n (〈θn〉− θ?))n≥0 converges to a centered Gaussian vector with covariance

matrix ∇h(θ?)
−1Υ∇h(θ?)

−T .

In practice, ∇h(θ?) is unknown and such a choice of gain matrix cannot be plugged in

the algorithm (2). Fortunately, Theorem 5 shows that this optimal variance can be reached by

averaging the sequence (θ̄n)n.

Note that these two major features of averaging algorithms for stochastic approximation

(optimal convergence rate and optimal limiting covariance matrix) has been pointed out by

[16] (see also [21]) in case of centralized algorithms.

Theorem 5: Let (γn)n be a deterministic positive sequence such that log(γk/γk+1) = o(γk).

Let Assumptions 1, 3, 4, 6, 7, 8b-c) hold true. Assume in addition that 1TWn = 1T w.p.1. Then

under the conditional probability P(·| limk θk = 1⊗θ?), the sequence of r.v. (
√
n (θ̄n−1⊗θ?))n≥0

converges to 1⊗ Z̄ where Z̄ is a centered Gaussian distribution with covariance matrix

∇h(θ?)
−1 Υ∇h(θ?)

−T .

The proof of Theorem is postponed to Section VI-F.

V. AN APPLICATION FRAMEWORK

A. Distributed estimation

To illustrate the results, we describe in this section a distributed parameter estimation algorithm

which converges to a limit point of the centralized Maximum Likelihood (ML) estimator. Assume

that node i receives at time n the Rmi-valued component Xn,i of the i.i.d. random process

Xn = (XT
n,1, . . . X

T
n,N)T ∈ R

∑
mi , where X1 has the unknown density f∗(x) with respect to the

Lebesgue measure. The system designer considers that the density of X1 belongs to a family

{f(θ,x)}θ∈Rd . When f(θ,x) satisfies some regularity and smoothness conditions, the limit points

of the sequences θ̂n that maximize the log-likelihood function Ln(θ) =
∑n

k=1 log f(θ,Xk)
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are minimizers of the Kullback-Leibler divergence D(f∗ ‖ f(θ, ·)) [22]. Our aim is to design

a distributed and iterative algorithm that exhibits the same asymptotic behavior in the case

where f(θ,x) is of the form f(θ,x) =
∏N

i=1 fi(θ, xi) where x = (xT1 , . . . , x
T
N)T is parti-

tioned similarly to X1. To that purpose, Algorithm (2) is implemented with the increments

Yn+1,i = ∇θ log fi (θn,i, Xn+1,i) where ∇θ is the gradient with respect to θ. In some sense,

log fi(θn,i, Xn+1,i) is a local log-likelihood function that is updated by node i at time n+ 1 by

a gradient approach. Writing θ = (θT1 , . . . , θ
T
N)T , the distribution µθ introduced in Section II-A

is defined by the identity

Eθ[g(Y )] =

∫
g
(
(∇θ log f1(θ1, x1)T , . . . ,∇θ log fN(θN , xN)T )T

)
f∗(x) dx

for every measurable function g : RNd → R+. The associated mean field given by Equation (8)

will be

h(θ) =
1

N

∫
∇θ log f(θ,x) f∗(x) dx.

Since h(θ) = −N−1∇θD(f∗ ‖ f(θ, ·)) (assuming ∇θ and
∫

can be interchanged), our algorithm

is of a gradient type with V (θ) = D(f∗ ‖ f(θ, ·)) as the natural Lyapunov function. Under

the assumptions of Theorem 1 or Theorem 2, we know that the θn,i, i = 1, . . . , N converge

unanimously to L = {θ : ∇V (θ) = 0}. Here, we note that under some weak extra assumptions

on the “noise” of the algorithm, it is possible to show that unstable points such as local maxima

or saddle points of V (θ) are avoided (see for instance [23], [24], [25]). Consequently, the first

order behavior of the distributed algorithm is identical to that of the centralized ML algorithm.

We now consider the second order behavior of these algorithms, restricting ourselves to the case

where f∗(x) =
∏N

i=1 fi(θ?, xi) for some θ? ∈ Rd. With some conditions on f∗, it is well known

that any consistent sequence θ̂n of estimates provided by the centralized ML algorithm satisfies
√
n(θ̂n− θ?)

D−→ N (0, F (θ?)
−1) where D−→ stands for the convergence in distribution, N (0,Σ)

represents the centered Gaussian distribution with covariance Σ and

F (θ?) =
N∑
i=1

∫
∇θ log fi(θ?, xi)∇θ log fi(θ?, xi)

T fi(θ?, xi) dxi

is the Fisher information matrix of f(θ?, ·) [22, Chap. 6]. We now turn to the distributed algorithm

and to that end, we apply Theorems 4 and 5. Matrices ∇h(θ?) and Υ found in the statements

of these theorems coincide in our case with −N−1F (θ?) and N−2F (θ?) respectively (same

value of Υ for both theorems). Starting with the averaged case, Theorem 5 shows that on the
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set {limn θn = 1 ⊗ θ?}, the averaged sequence θ̄n satisfies
√
n(θ̄n − 1 ⊗ θ?)

D−→ 1 ⊗ Z

where Z ∼ N (0, F (θ?)
−1). This implies that the averaged algorithm is asymptotically efficient,

similarly to the centralized ML algorithm. Let us consider the non averaged algorithm. In order

to make a fair comparison with the centralized ML algorithm, we restrict the use of Theorem

4 to the case where γn has the form γn = γ?/n. In that case, Assumption 8 is verified when

γ? > N/(2λmin(F (θ?))) where λmin(F (θ?)) is the smallest eigenvalue of F (θ?). Theorem 4

shows that on the set {limn θn = 1 ⊗ θ?}, the sequence of estimates θn satisfies
√
n(θn −

1 ⊗ θ?)
D−→ 1 ⊗ Z where Z ∼ N (0,Σ), and where Σ is the solution of the matrix equation

Σ(2N−1γ?F (θ?)−Id)+(2N−1γ?F (θ?)−Id)Σ = 2γ2
?N
−2F (θ?). Solving this equation, we obtain

Σ = γ2
?N
−2F (θ?)(2γ?N

−1F (θ?)− Id)−1. Notice that Σ− F (θ?)
−1 = F (θ?)

−1(2γ?N
−1F (θ?)−

Id)
−1(γ?N

−1F (θ?)− Id)2 > 0, which quantifies the departure from asymptotic efficiency of the

non averaged algorithm.

B. Application to source localization

The distributed algorithm described above is used here to localize a source by a collection of

N = 40 sensors. The unknown location of the source in the plane is represented by a parameter

θ? ∈ R2. The sensors are located in the square [0, 50] × [0, 50] as shown by Figure 1, and

they receive scalar-valued signals from the source (mi = 1 for all i). It is assumed that the

density of X1 ∈ RN is f?(x) =
∏N

i=1 fi(θ?, xi) where fi(θ?, ·) = N (1000/|θ? − ri|2, 10−2)

where ri ∈ R2 is the location of Node i. The fitted model is f(θ,x) =
∏N

i=1 fi(θ, xi) with

fi(θ, ·) = N (1000/|θ− ri|2, 10−2) (see [26] for a similar model). The model for matrices Wn is

the pairwise gossip model described in Section II-B. The step sequence γn is set to c1/n
0.6 for

n ≤ 10000 iterations, c2(log n/n)0.6 for 10000 < n ≤ 20000 and c3(log n/n)0.6 for n > 20000

with c1 < c2 < c3. Finally, the initial value θ0 ∈ R2N is chosen at random under the uniform

distribution on the square [0, 50]× [0, 50].

The convergence of the distributed algorithm to the consensus subspace is illustrated in

Figure 2. Four paths (starting from the same value θ0) are run and we display n 7→ (1/N)|θn−

1⊗θ?| for n ≤ 50000. Note the role of the step size sequence in the rate of convergence (compare

the definition of γn above and the changes in the slopes at time n = 10000 and n = 20000).
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VI. PROOFS

A. Notations

For a positive deterministic sequence (an)n≥1, o(an) stands for a deterministic R`-valued

sequence (xn)n≥1 such that limn→∞ a
−1
n |xn| = 0. For p > 0, we denote the Lp-norm of a

random vector X by ‖X‖p := E(|X|p)1/p. oLp(an) stands for any R`-valued r.v. (Xn)n≥1

such that limn→∞ a
−1
n ‖Xn‖p = 0; OLp(an) stands for any R`-valued r.v. (Xn)n≥1 such that

lim supn a
−1
n ‖Xn‖p < ∞; and Ow.p.1.(an) stands for any R`-valued r.v. (Xn)n≥1 such that

lim supn a
−1
n |Xn| is finite almost-surely.

We start with a preliminary lemma which will be crucial for most of the proofs.

B. Preliminary result

Lemma 1 (Agreement): Under Assumptions 1a-b), 2, 3a-c), 4a) and 5,

a)
∑

n≥1 E |θ⊥,n|
2 <∞ and (θ⊥,n)n≥1 converges to zero w.p.1.

b) supn≥1 EV (〈θn〉) <∞,

where 〈x〉 and x⊥ are given by (6) and (7).

Proof: Define un := E [|θ⊥,n|2] and vn := E [V (〈θn〉)] . We prove that there exist a constant

M > 0 and an integer n0 such that for any n ≥ n0:

un ≤ ρnun−1 + γnM
√
un−1(1 + un−1 + vn−1)1/2 + γ2

nM (1 + un−1 + vn−1) , (16)

vn ≤ vn−1 +Mun−1 + γnM
√
un−1 (1 + un−1 + vn−1)1/2 + γ2

nM(1 + un−1 + vn−1) . (17)

The proof is then concluded by application of Lemma 3 upon noting that under assumption 2,

the rate φn = n2α satisfies the conditions (29) and (30).

Proof of (16). As Wn1 = 1, we have J⊥(Wn ⊗ Id) = J⊥(Wn ⊗ Id)J⊥. As a consequence,

θ⊥,n = J⊥(Wn⊗Id)(θ⊥,n−1 +γnY n). We expand the square Euclidean norm of the latter vector:

|θ⊥,n|2 = (θ⊥,n−1 + γnY n)T ({W T
n (IN − 11T/N)Wn} ⊗ Id)(θ⊥,n−1 + γnY n) .

Integrate both sides of the above equation w.r.t. the r.v. Wn; by assumption 1b)

E[|θ⊥,n|2 |Fn−1,Y n] ≤ ρn|θ⊥,n−1 + γnY n|2 .
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Under Assumption 5, limn n(1 − ρn) = +∞: then, there exists n0 such that ρn < 1 for any

n ≥ n0. We obtain:

E[|θ⊥,n|2] ≤ ρnE[|θ⊥,n−1|2] + 2γnE[|θ⊥,n−1| |Y n|] + γ2
nE[|Y n|2] ,

for any n ≥ n0. From Cauchy-Schwartz inequality, E[|θ⊥,n−1| |Y n|] ≤
√
un−1(E[|Y n|2])1/2.

Thus,

un ≤ ρnun−1 + 2γn
√
un−1(E[|Y n|2])1/2 + γ2

nE[|Y n|2] .

By assumption 4a), we have the following estimate E[|Y n|2] ≤ C2 (1 + vn−1 + un−1). This

completes the proof of (16), for any constant M larger than 1 + C2.

Proof of (17). We use the following Taylor-Lagrange expansion of the Lyapunov function V

at point 〈θn〉. There exists θ̂n ∈ Rd such that |θ̂n − 〈θn−1〉| ≤ |〈θn〉 − 〈θn−1〉| and

V (〈θn〉) = V (〈θn−1〉) +∇V (θ̂n)T (〈θn〉 − 〈θn−1〉) .

Under Assumption 3a),∇V is a Lipschitz function. Thus, |∇V (θ̂n)−∇V (〈θn−1〉)| ≤ KLip|〈θn〉−

〈θn−1〉|, where KLip denotes the Lipschitz constant. Therefore,

V (〈θn〉) ≤ V (〈θn−1〉) +∇V (〈θn−1〉)T (〈θn〉 − 〈θn−1〉) +KLip|〈θn〉 − 〈θn−1〉|2 . (18)

We need to evaluate the difference 〈θn〉 − 〈θn−1〉. By (2),

〈θn〉 = (
1TWn

N
⊗ Id) (θn−1 + γnY n) .

Therefore,

〈θn〉 − 〈θn−1〉 =

(
1TWn − 1T

N
⊗ Id

)
θn−1 +

(
1TWn

N
⊗ Id

)
γnY n

=

(
1TWn − 1T

N
⊗ Id

)
θ⊥,n−1 +

(
1TWn

N
⊗ Id

)
γnY n , (19)

where the second equality is due to the fact that Wn is row-stochastic. Under Assumption 1a),

E(Wn) is doubly stochastic. Thus, using the assumption 1b):

E[〈θn〉 − 〈θn−1〉|Fn−1] = γnEθn−1〈Y n〉 . (20)

Plugging (20) into (18),

E[V (〈θn〉)|Fn−1] ≤ V (〈θn−1〉) + γn∇V (〈θn−1〉)TEθn−1〈Y n〉+KLipE[|〈θn〉 − 〈θn−1〉|2|Fn−1] .
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By the condition 3b), the quantity −∇V (〈θn−1〉)Th(〈θn−1〉) is positive; therefore,

E[V (〈θn〉)|Fn−1] ≤ V (〈θn−1〉) + γn∇V (〈θn−1〉)T (Eθn−1〈Y n〉 − h(〈θn−1〉))

+KLipE[|〈θn〉 − 〈θn−1〉|2|Fn−1] .

Using successively the conditions 4a) and 3c), we have the estimate

∇V (〈θn−1〉)T (Eθn−1〈Y n〉 − h(〈θn−1〉)) ≤ |∇V (〈θn−1〉)|C2|θ⊥,n−1|

≤
√
C1C2

√
1 + V (〈θn−1〉) |θ⊥,n−1| .

Using Cauchy-Schwartz inequality, the expectation of the above quantity is no larger than
√
C1C2

√
un−1(1 + vn−1). We obtain:

vn ≤ vn−1 + γn
√
C1C2

√
un−1(1 + un−1 + vn−1) +KLipE[|〈θn〉 − 〈θn−1〉|2] , (21)

where we used the fact that un−1 ≥ 0. We now need to find an estimate for E[|〈θn〉− 〈θn−1〉|2].

Using Minkowski’s inequality on (19),

E[|〈θn〉−〈θn−1〉|2]1/2 ≤ E

[∣∣∣∣(1TWn − 1T

N
⊗ Id

)
θ⊥,n−1

∣∣∣∣2
]1/2

+E

[∣∣∣∣(1TWn

N
⊗ Id

)
γnY n

∣∣∣∣2
]1/2

(22)

Focus on the first term of the RHS of the above inequality. Remark that

E[(W T
n 1− 1)(1TWn − 1T )|Fn−1] = E[W T

n 11
TWn]− 11T ,

where we used the assumption 1b) along with the fact that E(Wn) is doubly stochastic (see

the condition 1a)). Upon noting that the entries of Wn are in [0, 1] (as a consequence of

assumption 1a)), the spectral norm of E[W T
n 11

TWn] − 11T is bounded. Thus, there exists a

constant C ′ such that:

E

[∣∣∣∣(1TWn − 1T

N
⊗ Id

)
θ⊥,n−1

∣∣∣∣2
]
≤ C ′un−1 .

By similar arguments, there exists a constant C ′′ such that

E

[∣∣∣∣(1TWn

N
⊗ Id

)
γnY n

∣∣∣∣2
]
≤ C ′′γ2

n E|Y n|2

≤ C2C
′′γ2

n (1 + un−1 + vn−1)
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where we used assumption 4a). Putting this together with (22),

E[|〈θn〉 − 〈θn−1〉|2] ≤ (
√
C ′
√
un−1 + γn

√
C2C ′′

√
1 + un−1 + vn−1)2

≤ C(un−1 + γ2
n (1 + un−1 + vn−1) + γn

√
un−1(1 + un−1 + vn−1)) .

where C > 0 is some constant chosen large enough. Plugging the above inequality into (21),

vn ≤ vn−1 + (KLipC)un−1 + (
√
C1C2 +KLipC)γn

√
un−1(1 + un−1 + vn−1)

+KLipCγ
2
n (1 + un−1 + vn−1) .

This proves that (17) holds for any M chosen large enough.

Corollary 1 (of Lemma 1): Under the assumptions of Lemma 1, supn E [|Y n|2] <∞.

Proof: By Assumptions 1b) and 4a):

E
[
|Y n|2

]
= E

[
Eθn−1

[
|Y |2

]]
≤ C2

(
1 + E [V (〈θn−1〉)] + E

[
|θ⊥,n−1|2

])
. (23)

The proof is concluded by Lemma 1.

C. Proof of Theorems 1 and 2

We give the proof of Theorem 2; the proof of Theorem 1 is on the same lines and details are

omitted. By Lemma 1, (θ⊥,n)n≥1 converges to zero w.p.1 and in L2. Therefore, the study of the

whole vector θn is reduced to the analysis of its projection Jθn = 1⊗ 〈θn〉 onto the consensus

space. We now focus on the average 〈θn〉. The convergence of the sequence (〈θn〉)n≥1 is a direct

consequence of Lemma 2 along with [27, Theorems 2.2. and 2.3.].

Lemma 2: Under Assumptions 1a-b), 2, 3a-c), 4a) and 5, it holds:

〈θn〉 = 〈θn−1〉+ γnh(〈θn−1〉) + γnζn

with supn |
∑n

k=1 γkζk| <∞ almost-surely.

Proof: Eqs. (2) and (6) along with assumption 1a) yield:

〈θn〉 = 〈θn−1〉+ γn〈Zn〉 , where Zn := (Wn ⊗ Id)(Y n + γ−1
n θ⊥,n−1) (24)

upon noting that under Assumption 1a), (Wn⊗ Id)J = J . We write 〈Zn〉 = h(〈θn−1〉) + en+ ξn

where

en := 〈(Wn ⊗ Id)(Y n + γ−1
n θ⊥,n−1)〉 − Eθn−1 [〈Y 〉]

ξn := Eθn−1 [〈Y 〉]− E1⊗〈θn−1〉[〈Y 〉] .
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By Assumption 4a) and the inequality 2ab ≤ a2 + b2, there exists a constant C such that

E

∣∣∣∣∣∑
n≥1

γnξn

∣∣∣∣∣ ≤ C

(∑
n≥1

γ2
n +

∑
n≥1

E |θ⊥,n−1|2
)

. (25)

Therefore, the RHS in (25) is finite under the condition 2 and Lemma 1, thus implying that∑
n≥1 γnξn converges w.p.1.

Since E [en |Fn−1] = 0, the sequence (Sn :=
∑n

k=1 γkek)n≥1 is a martingale. We prove that it

converges almost surely by estimating its second order moment. For any k ≥ 1,

E
[
|Sk|2

]
≤

∑
n≥1

γ2
n E
[
|en|2

]
≤

∑
n≥1

γ2
n E
[
(Y n + γ−1

n θ⊥,n−1)TPn(Y n + γ−1
n θ⊥,n−1)

]
where we set Pn := N−2W T

n 11
TWn ⊗ Id. Note that Pn is independent of Yn conditionally to

Fn−1. Since Wn is a stochastic matrix, its spectral norm is bounded uniformly in n. Therefore,

there exists a constant C > 0 such that:

E
[
|Sn|2

]
≤ C

∑
n≥1

γ2
n E
[∣∣Y n + γ−1

n θ⊥,n−1

∣∣2] ≤ 2C
∑
n≥1

γ2
n E
[
|Y n|2

]
+ 2C

∑
n≥1

E
[
|θ⊥,n−1|2

]
.

By Lemma 1, Corollary 1 and Assumption 2 it follows that supn E [|Sn|2] is finite thus implying

that the martingale (Sn)n≥1 converges almost surely to a r.v. which is finite w.p.1. (see e.g. [28,

Corollary 2.2.]). This concludes the proof.

D. Proof of Theorem 3

Set Vn := (IN − 11T/N)Wn and for any 1 ≤ k ≤ n,

Φn,k := (Vn ⊗ Id)(Vn−1 ⊗ Id) · · · (Vk ⊗ Id) . (26)

Note that by Assumptions 1b-c),

‖Φn,kX‖2
2 = E[XTΦT

n−1,k(V
T
n Vn ⊗ Id)Φn−1,kX] = E[XTΦT

n−1,kE(V T
n Vn ⊗ Id)Φn−1,kX]

≤ ρ E[XTΦT
n−1,kΦn−1,kX] = ρ‖Φn−1,kX‖2

2 . (27)

From (2) and since J⊥(Wn⊗ Id) = J⊥(Wn⊗ Id)J⊥ = (Vn⊗ Id)J⊥ by Assumption 1a), it holds

for any n ≥ 1, θ⊥,n = (Vn ⊗ Id)(θ⊥,n−1 + γnY⊥,n). By induction,

θ⊥,n =
n∑
k=1

γkΦn,kY⊥,k + Φn,1θ⊥,0 (28)
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where Φn,k is defined by (26). By (27) and Assumption 1c), the second term in the RHS of (28)

is a OL2(ρn/2). We now consider the first term in the RHS of (28). Using Minkowski’s inequality

and Equation (27)

‖
n∑
k=1

γkΦn,kY⊥,k‖2 ≤
n∑
k=1

γk‖Φn,kY⊥,k‖2 ≤
n∑
k=1

γk
√
ρn−k+1‖Y⊥,k‖2 .

By [29, Result 178,pp.38], the RHS is upper bounded by C ρ(1−√ρ)−1 with C := lim supn→∞ ‖Y⊥,n‖2,

which is finite by Corollary 1. This concludes the proof.

E. Proof of Theorem 4

Assumption 2 implies that limn ρ
n/2γ−2

n = 0. Therefore, by Theorem 3, the sequence of

r.v. (γ
−1/2
n θ⊥,n)n converges in probability to zero. Since θn = 1 ⊗ 〈θn〉 + θ⊥,n, it remains to

prove that the sequence of r.v. (γ
−1/2
n (〈θn〉 − θ?))n≥0 converges in distribution to Z (under the

conditional distribution given the event {limq θq = 1⊗ θ?} which, under Lemma 1 is the same

as the conditional distribution given the event {limq〈θq〉 = θ?}). To that goal, we write

〈θn〉 − θ? = 〈θn−1〉 − θ? + γnh (〈θn−1〉) + γnen1|θn−1−θ?|≤δ + γnξn + γnen1|θn−1−θ?|>δ

where ξn := Eθn−1 [〈Y 〉]− E1⊗〈θn−1〉[〈Y 〉] and

en := 〈(Wn ⊗ Id)(Y n + γ−1
n θ⊥,n−1)〉 − Eθn−1 [〈Y 〉] = 〈Y n〉 − Eθn−1 [〈Y 〉] ,

since 1TWn = 1T . We then check the conditions C1 to C4 of [20, Theorem 1] (see also [30,

Theorem 1]). Under the assumptions 6 and 8a), the conditions C1 and C4 of [20, Theorem 1]

are satisfied. We now prove C2b: there exists a constant C such that

E
[
|en+1|2+τ1|θn−1⊗θ?|≤δ

]
≤ C E

[
|Eθn [〈Y 〉] |2+τ1|θn−1⊗θ?|≤δ

]
+ C E

[
|〈Y n+1〉|2+τ1|θn−1⊗θ?|≤δ

]
≤ 2C sup

|θ−1⊗θ?|≤δ
Eθ

[
|〈Y 〉|2+τ

]
and the RHS is finite under Assumption 7. For C2c, we have

E
[
en+1e

T
n+1|Fn

]
1|θn−1⊗θ?|≤δ =

{
Eθn

[
〈Y 〉〈Y 〉T

]
− Eθn [〈Y 〉] (Eθn [〈Y 〉])T

}
1|θn−1⊗θ?|≤δ.

By Assumptions 4 and 7, this term converges w.p.1 to Υ on the set {limk θk = 1⊗θ?} and since

{limk θk = 1⊗ θ?} = {limk〈θk〉 = θ?} w.p.1 (as a consequence of Lemma 1), it also converges

w.p.1 to Υ on the set {limk〈θk〉 = θ?}. This concludes the proof of C2.
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We now consider the condition C3 of [20] with rn = ξn+en1|θn−1−1⊗θ?|>δ. By Assumption 4a),

Theorem 3 and Lemma 1, there exists a constant C such that

γ−1/2
n E

[
|ξn|1limk〈θk〉=θ?

]
= γ−1/2

n E [|ξn|1limk θk=1⊗θ? ] ≤ C
(
γ−1
n E

[
|θ⊥,n|2

])1/2

and the RHS tends to zero as n→∞. On the set {limn〈θn〉 = θ?} (which, as discussed above,

is equal w.p.1 to the set {limn θn = 1⊗ θ?}), the r.v. en1|θn−1−1⊗θ?|>δ is null for all large n so

that γn
∑n

k=1 ek1|θk−1−1⊗θ?|>δ is Ow.p.1oL1(1). This concludes the proof of the condition C3 of

[20], and the proof of Theorem 4.

F. Proof of Theorem 5

We preface the proof by a preliminary result, established by [20, Theorem 2] (see also [19]

for a similar result obtained under stronger assumptions).

Theorem 6: Let (γn)n be a deterministic positive sequence such that log(γk/γk+1) = o(γk)

and satisfying Assumption 8b-c). Consider the random sequence (un)n given by

un+1 = un + γn+1h(un) + γn+1en+1 + γn+1ξn+1 , u0 ∈ Rd ,

where

AVER 1:

(a) u? is a zero of the mean field: h(u?) = 0.

(b) the mean field h : Rd → Rd is twice continuously differentiable (in a neighborhood of u?)

and ∇h(u?) is a Hurwitz matrix.

AVER 2:

(a) (en)n≥1 is a Fn-adapted martingale-increment sequence.

(b) There exist τ > 0 and δ ∈ (0,+∞] s.t. supk E
[
|ek|2+τ1|uk−1−u?|≤δ

]
<∞.

(c) There exists a positive definite (random) matrix U? such that on the set {limq uq = u?},

limk E
[
eke

T
k |Fk−1

]
= U? almost-surely.

AVER 3: (ξn)n≥1 is a Fn-adapted sequence s.t.

(a) γ−1/2
n |ξn|1limq uq=u? = Ow.p.1(1)OL2(1)

(b) n−1/2
∑n

k=0 ξk+11limq uq=u? converges to zero in probability.

March 8, 2012 DRAFT



22

Then for any t ∈ Rd,

lim
n

E

[
1limq uq=θ? exp

(
i
√
n tT

(
1

n

n∑
k=1

uk − u?

))]

= E
[
1limq uq=u? exp

(
−1

2
tT∇h(u?)

−1 U? ∇h(u?)
−T t

)]
.

Proof of Theorem 5. By Theorem 3 and Assumption 8c),
√
N
−1∑N

n=1 θ⊥,n converges in L2 to

zero. Since θn = θ⊥,n+1⊗〈θn〉, we now prove a CLT for the averaged sequence N−1
∑N

n=1〈θn〉.

To that goal, we check the assumptions AVER1 to AVER3 of Theorem 6 with un = 〈θn〉 and

en, ξn defined as in the proof of Theorem 4. Under Assumption 6, AVER1 holds. AVER2 is

proved along the same lines as in the proof of Theorem 4. Finally, by Assumption 4a) and

Theorem 3, γ−1
n E [|ξn|21limk θk=1⊗θ? ] = O(γn); and

`−1/2
∑̀
n=1

E [|ξn|1limk θk=1⊗θ? ] ≤ C `−1/2
∑̀
n=1

γn .

The RHS tends to zero under Assumption 8c) thus showing AVER3.

APPENDIX

Lemma 3: Let (γn)n≥0, (ρn)n≥0 be respectively a positive and a [0, 1]-valued sequence such

that
∑

n γ
2
n <∞; and un, vn be two real sequences such that (16) and (17) hold true for n ≥ n0,

and un0 + vn0 < ∞. Then: i) supn vn < ∞, ii) lim supn φnun < ∞ for any positive sequence

(φn)n≥0 such that

lim sup
n

(
γn
√
φn +

φn−1

φn

)
<∞ , lim inf

n
(γn
√
φn)−1

(
φn−1

φn
− ρn

)
> 0 , (29)∑

n

φ−1
n <∞ . (30)

Remark 2: If the sequences (γn, ρn)n≥0 are such that

lim sup
n

(
γn
γn−1

+
1− ρn−1

1− ρn

)
<∞ , lim inf

n

1

1− ρn

(
(1− ρn−1)2

(1− ρn)2

γ2
n

γ2
n−1

− ρn
)
> 0 ,(31)∑

n

γ2
n(1− ρn)−2 <∞ , (32)

then the conditions (29) and (30) are satisfied with φn := (1− ρn)2/γ2
n. Examples of sequences

satisfying these conditions are ρn = 1− a/nη, γn = γ0/n
ξ with 0 ≤ η < 1 ∧ (ξ − 1/2).
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Proof: • Set γ̃n = (1 + M)γn. Define two sequences (an, bn)n≥n0 such that an0 = bn0 =

max(un0 , vn0) and for each n ≥ n0 + 1:

an = ρnan−1 + γ̃n
√
an−1 (1 + an−1 + bn−1)1/2 + γ̃2

n(1 + an−1 + bn−1) (33)

bn = bn−1 +Man−1 + γ̃n
√
an−1(1 + an−1 + bn−1)1/2 + γ̃2

n(1 + an−1 + bn−1) . (34)

It is straightforward to show by induction that un ≤ an and vn ≤ bn for any n ≥ n0. In addition,

bn = bn−1 + an + (M − ρn)an−1. Thus for n ≥ n0 + 1,

bn = an +
n−1∑
k=n0

(M + 1− ρk+1)ak .

Define An := (M + 1)
∑n

k=n0
ak, n ≥ n0. The above equality implies that an ≤ bn ≤ An. As a

consequence, Eq. (33) implies:

an ≤ ρnan−1 + γ̃n
√
an−1 (1 + 2An−1)1/2 + γ̃2

n(1 + 2An−1) . (35)

As (An)n≥n0 is a positive increasing sequence, for any n ≥ n0 + 1,

an
An
≤ ρn

an−1

An−1

+ γ̃n

√
an−1

An−1

(
1

An0

+ 2

)1/2

+ γ̃2
n

(
1

An0

+ 2

)
. (36)

• Define L2 := 1/An0 + 2, and cn := φnan/An. By (36), for any n ≥ n0 + 1,

cn ≤ ρn
φn
φn−1

cn−1 + Lγ̃n
√
cn−1φn

√
φn
φn−1

+ L2 γ̃2
nφn, (37)

and under the assumption (29), there exist n1 ≥ n0 and a constant ξ > 0 such that for any

n ≥ n1, √
φn−1

φn
Lξ
{

1 + ξLγ̃n
√
φn−1

}
≤
(
φn−1

φn
− ρn

)(
γ̃n
√
φn

)−1

. (38)

Define

A := max

(
1

ξ
,

1

ξ2
, cn1

)
. (39)

We prove by induction on n that cn ≤ A for any n ≥ n1. The claim holds true for n = n1 by

definition of A. Assume that cn−1 ≤ A for some n−1 ≥ n1. Using (37) and (39), for n ≥ n1 +1,

cn
A
≤ ρn

φn
φn−1

+
L√
A
γ̃n
√
φn

√
φn
φn−1

+
L2

A
γ̃2
nφn,

By (38), the RHS is less than one so that cn ≤ A. This proves that (cn)n≥n0 is a bounded

sequence.
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•We prove that (An)n≥n0 is a bounded sequence. Using the fact that supn≥n1
ρn ≤ 1, (An)n≥n0

is increasing and Eq. (35), it holds for n ≥ n1 + 1

An = An−1 + an ≤ An−1 + an−1 + γ̃n
√
an−1

√
An−1L

1/2 + γ̃2
nL

2An−1

≤
(

1 + cn−1φ
−1
n−1 + L1/2γ̃nφ

−1/2
n−1

√
cn−1 + γ̃2

nL
2
)
An−1.

Finally, since supn≥n1
cn ≤ A and (1 + t2) ≤ exp(t2), there exists C > 0 s.t. for any n ≥

n1 + 1, An ≤ exp
(
C{φ−1

n−1 + γ̃2
n}
)
An−1 (note that under (29), lim supn{γ̃n/

√
φn}φn <∞). By

assumptions,
∑

n{φ
−1
n−1 + γ̃2

n} <∞, (An)n≥n0 is therefore bounded.

• The proof of the lemma is concluded upon noting that vn ≤ bn ≤ An and un ≤ an ≤ γ̃2
ncnAn.
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Fig. 1. N = 40 sensors (diamonds) with the graph (line segments) and the source (star)
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Fig. 2. Cumulative relative error (over the N sensors) when estimating θ∗, as a function of the number of iterations.
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