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Fundamental example.

V =




V11 V12 . . . V1N

V21 V22 . . . V2N
...

...
...

...
VM1 VM2 . . . VMN




(Vij)1≤i≤M,1≤j≤N i.i.d. complex Gaussian random variables CN (0, σ2).
v1, v2, . . . , vN columns of V, R = E(vnv

H
n ) = σ2IM

Empirical covariance matrix:

R̂ =
1

N
VVH =

1

N

N∑

n=1

vnv
H
n
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Behaviour of the empirical distribution of the eigenvalues of R̂ large
M and N.

How behave the histograms of the eigenvalues (λ̂i )i=1,...,M of R̂ when M

and N increase.

Well known case: M fixed, N increases i.e. M
N

small

1
N

∑N
n=1 vnv

H
n ≃ E(vnv

H
n ) = σ2IM by the law of large numbers.

If N >> M , the eigenvalues of 1
N
VVH are concentrated around σ2.
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Illustration.

M = 256, M
N
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, σ2 = 1
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If M et N are of the same order of magnitude.

M,N → +∞ such that M
N

= cN ∈ [a, b], a > 0, b < +∞.

R̂i ,j ≃ σ2δi−j but

‖R̂− σ2IM‖ does not converge torwards 0.

The histograms of the eigenvalues of R̂ tend to concentrate around
the probability density of the so-called Marcenko-Pastur distribution:

If cN ≤ 1,

pcN (λ) =
1

2πcNλ

√
[σ2(1 +

√
cN)2 − λ][λ− σ2(1−√

cN)2]

if λ ∈ [σ2(1−√
cN)

2, σ2(1 +
√
cN)

2]

= 0 otherwise

Result still true in the non Gaussian case
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Illustrations I.
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N

= 1
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Illustrations II.

M = 256, M
N

= 1
4
, σ2 = 1
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Illustrations III.

M = 256, M
N

= 2/3, σ2 = 1

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 9 / 133



Possible to evaluate the asymptotic behaviour of linear

statistics

1

M

M∑

k=1

f (λ̂k) =
1

M
Trace(f (R̂)) ≃

∫
f (λ)pcN (λ) dλ

Example 1: f (λ) = 1
ρ2+λ

1
M
Trace

(
R̂+ ρ2I

)−1
≃
∫ pcN (λ)

ρ2+σ2 dλ = mN(−ρ2)

mN(−ρ2) unique positive solution of the equation

mN(−ρ2) =
1

ρ2 + σ2

1+σ2cNmN (−ρ2)

Closed form solution (see below)
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Example 2: f (λ) = log(1 + λ
ρ2
)

1
M

log det
(
IM + R̂

ρ2

)
nearly equal to

1

cN
log
(
1 + σ2cNmN(−ρ2)

)
+ log

(
1 + σ2cNmN(−ρ2) + (1 − cN)

σ2

ρ2

)

−ρ2σ2mN(−ρ2)
(
cNmN(−ρ2) +

1− cN

ρ2

)

Closed form formula
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Fluctuations of the linear statistics.

The bias

E

[
1

M
Tr
(
f (R̂)

)]
=

∫
f (λ) pcN (λ)dλ+O(

1

M2
)

The variance

M

[
1

M
Tr
(
f (R̂)

)
−
∫

f (λ) pcN (λ)dλ

]
→ N (0,∆2)

In other words:

1

M
Tr
(
f (R̂)

)
−
∫

f (λ) pcN (λ)dλ ≃ N (0,
∆2

M2
)
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Generalizations of these behaviours, W = V√
N
.

Y = C1/2W, C ≥ 0 deterministic, zero mean correlated model.

Y = C1/2WC̃1/2, C ≥ 0, C̃ ≥ 0 deterministic, zero mean bi-correlated
model also known as Kronecker model in the MIMO context.

Y = A+W, A deterministic, information plus noise model.

Y = A+ C1/2WC̃1/2, Rician bi-correlated MIMO channel.

Y = U (∆⊙W)QH , U,Q unitary deterministic matrices, ∆
deterministic, Sayeed model.

Y = A+U (∆⊙W)QH , non zero mean Sayeed model.

Replace i.i.d. matrix W by an isometric random Haar distributed
matrix (obtained from a Gram-Schmidt orthogonalization of W when
cN > 1).
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Some important contributors.

In statistical physics.

Wigner (1950), Dyson, Mehta, Brézin, ....

In probability theory

Marcenko, Pastur and colleagues from 1967, Girko from 1975, Bai,
Silverstein from 1985.

Voiculescu and the discovery of the free probability theory from 1993.

From 1995, a large community using various techniques.
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In our field

Digital communications: from 1997

Seminal works of Tse and colleagues and Verdú and colleagues in
1997 on performance analysis of large CDMA systems

Performance analysis of large MIMO systems

Various applications to ressource allocation
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Statistics and statistical signal processing

Before 2007, some works of Girko who was the first to address
parameter estimation problems in the context of large random
matrices.

El-Karoui (2008) followed by a number of other researchers addressed
the population estimation: estimate the entries of diagonal matrix P

from matrix 1
N
VPVH .

Seminal works of Mestre-Lagunas (2008) and Mestre (2008) on the
behaviour of the subspace method when the number of sensors and
the number of snapshots converge torward ∞ at the same rate.

More recent works on applications to source number estimation
(Nadler 2010), to source detection (Bianchi et al. 2011), to power
distribution estimation problems in the context of multiusers
communication systems (Couillet et al. 2011).
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Performance analysis of large CDMA systems .

The simplest context: Tse and Hanly, Verdú and Shamai 1999

M spreading factor, K number of users

received M–dimensional vector y = hWs+ n

s K–dimensional vector of the transmitted symbols

n additive white noise, E(nnH) = ρ2IM

W M × K matrix of the codes allocated to the users, modelled as a
realization of a zero mean i.i.d. matrix such that E|Wi ,j |2 = 1

M

h amplitude of the received signal
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Performance of the MMSE receiver.

MMSE Estimation of s1, W = (w1,W2)

SINR βM = wH
1

(
W2W

H
2 + ρ2

|h|2
)−1

w1

Analysis of βM when M ,K → ∞, in such a way that M
K
∈ [a, b]

βM ≃ βM = 1
M
Tr
(
W2W

H
2 + ρ2

|h|2
)−1

βM ≃ βM,∗ deterministic positive solution of the equation

βM,∗ =
1

ρ2

|h|2 +
K−1
M

1
1+βM,∗

Allows to have a better understanding of the MMSE receiver: find the
loading factor for which βM,∗ is above a target SINR, find the loading
factor maximizing the throughput K

M
log(1 + βM,∗), ...
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Examples of extensions to more realistic models.

Downlink with frequency selective channel (Debbah et.al. 2003)

y = HWs+ n, H Toeplitz matrix

βM,∗ =
1

M

M−1∑

m=0

1
ρ2

|h(e2iπm/M )|2 +
K−1
M

1
1+βM,∗

Downlink with frequency selective channel and random orthogonal
Haar distributed code matrix (Debbah et.al. 2003)

βM,∗ =
1

M

M−1∑

m=0

1

ρ2

|h(e2iπm/M )|2
(
1− K−1

M

βM,∗

1+βM,∗

)
+ K−1

M
1

1+βM,∗

Uplink with frequency selective channel (Li et.al. 2004)

y =
∑K

k=1 Hkwksk + n; the channel matrices Hk are Toeplitz.

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 22 / 133



Applications to optimal precoding of MIMO systems.

M receive antennas, N transmit antennas

y = Hx + n

H MIMO channel, M × N non observable Gaussian random matrix
with known (or well estimated) second order statistics

x transmitted vector

n additive white Gaussian noise, E(nnH) = ρ2IM
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The optimum precoding problem

Find the covariance matrix Q of x so as to maximize some figure of merit
of the system

Typical example: I (Q) = E

[
log det

(
IM + HQHH

ρ2

)]

To be maximized w.r.t. Q on the convex domain Q ≥ 0 and 1
M
Tr(Q) ≤ 1.

Q → I (Q) is a concave function, but is in general difficult to evaluate in
closed form its gradient and hessian. Have to be evaluated using
Monte-Carlo simulations (Vu-Paulraj 2005).
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A possible alternative: maximize a large system

approximation of I (Q)

Example of bicorrelated Rician channels H = A + C1/2WC̃1/2

(Dumont et.al. 2010)

Eigenvectors of the optimum matrix Q∗ have no closed form
expression

I (Q) = I (Q) +O( 1
M
), and I (Q∗) = I (Q∗) +O( 1

M
) where

I (Q) = log det
(
IM +Q× G

(
δ(Q), δ̃(Q)

))
+ j
(
δ(Q), δ̃(Q)

)

where
(
δ(Q), δ̃(Q)

)
are the unique solutions of a system of 2 non

linear equations depending on Q,A,C, C̃,

G is a matrix valued function of
(
δ(Q), δ̃(Q)

)
given in closed form,

j
(
δ(Q), δ̃(Q)

)
is a function of

(
δ(Q), δ̃(Q)

)
given in closed form.
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Maximization of I (Q) using an iterative waterfilling

algorithm

I (Q) = log det
[
IM +Q× G

(
δ(Q), δ̃(Q)

)]
+ j
(
δ(Q), δ̃(Q)

)
.

Q(k−1) available

Compute
(
δ(Q(k−1)), δ̃(Q(k−1))

)
= (δ(k−1), δ̃(k−1))

Q(k) = Argmax log det
(
IM +Q× G(δ(k−1), δ̃(k−1))

)
: waterfilling

k=k+1

If the algorithm converges, it converges torwards Q∗
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The model considered in the following

Observation: M–dimensional time series yn observed from
n = 1, . . . ,N.

yn =
∑K

k=1 aksk,n + vn = Asn + vn

((sk,n)n∈Z)k=1,K are K < M non observable ”source signals”,
sn = (s1,n, . . . , sK ,n)

T

A = (a1, . . . , aK ) deterministic unknown rank K < M matrix

(vn)n∈Z additive complex white Gaussian noise such that
E(vnv

H
n ) = σ2IM

In matrix form

YN = (y1, . . . , yN) observation M × N matrix

YN = ASN +VN

ΣN = YN√
N
, BN = A SN√

N
, WN = VN√

N

ΣN = BN +WN

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 28 / 133



The problems to be addressed.

Detection of the presence of signal(s) from matrix ΣN

K = 1 versus K = 0 to simplify

Various generalizations are possible

Estimation of direction of arrival (DOA) from matrix ΣN .

ak = a(ϕk) where ϕ→ a(ϕ) is known

Estimate the parameters (ϕk)k=1,...,K

Problems addressed when M and N are of the same order of magnitude:
M,N → ∞ while the ratio cN = M

N
is bounded away from 0 and upper

bounded.
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In the following

Study of the properties of ΣN when

K = 0, noise only

K does not scale with M, i.e. K ≪ M, spiked model: applications
to the detection K = 1 versus K = 0, application to the subspace
DOA estimation method

K may scale with M, i.e. K is not much less than 0, application to
the subspace DOA estimation method
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The Stieltjes transform I (measure with density)

The Stieltjes transform is one of the numerous transforms associated to
a measure. It is particularly well-suited to study Large Random Matrices
and was introduced in this context by Marc̆enko and Pastur (1967).

Definition

If the measure µ admits a density f with support S:

dµ(λ) = f (λ)dλ on S ,

then the Stieltjes transform Ψµ(z) is defined as:

Ψµ(z) =

∫

S

f (λ)

λ− z
dλ ,

= −
∞∑

k=0

z−(k+1)

(∫

S
λk f (λ) dλ

)
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The Stieltjes transform I (properties)
Let im(z) be the imaginary part of z ∈ C.

Property 1 - identical sign for imaginary part

imΨµ(z) = im(z)

∫

S

f (λ)

(λ− x)2
dλ

Property 2 - monotonicity

If z = x ∈ R \ S, then Ψµ(x) well-defined and:

Ψ′
µ(x) =

∫

S

f (λ)

(λ− x)2
dλ > 0 ⇒ Ψµ(x) ր on R \ S .

Property 3 - Inverse formula

f (λ) =
1

π
lim

y→0+
imΨµ(λ+ ιy) ,

Note that if λ ∈ R \ S, then Ψµ(x) ∈ R ⇒ f (λ) = 0.
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The Stieltjes transform II (measure with Dirac

components)

Stieltjes transform for a Dirac measure

Let δx be the Dirac measure at x : δx(A) =

{
1 if x ∈ A,
0 else.

Then

Ψδx (z) =
1

x − z
in particular, Ψδ0(z) = −1

z
.

◮ Important example:

LM =
1

M

M∑

k=1

δλk
⇒ ΨLM (z) =

1

M

M∑

k=1

1

λk − z
.
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The Stieltjes transform III (link with the resolvent)

Let X be a M ×M Hermitian matrix:

X = U




λ1 0
. . .

0 λM


U∗

and consider its resolvent Q(z) and spectral measure LM :

Q(z) = (X− zI)−1 , LM =
1

M

M∑

k=1

δλk
.

The Stieltjes transform of the spectral measure is the normalized trace of
the resolvent:

ΨLM (z) =
1

M
trQ(z) .
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Gaussian tools

Let the Zi ’s be independent complex Gaussian random variables and
denote by z = (Z1, · · · ,Zn). The two following results are extremely
efficient when dealing with matrices with Gaussian entries (Pastur 2005).

Integration by part Formula

E (ZkΦ(z, z)) = E|Zk |2E
(
∂Φ

∂Z k

)

Poincaré-Nash Inequality

var (Φ(z, z)) ≤
n∑

k=1

E|Zk |2
(
E

∣∣∣∣
∂Φ

∂Zk

∣∣∣∣
2

+ E

∣∣∣∣
∂Φ

∂Z k

∣∣∣∣
2
)
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Marc̆enko - Pastur Probability distribution

We go back to Marc̆enko and Pastur framework and consider

WN =
VN√
N

where VN is a M × N matrix with i.i.d. complex Gaussian random
variables CN (0, σ2).
We are interested in the limiting spectral distribution of WNW

∗
N . Consider

the associated resolvent and Stieltjes transform:

Q(z) = (WNW
∗
N − zI)−1 , m̂N(z) =

1

M
trQ(z) .
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Marc̆enko - Pastur Probability distribution

We compute hereafter the equation satisfied by the Stieltjes transform
associated to the limiting spectral distribution. Afterwards, we rely on the
inverse formula for Stietjes transforms to get Marc̆enko - Pastur
distribution.

Main assumption

The ratio cN = M
N

is bounded away from zero and upper bounded as
M,N → ∞.

The three main steps are:

1 To prove that var (m̂N(z)) = O(N−2). This enables to replace

m̂N(z) by Em̂N(z) in the computations .

2 To establish the limiting equation satisfied by Em̂N(z).

3 To recover the probability distribution with the help of the inverse
formula for Stietjes transforms.
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Step 1: Marc̆enko - Pastur Equation

Proposition

var (m̂N(z)) = O
(

1

N2

)
.

Proof:
∂Qr ,r

∂Wij

= −(Qwj)rQi ,r

By summing over r , then over i and j , we obtain:

∑

i ,j

E

∣∣∣∣∣
∂m̂N(z)

∂Wij

∣∣∣∣∣

2

= E

(
1

M2
tr Q2WW∗Q2∗

)

≤ 1

| im(z)|4E
(

1

M2
tr WW∗

)
= O

(
1

M

)
.
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Step 1: Marc̆enko - Pastur Equation (end of proof)

By Poincaré-Nash inequality

var (m̂N(z)) ≤
∑

i ,j

E|Wij |2

E

∣∣∣∣∣
∂m̂N(z)

∂Wij

∣∣∣∣∣

2

+ E

∣∣∣∣
∂m̂N(z)

∂Wij

∣∣∣∣
2



=
σ2

N
×
(
O
(

1

M

)
+O

(
1

M

))

= O
(

1

M2

)

which ends the proof. �
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Step 2: Marc̆enko - Pastur Equation

Proposition

Em̂N(z)−mN(z) → 0 where mN(z) satisfies:

mN(z) =
−1

z
[
1 + σ2cNmN(z)− σ2(1−cN )

z

] , cN =
M

N
.

Proof: The mere definition of the resolvent yields

Q = − I

z
+

QWW∗

z
,

hence

EQr ,i = −δri
z

+
E(QWW∗)r ,i

z
,

where δri stands for the Kronecker symbol.
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Step 2: Marc̆enko - Pastur Equation (proof I)

Write

E(QWW∗)r ,i =
N∑

j=1

M∑

s=1

E
(
Qr ,sWs,jWij

)

Applying the integration by parts formula yields

E
(
Qr ,sWs,jWij

)
= E |Ws,j |2 E

[
∂

∂Ws,j

(
Qr ,sWi ,j

)
]

=
σ2

N

[
δsiE(Qr ,s)− E

((
Qwj)rQs,sWi ,j

))]

Summing over s and then over j yields:

E (QWW∗)r ,i = σ2EQr ,i − σ2cNE
[
m̂N (QWW∗)r ,i

]
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Step 2: Marc̆enko - Pastur Equation (proof II)

Taking r = i , summing over i and dividing by M yields:

E

(
1

M
trQWW∗

)
= σ2Em̂N − σ2cE

[
m̂N

(
1

M
trQWW∗

)]

As QWW∗ = I+ zQ, we obtain:

1 + zEm̂N = σ2Em̂N − σ2cE [m̂N (1 + zm̂N)]

Using Poincaré-Nash inequality enables the following decorrelation:

E [m̂N (1 + zm̂N)] = (Em̂N) (1 + zEm̂N) +O
(

1

M2

)
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Step 2: Marc̆enko - Pastur Equation (proof III)

Gathering the previous results yields:

(1 + zEm̂N)
(
1 + σ2cNEm̂N

)
= σ2Em̂N +O

(
1

M2

)

Asymptotically, Em̂N −mN → 0 which satisfies:

(1 + zmN)
(
1 + σ2cNmN

)
= σ2mN ,

which also writes:

mN(z) =
−1

z
[
1 + σ2cNmN(z)− σ2(1−cN )

z

] .

This ends the proof. �
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Step 3: Marc̆enko - Pastur Probability distribution

Proposition

The probability distribution associated to the Stieltjes transform mN

admits the density pcN defined as:

pcN (λ) =

{ √
(λ−λ−)(λ+−λ)

2πσ2cN
if λ ∈ (λ−, λ+)

0 else.
.

where λ− = σ2(1−√
cN)

2 and λ+ = σ2(1 +
√
cN)

2.
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Step 3: Marc̆enko - Pastur Probability distribution (proof)

Proof: Solving the equation satisfied by m:

mN(z) = −
(
z

[
1 + σ2cNmN(z)−

σ2(1− cN)

z

])−1

yields

mN(z) =
−z + σ2(1− cN) +

√
(z − λ−)(z − λ+)

2σ2cNz
.

Using the inverse formula yields:

pcN (λ) =
1

π
lim

y→0+
immN(λ+ ιy)

=

{ √
(λ−λ−)(λ+−λ)

2πσ2cN
if λ ∈ (λ−, λ+)

0 else.
,

which is the desired result �

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 48 / 133



Concluding remarks

◮ The fact that m̂N −mN → 0 implies that for f bounded and
continuous,

1

M

M∑

i=1

f (λ̂i ,N)−
∫

f (λ)pcN (λ)dλ→ 0 .

pcN (resp. mN) is a deterministic equivalent of the spectral
measure LN (resp. m̂N).

◮ if cN → c∗ ∈ (0,∞), then pcN → pc∗ where pc∗ is obtained by
replacing cN by c∗ and

1

M

M∑

i=1

f (λ̂i ,N) →
∫

f (λ)pc∗(λ)dλ .

in this case, the spectral measure converges to pc∗ .
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2 K = 0: An overview of Marc̆enko and Pastur’s results
The Stieltjes transform
Gaussian tools
Marc̆enko-Pastur Probability distribution
A symmetric view of Marc̆enko-Pastur equation
Behavior of the individual entries of the resolvent
Finer convergence results
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A companion quantity in M̌P equation I

Instead of WW∗, consider W∗W. Assuming N ≥ M, both matrices have
the same eigenvalues up to N −M zeroes. The associated Stieltjes

transform therefore writes:

ˆ̃mN(z) =
1

N
tr (W∗W − zI)−1

=
1

N

(
N∑

k=1

1

λk − z
− N −M

z

)
= cNm̂N(z)− (1− cN)

1

z
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A companion quantity in M̌P equation II

As m̂N −mN → 0, ˆ̃m − m̃N → 0 which satisfies:

m̃N(z) = cNmN(z)− (1− cN)
1

z
.

The inverse Stieltjes transform yields:

(ST )−1(mN) = pcN (λ) and (ST )−1

(
−1

z

)
= δ0

Hence, we obtain

p̃cN (dλ) = cNpcN (λ)dλ+ (1− cN)δ0(dλ) ,

where δ0 accounts for the null eigenvalues of W∗W.
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A symmetric view of M̌P equation

As

mN(z) = −
(
z

[
1 + σ2cNmN(z)−

σ2(1− cN)

z

])−1

m̃N(z) = cNmN(z)− (1− cN)
1

z
.

We readily obtain: mN(z) =
−1

z(1+σ2m̃N (z))
Similarly, we can obtain the

companion equation: m̃N(z) =
−1

z(1+σ2cNmN(z))
. Hence a symmetric

presentation of Marc̆enko-Pastur equation:

{
mN(z) = −1

z(1+σ2m̃N (z))

m̃N(z) = −1
z(1+σ2cNmN (z))

(1)
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2 K = 0: An overview of Marc̆enko and Pastur’s results
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Behavior of the individual entries of the resolvent

Proposition

(diagonal) EQi ,i(z) = mN(z) +O
(

1

N3/2

)
,

(off-diagonal) EQr ,i(z) = O
(

1

N3/2

)
for r 6= i .

(quadratic form) E u∗Q(z)v = mN(z)(u
∗v) +O

(
1

N3/2

)
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Behavior of the individual entries of the resolvent (proof I)

Proof: As previously, we have

E (QWW∗)r ,i = σ2EQr ,i − σ2cNE
[
m̂N (QWW∗)r ,i

]

Since QWW∗ = I+ zQ, we obtain: (QWW∗)r ,i = δri + zQr ,i Hence:

δri + zEQr ,i = σ2EQr ,i − σ2cNE [m̂N (δri + zQr ,i)]

= σ2EQr ,i − σ2cNδriEm̂N − zσ2cNE [m̂NQr ,i ] .

Poincaré-Nash inequality yields

E [m̂NQr ,i ] = Em̂NEQr ,i +O
(

1

N3/2

)

(follows from the fact that varQr ,i = O(N−1)).
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Behavior of the individual entries of the resolvent (proof II)

◮ If r 6= i then the result is obvious

◮ If r = i , then

1 + zEQi ,i =
σ2EQi ,i

1 + σ2cNEm̂N

+O
(

1

N3/2

)
.

Summing over i and dividing by M yields

1 + zEm̂N =
σ2Em̂N

1 + σ2cNEm̂N

+O
(

1

N3/2

)
,

hence the required result.

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 57 / 133



2 K = 0: An overview of Marc̆enko and Pastur’s results
The Stieltjes transform
Gaussian tools
Marc̆enko-Pastur Probability distribution
A symmetric view of Marc̆enko-Pastur equation
Behavior of the individual entries of the resolvent
Finer convergence results

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 58 / 133



Convergence of the extreme eigenvalues

Denote by
λ̂1,N ≥ · · · ≥ λ̂N,N

the ordered eigenvalues of WW∗ and recall that the support of
Marc̆enko-Pastur distribution is (σ2(1−√

cN)
2, σ2(1 +

√
cN)

2). Then:

Theorem

If cN → c∗, then the following convergences hold true:

λ̂1,N
a.s.−−−−−→

N,M→∞
σ2(1 +

√
c∗)

2

λ̂N,N
a.s.−−−−−→

N,M→∞
σ2(1−√

c∗)
2
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Fluctuations of the extreme eigenvalues I

A Central Limit Theorem holds for the largest eigenvalue of matrix WW∗

as N,M → ∞. The limiting distribution is known as Tracy-Widom’s
distribution.

Fluctuations of λ̂1,N

Let cN → c∗. When correctly centered and rescaled, λ̂1,N converges to a
Tracy-Widom distribution:

N2/3

σ2
× λ̂1,N − σ2(1 +

√
cN)

2

(1 +
√
cN)

(
1√
cN

+ 1
)1/3

L−−−−−→
N,M→∞

FTW .

The function FTW stands for Tracy-Widom c.d.f. and is precisely
described in the following slide.

A similar result holds for λ̂M,N , the smallest eigenvalue of matrix WW∗.
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Fluctuations of the extreme eigenvalues II

Definition of Tracy-Widom’s distribution

The c.d.f. FTW is defined as:

FTW (x) = exp

(
−
∫ ∞

x

(u − x)q2(u) du

)
∀x ∈ R ,

where q solves the Painlevé II differential equation:

q”(x) = xq(x) + 2q3(x),

q(x) ∼ Ai(x) as x → ∞.
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1 Problem statement

2 K = 0: An overview of Marc̆enko and Pastur’s results

3 K fixed: spiked models
Problem Description
Main results
Some Applications
Proofs of main results: outline of the approach

4 K may scale with M. Application to the subspace method.

5 Some research prospects
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Signal model

Rcv signal Channel Src signal Noise
y1 · · · yN


 =


a1 · · · aK






s1

· · ·
sK


 +


v1 · · · vN




YN = AN SN + VN

M × N M × K K × N M × N

ΣN = N−1/2YN = BN +WN

Recall that noise matrix W has independent CN (0, σ2/N).

We assume here that the number of sources K is ≪ N.

ΣN = Matrix with Gaussian iid elements + fixed rank perturbation.

Asymptotic regime: N → ∞, M/N → c∗, and K is fixed.
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Multiplicative Spiked Model

Assume SN is a random matrix with independent CN (0, 1) elements
(Gaussian iid source signals), and AN is deterministic. Then

ΣN =
(
ANA

∗
N + σ2IM

)1/2
XN

where XN is M × N with independent CN (0, 1/N) elements.

Consider a spectral factorization

ANA
∗
N = UN




λ1
. . .

λK
0

. . .



U∗

N .
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Multiplicative Spiked Model

Let PN be the M ×M matrix

PN = diag

(√
λ1 + σ2

σ2
, . . . ,

√
λK + σ2

σ2
, 1, . . . , 1

)
.

Then
U∗

NΣN = σPNU
∗
NXN

D
= PNWN

where WN is M × N with independent CN (0, σ2/N) elements as above.

PN is a fixed rank perturbation of Identity.
⇒ Multiplicative spiked model:

eigenvalues of ΣNΣ
∗
N ≡ eigenvalues of PNWNW

∗
NP

∗
N .
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Additive Spiked Model

Assume SN is a deterministic matrix and BN = N−1/2ANSN is such
rank(BN) = K (fixed).
We call the model ΣN = BN +WN an additive spiked model.

Impact of BN on spectrum of ΣNΣ
∗
N in the asymptotic regime ?
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Impact of PN or BN ?

Let F̃N and FN be the distribution functions associated with the spectral
measures of ΣNΣ

∗
N and WNW

∗
N respectively. Then

sup
x

∣∣∣FN(x) − F̃N(x)
∣∣∣ ≤ 1

M
rank (ΣNΣ

∗
N −WNW

∗
N) −−−−→

N→∞
0

So ΣNΣ
∗
N and WNW

∗
N have the same (Marc̆enko Pastur) limit spectral

measure, either for the multiplicative or the additive spiked model.

However, ΣNΣ
∗
N might have isolated eigenvalues.

We shall restrict ourselves to the additive case and study these

isolated eigenvalues as well as the projections on their eigenspaces.
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Spectrum example for ΣNΣ
∗
N

.

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6  7  8  9  10.

An eigenvalue histogram for M = 64, N = 3M, and σ2 = 1.
ΣN = BN +WN where BN has rank 2 with singular values 2 and 2.5.
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3 K fixed: spiked models
Problem Description
Main results
Some Applications
Proofs of main results: outline of the approach
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Notations

Spectral factorizations:

BNB
∗
N =


u1,N · · · uK ,N






λ1,N

. . .

λK ,N





u1,N · · · uK ,N



∗

where λ1,N ≥ · · · ≥ λK ,N .

Assuming N ≥ M

ΣNΣ
∗
N =


û1,N · · · ûM,N






λ̂1,N

. . .

λ̂M,N





û1,N · · · ûM,N



∗

where λ̂1,N ≥ · · · ≥ λ̂M,N .
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Main result on the eigenvalues

Theorem 1

Model is ΣN = BN +WN where

BN is a deterministic rank-K matrix such that λk,N → ρk for
k = 1, . . . ,K ,

WN is a M × N random matrix with independent CN (0, σ2/N)
elements.

Let i ≤ K be the maximum index for which ρi > σ2
√
c∗. Then for

k = 1, . . . , i ,

λ̂k,N
a.s.−−−−→

N→∞
γk =

(
σ2c∗ + ρk

) (
ρk + σ2

)

ρk
> σ2(1 +

√
c∗)

2

while
λ̂i+1,N

a.s.−−−−→
N→∞

σ2(1 +
√
c∗)

2.
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Main result on the eigenvectors

Theorem 2

Assume the setting of Theorem 1. Assume in addition that
ρ1 > ρ1 > · · · > ρi (> σ2

√
c∗). For k = 1, . . . , i , let

Πk,N = uk,Nu
∗
k,N and Π̂k,N = ûk,N û

∗
k,N .

Then for any sequence aN of deterministic M × 1 vectors such that
supN ‖aN‖ <∞,

a∗NΠ̂k,NaN − h(γk)a
∗
NΠk,NaN

a.s.−−−−→
N→∞

0, h(x) =
xm(x)2m̃(x)

(xm(x)m̃(x))′

and m and m̃ are given by Equations (1) when cN is replaced with c∗.

Generalization to the case of multiple limit eigenvalues ρk is possible.
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3 K fixed: spiked models
Problem Description
Main results
Some Applications
Proofs of main results: outline of the approach
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Passive Signal Detection

ΣN = BN +WN , non observable signal + AWGN.

Assume K = 1 source:
BN = N−1/2a1,Ns

1
N , rank one matrix such that ‖BN‖2 −−−−→

N→∞
ρ > 0.

Hypothesis test:

{
H0 : ΣN = WN (Noise)
H1 : ΣN = BN +WN (Info+Noise)

Generalized Likelihood Ratio Test (GLRT)

TN =
λ̂1,N

M−1 tr (ΣNΣ
∗
N)

Asymptotic behavior ?
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Passive Signal Detection and Additive Spiked Models

Under either H0 or H1, M−1 tr (ΣNΣ
∗
N)

a.s.−−−−→
N→∞

σ2.

Under H1 (consequence of main result on eigenvalues):
◮ If ρ > σ2√c∗, then

λ̂1,N
a.s.−−−−→

N→∞

γ =

(
σ2c∗ + ρ

) (
ρ+ σ2

)

ρ
> σ2(1 +

√
c∗)

2,

λ̂2,N
a.s.−−−−→

N→∞

σ2(1 +
√
c∗)

2.

◮ If ρ ≤ σ2√c∗, then

λ̂1,N
a.s.−−−−→

N→∞

σ2(1 +
√
c∗)

2.
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Passive Signal Detection and Additive Spiked Models
We therefore have

Under H0,
TN

a.s.−−−−→
N→∞

(1 +
√
c∗)

2.

Under H1,
◮ If ρ > σ2√c∗, then

TN
a.s.−−−−→

N→∞

(
σ2c∗ + ρ

) (
ρ+ σ2

)

σ2ρ
> (1 +

√
c∗)

2

◮ If ρ ≤ σ2√c∗, then

TN
a.s.−−−−→

N→∞

(1 +
√
c∗)

2.

ρ > σ2
√
c∗ provides the limit of detectability by the GLRT.

False Alarm Probability can be evaluated with the help of the
Tracy-Widom law.
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Source localization

Problem

K radio sources send their signals to a uniform array of M antennas during
N signal snapshots.

Estimate arrival angles ϕ1, . . . , ϕK

.

ϕ2

ϕ1

.

Example with two sources
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Source localization with a subspace method (MUSIC)

Model: ΣN = N−1/2ANSN︸ ︷︷ ︸
BN

+WN with

AN =
[
aN(ϕ1) · · · aN(ϕK )

]
with aN(ϕ) =

1√
M




1
eıπ sinϕ

...

eı(M−1)π sinϕ




SN is deterministic, rank(SN) = K .

Let ΠN be the orthogonal projection matrix on the span of AA∗, or
equivalently, on the eigenspace of EΣΣ∗ = BB∗ + σ2IM associated with
the eigenvalues > σ2 (“signal subspace”). Let Π⊥

N = IM −ΠN be the
orthogonal projector on the “noise subspace”.

MUSIC algorithm principle

aN(ϕ)
∗Π⊥

NaN(ϕ) = 0 ⇔ ϕ ∈ {ϕ1, . . . , ϕK}.
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MUSIC algorithm

Traditional MUSIC: angles are estimated as local minima of

aN(ϕ)
∗Π̂

⊥
NaN(ϕ)

where Π̂N is the orthogonal projection matrix on the eigenspace associated

with the K largest eigenvalues of ΣΣ∗ and Π̂
⊥
N = IM − Π̂N .

Asymptotic behavior of aN(ϕ)
∗Π̂

⊥
NaN(ϕ) well known when M is fixed and

N → ∞.

Behavior in our asymptotic regime ?

Is it possible to improve the traditional estimator and to adapt it to
our asymptotic regime ?
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MUSIC algorithm and the spiked additive model

Modified MUSIC estimator: application of Theorem 2

Assume that lim inf
N

λK ,N > σ2
√
c∗. Then

aN(ϕ)
∗ΠNaN(ϕ)−

K∑

k=1

|aN(ϕ)∗ûk,N |2

h(λ̂k,N)

a.s.−−−−→
N→∞

0

uniformly on ϕ ∈ [0, π].

Modification of the traditional estimator

a(ϕ)∗Π⊥a(ϕ) = a(ϕ)∗
(

M∑

k=1

ûk û
∗
k −Π

)
a(ϕ)

N large≃ a(ϕ)∗
(

K∑

k=1

(
1− 1

h(λ̂k)

)
ûk û

∗
k +

M∑

k=K+1

ûk û
∗
k

)
a(ϕ)
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3 K fixed: spiked models
Problem Description
Main results
Some Applications
Proofs of main results: outline of the approach
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Eigenvalues: principle of the proof of Theorem 1

We follow the approach of Benaych-Georges and Nadakuditi’2011.
We study the isolated eigenvalues of ΣΣ∗, or equivalently, the isolated
singular values of Σ.

A matrix algebraic lemma

Let A be a M × N matrix. Then σ1, . . . , σM∧N are the singular values of
A if and only if

σ1, . . . , σM∧N ,−σ1, . . . ,−σM∧N , 0, . . . , 0︸ ︷︷ ︸
|N −M|

are the eigenvalues of

A =

[
0 A

A∗ 0

]
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Eigenvalues: principle of the proof of Theorem 1
Drop index N. Let B = U

√
ΛV∗, Λ = diag (λ1, . . . , λK ) be a spectral

factorisation of B. Write

Σ =

[
0 Σ

Σ∗ 0

]
=

[
0 W

W∗ 0

]
+

[
U 0

0 V
√
Λ

] [
0 IK
IK 0

] [
U∗ 0

0
√
ΛV∗

]

= W + CJC∗.

Assume λ̂ 6∈ spectrum(WW∗) and λ̂ ∈ spectrum(ΣΣ∗) or equivalently

det
(
W −

√
λ̂IM+N

)
6= 0 and det

(
Σ−

√
λ̂IM+N

)
= 0.

We have

det (Σ− xI) = det (W − xI+ CJC∗)

= det (W − xI) det
(
I2K + JC∗ (W − xI)−1

C
)
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Eigenvalues: principle of the proof of Theorem 1

Using inversion formula for partitioned matrices,

(W − xI)−1 =

[
−xI W

W∗ −xI

]−1

=

[
xQ(x2) WQ̃(x2)

Q̃(x2)W∗ xQ̃(x2)

]

where we recall that Q(x) = (WW∗ − xI)−1, and where we set
Q̃(x) = (W∗W − xI)−1.

Hence
√
λ̂ is a zero of

det
(
I2K + JC∗ (W − xI)−1

C
)

= (−1)K det

[
xU∗Q(x2)U IK +U∗WQ̃(x2)V

√
Λ

IK +
√
ΛV∗Q̃(x2)W∗U x

√
ΛV∗Q̃(x2)V

√
Λ

]

︸ ︷︷ ︸
Ĥ(x)

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 84 / 133



Eigenvalues: principle of the proof of Theorem 1

When x2 > σ2(1 +
√
c∗)2, Q(x2) and Q̃(x2) are well defined for N large,

because ‖WW∗‖ a.s.−−−−→
N→∞

σ2(1 +
√
c∗)2.

By the approach developed in the previous chapter

U∗Q(x2)U
a.s.−−−−→

N→∞
m(x2)IK , V∗Q̃(x2)V

a.s.−−−−→
N→∞

m̃(x2)IK , and

V∗Q̃(x2)W∗U
a.s.−−−−→

N→∞
0,

hence

Ĥ(x)
a.s.−−−→

n→∞
H(x) =

[
xm(x2)IK IK

IK xm̃(x2)Γ

]
where Γ =



ρ1

. . .

ρK



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Eigenvalues: principle of the proof of Theorem 1

Consider the equation

detH(
√
x) =

K∏

k=1

(xm(x)m̃(x)ρk − 1) = 0 . (2)

Let γ+ = σ2(1 +
√
c∗)2. From the general properties of the Stieltjes

Transforms, function G (x) = xm(x)m̃(x) decreases from G (γ++) to
zero for x ∈ (γ+,∞).

Recall the ρk ’s are arranged in decreasing order. Assume
ρk > 1/G (γ++). Then the k th largest zero γk of (2) (which satisfies
G (γk) = 1/ρk) will satisfy γk > γ+.

In that situation, due to det Ĥ →as detH outside the eigenvalue bulk,
we infer that λ̂k →as γk . Otherwise, λ̂k →as γ+.
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Illustration

.

G(x)

G(γ+
+)

γ+ γk

1/ρk

.

Exploiting the expressions of m(z) and m̃(z) (Stieltjes Transforms of M-P
distributions), condition ρk > 1/G (γ++) can be rewritten ρk > σ2

√
c∗.

In this case, solving G (γk) = 1/ρk gives γk =
(
σ2c∗ + ρk

) (
ρk + σ2

)
/ρk .

Hence Theorem 1.
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Eigenvectors: principle of the proof of Theorem 2

Matrix algebraic lemma (cont’d)

A pair (u, v) of unit norm vectors is a pair of (left,right) singular vectors of
the M × N matrix A associated with the singular value σ if and only if

2−1/2

[
u

v

]
is a unit norm eigenvector of

A =

[
0 A

A∗ 0

]

associated with the eigenvalue σ.
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Eigenvectors: principle of the proof of Theorem 2

Quadratic form a∗Π̂ka can be written as a Cauchy-integral: using the
previous lemma,

a∗Π̂ka =
−1

ıπ

∮

Ck

[
a∗ 0

]([ 0 Σ

Σ∗ 0

]
− zIM+N

)−1 [
a

0

]
dz

where path Ck encloses eigenvalue
√
λ̂k .

Recalling that

[
0 Σ

Σ∗ 0

]
=

[
0 W

W∗ 0

]
+ CJC∗, we obtain using the

inversion formula for partitioned matrices
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Eigenvectors: principle of the proof of Theorem 2

a∗Π̂ka =
−1

ıπ

∮

Ck

[
a∗ 0

] ([ 0 W

W∗ 0

]
− zI

)−1 [
a

0

]
dz

︸ ︷︷ ︸
= 0 for large N

+
1

ıπ

∮

Ck
b̂∗(z)Ĥ(z)−1b̂(z) dz

where

b̂(z) =

[
zU∗Q(z2)√
ΛV∗Q̃(z2)W∗

]
a ,

and recall that Ĥ(z) =

[
zU∗Q(z2)U IK +U∗WQ̃(z2)V

√
Λ

IK +
√
ΛV∗Q̃(z2)W∗U z

√
ΛV∗Q̃(z2)V

√
Λ

]
.
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Eigenvectors: principle of the proof of Theorem 2

Let

b(z) =

[
zm(z2)U∗a

0

]
and recall H(z) =

[
zm(z2)IK IK

IK zm̃(z2)Γ

]

Since λ̂k →a.s. γk =
(
σ2c∗ + ρk

) (
ρk + σ2

)
/ρk , we replace Ck with a

deterministic path Ck centered around γk , and

a∗Π̂ka
largeN≃ 1

ıπ

∮

Ck

b∗(z)H(z)−1b(z) dz

=
γkm(γk)

2m̃(γk)

(γkm(γk)m̃(γk))′
a∗Πka

using the residue theorem.
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1 Problem statement

2 K = 0: An overview of Marc̆enko and Pastur’s results

3 K fixed: spiked models

4 K may scale with M. Application to the subspace method.
Motivation.
The ”asymptotic” limit eigenvalue distribution µN
Contours enclosing only the eigenvalue 0 of BNB

H
N

The G-MUSIC algorithm.

5 Some research prospects
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4 K may scale with M. Application to the subspace method.
Motivation.
The ”asymptotic” limit eigenvalue distribution µN
Contours enclosing only the eigenvalue 0 of BNB

H
N

The G-MUSIC algorithm.

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 93 / 133



YN = ASN + VN

A M × K deterministic, the source K × N matrix SN deterministic.

K and M are possibly of the same order of magnitude: K may scale
with N in contrast with the context of spiked models.

After normalization by
√
N :

ΣN = BN +WN

BN = ASN√
N

deterministic, Rank(BN) = K = K (N) < M = M(N)

WN complex Gaussian i.i.d. matrix, E|Wi ,j |2 = σ2

N
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ΣN = BN +WN

Noise subspace: Orthogonal of the range of BN = orthogonal of the
range of A under mild conditions,

Orthogonal projection matrix Π⊥
N

Estimate consistently aHΠ⊥
Na for each unit norm M–dimensional

deterministic vector a

The conventional estimate aHΠ̂
⊥
Na is not consistent:

aHΠ̂
⊥
Na− aHΠ⊥

Na does not converge to 0 if M and N converge to ∞
at the same rate
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4 K may scale with M. Application to the subspace method.
Motivation.
The ”asymptotic” limit eigenvalue distribution µN
Contours enclosing only the eigenvalue 0 of BNB

H
N

The G-MUSIC algorithm.
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Characterization of the limit eigenvalue distribution µN

Dozier-Silverstein 2007: It exists a deterministic probability measure
µN carried by R+ such that

1
M

∑M
k=1 δ(λ − λ̂k,N)− µN → 0 weakly almost surely
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Characterization of the limit eigenvalue distribution µN

Dozier-Silverstein 2007: It exists a deterministic probability measure
µN carried by R+ such that

1
M

∑M
k=1 δ(λ − λ̂k,N)− µN → 0 weakly almost surely

How to characterize µN

Stieltjes transform mN(z) =
∫
R+

µN (dλ)
λ−z

defined on C− R
+

mN(z) :=
1
M
TrTN(z) with

TN(z) =
(

BNB
∗

N

1+σ2cNmN(z)
− z(1 + σ2cNmN(z))IM + σ2(1− cN)IM

)−1
.
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Equivalent form of the equation

mN(z) is solution of the equation

mN(z)

1 + σ2cNmN(z)
=

1

M
Trace(BNB

∗
N − wN(z)IM)−1 = fN(wN(z))

wN(z) = z(1 + σ2cNmN(z))
2 − σ2(1− cN)(1 + σ2cNmN(z))

fN(w) = 1
M
Trace(BNB

∗
N − w IM)−1 = 1

M

∑M
k=1

1
λk,N−w
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Equivalent form of the equation

mN(z) is solution of the equation

mN(z)

1 + σ2cNmN(z)
=

1

M
Trace(BNB

∗
N − wN(z)IM)−1 = fN(wN(z))

wN(z) = z(1 + σ2cNmN(z))
2 − σ2(1− cN)(1 + σ2cNmN(z))

fN(w) = 1
M
Trace(BNB

∗
N − w IM)−1 = 1

M

∑M
k=1

1
λk,N−w

Convergence results: QN(z) = (ΣNΣ
∗
N − zIM)−1

1
M
TrQN(z) = m̂N(z) ≍ mN(z) =

1
M
TrTN(z)
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Equivalent form of the equation

mN(z) is solution of the equation

mN(z)

1 + σ2cNmN(z)
=

1

M
Trace(BNB

∗
N − wN(z)IM)−1 = fN(wN(z))

wN(z) = z(1 + σ2cNmN(z))
2 − σ2(1− cN)(1 + σ2cNmN(z))

fN(w) = 1
M
Trace(BNB

∗
N − w IM)−1 = 1

M

∑M
k=1

1
λk,N−w

Convergence results: QN(z) = (ΣNΣ
∗
N − zIM)−1

1
M
TrQN(z) = m̂N(z) ≍ mN(z) =

1
M
TrTN(z)

Hachem et al.(2010), for ‖dN‖ = 1,

d∗NQN(z)dN ≍ d∗NTN(z)dN .
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Properties of µN , cN = M
N
< 1

Dozier-Silverstein-2007

For each x ∈ R, limz→x ,z∈C+ mN(z) = mN(x) exists

x → mN(x) continuous on R, continuously differentiable on R\∂SN

µN(dλ) absolutely continuous, density 1
π Im(mN(x))

SN support of µN . Int(SN) = {x ∈ R, Im(mN(x)) > 0}
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Characterization of the support SN of µN .

Reformulation of Dozier-Silverstein 2007 in
Vallet-Loubaton-Mestre-2010

Function φN(w) defined on R by
φN(w) = w(1− σ2cN fN(w))2 + σ2(1− cN)(1− σ2cN fN(w))

φN has 2Q positive extrema with preimages

w
(N)
1,− < w

(N)
1,+ < w

(N)
2,− < . . .w

(N)
Q,− < w

(N)
Q,+. These extrema verify

x
(N)
1,− < x

(N)
1,+ < x

(N)
2,− < . . . x

(N)
Q,− < x

(N)
Q,+.

SN = [x
(N)
1,− , x

(N)
1,+ ] ∪ . . . [x(N)

Q,−, x
(N)
Q,+]

Each eigenvalue λl ,N of BNB
∗
N belongs to an interval (w

(N)
k,− ,w

(N)
k,+)

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 100 / 133



w

φN (w)

w
−

1,N

Support SN

x
+

3,N

x
−

3,N

x
+

2,N

x
−

2,N

x
+

1,N

x
−

1,N

w
+

1,N w
−

2,N

λ3,N λ2,N λ1,N

w
+

2,N
w
−

3,N
w
+

3,N
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If cN is small enough or σ2 small enough, there are Q = K + 1
clusters nearly centered around σ2 and (λk + σ2)k=1,...,K .

If cN or σ2 increases, certain clusters merge, and Q < K + 1.

An eigenvalue λk,N of BNB
∗
N is said to be associated to the cluster

[x−q,N , x
+
q,N ] if λk,N ∈]w−

q,N ,w
+
q,N [.
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Illustration (I).

The parameters.

σ2 = 2

Eigenvalues of BNB
∗
N : 0 and 5 with multiplicity M

2

Eigenvalues of BNB
∗
N + σ2I : 2 and 7 with multiplicity M

2
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Illustration (I).

The parameters.

σ2 = 2

Eigenvalues of BNB
∗
N : 0 and 5 with multiplicity M

2

Eigenvalues of BNB
∗
N + σ2I : 2 and 7 with multiplicity M

2

Remark

fN(w) = 1
2

(
− 1

w
+ 1

5−w

)
independent of M,N

µN does not depend on M,N if cN = M
N

= c independent of M,N
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Illustration (II).

c = M
N

= 0.05
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Illustration (III).

c = M
N

= 0.2
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Illustration (IV).

c = M
N

= 0.5
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SN in the context of spiked models.

Assumptions: cN → c∗, λk,N → ρk > σ2
√
c∗ for k = 1, . . . ,K ,

ρk 6= ρl .

λ̂k,N → γk =
(σ2c∗+ρk)(ρk+σ2)

ρk
for k = 1, . . . ,K

Q = K + 1 clusters

[x−1,N , x
+
1,N ] = [σ2(1−√

cN)
2 −O( 1

N
), σ2(1 +

√
cN)

2 −O( 1
N
)]

[x−k,N , x
+
k,N ] = [ψ(λK+2−k,N , cN)−O( 1√

N
), ψ(λK+2−k,N , cN)+O( 1√

N
)]

for k = 2, . . . ,K + 1

ψ(λ, c) =
(σ2c+λ)(λ+σ2)

λ so that ψ(λK+2−k,N , cN) close from
ψ(ρK+2−k , c∗) = γK+2−k .
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Illustration

c = M
N

= 0.5,N = 100, K = 2, σ2 = 1

−4 −2 0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 
Density
Eigenvalues
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4 K may scale with M. Application to the subspace method.
Motivation.
The ”asymptotic” limit eigenvalue distribution µN
Contours enclosing only the eigenvalue 0 of BNB

H
N

The G-MUSIC algorithm.
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Some useful properties of wN(z)

wN(z) = z(1 + σ2cNmN(z))
2 − σ2(1− cN)(1 + σ2cNmN(z)).

Im(wN(z)) > 0 if Im(z) > 0

Int(SN) = {x , Im(wN(x)) > 0}
wN(x) is real and increasing on each component of Sc

N

wN(x
−
q,N) = w−

q,N ,wN(x
+
q,N) = w+

q,N

wN(x) is continuous on R and continuously differentiable on R\∂SN
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Illustration of the behaviour of x → wN(x)

Illustration 2 clusters.

Re{w(x)}

Im{w(x)}

w(x
−

1
) = w

−

1
w(x

+

1
) = w

+

1

w(x
−

2
) = w

−

2
w(x

+

2
)= w

+

2

λ3
λ4

0
λ2 λ1
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In the case of the MP distribution, BN = 0

wN(x) is real and increasing on (−∞, σ2(1−√
cN)

2)

wN(σ
2(1−√

cN)
2) = −σ2√cN

|wN(x)| = σ2
√
cN if x ∈ [σ2(1−√

cN)
2, σ2(1 +

√
cN)

2

wN(1 +
√
cN)

2) = σ2
√
cN

wN(x) is real and increasing on (σ2(1 +
√
cN)

2,+∞)
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Illustration in the spiked case K = 2, N = 100, M = 50, σ2 = 1

−2 0 2 4 6 8 10
−1

0

1

2

3

4

5
Im

(w
N

(x
))

Re(w
N

(x))Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 113 / 133



4 K may scale with M. Application to the subspace method.
Motivation.
The ”asymptotic” limit eigenvalue distribution µN
Contours enclosing only the eigenvalue 0 of BNB

H
N

The G-MUSIC algorithm.
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Valid under the following hypotheses.

Assumptions.

0 is the unique eigenvalue associated with [x−1,N , x
+
1,N ] for each N large

enough,

0 < lim infN x−1,N < lim supN x+1,N < lim infN x−2,N

t−
1

x−

1,N t+
1

x+

1,N t−
2

x−

2,N
x+

Q ,N...

for all N large enough , t−1 , t
+
1 , t

−
2 independent of N
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Consequences of the assumptions

almost surely for N large enough

λ̂K+1,N , . . . , λ̂M,N ∈ (t−1 , t
+
1 ) and λ̂1,N , . . . , λ̂K ,N > t−2 ,
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Consequences of the assumptions

almost surely for N large enough

λ̂K+1,N , . . . , λ̂M,N ∈ (t−1 , t
+
1 ) and λ̂1,N , . . . , λ̂K ,N > t−2 ,

almost surely for N large enough,

ω̂K+1,N , . . . , ω̂M,N ∈ (t−1 , t
+
1 ) and ω̂1,N , . . . , ω̂K ,N > t−2

with ω̂1,N ≥ . . . ≥ ω̂M,N the solutions of the equation
1 + σ2cNm̂N(z) = 0 with m̂N(z) =

1
M
TrQN(z)
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Consequences of the assumptions

For y > 0, we define the domain

Ry =
{
u + iv : u ∈ [t−1 − δ, t+1 + δ], v ∈ [−y , y ]

}
.

Then, if t+1 + δ < t−2 , Cy = wN(∂Ry ) encloses 0 and no other
eigenvalue of BNB

∗
N for N large enough.
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Consistent estimation of ηN = aNΠ
⊥
NaN .

From residues theorem:

ηN =
1

2πı

∮

C−

y

a∗N (BNB
∗
N − λIM)−1

aNdλ,

ηN =
1

2πı

∮

∂R−

y

a∗N (BNB
∗
N − wN(z)IM)−1

aNw
′
N(z)dz

ηN =
1

2πı

∮

∂R−

y

a∗NTN(z)aN
w ′
N(z)

1 + σ2cNmN(z)
dz
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The integrand can be estimated consistently.

gN(z) = a∗NTN(z)aN
w ′

N
(z)

1+σ2cNmN (z)

From the previous result, we have the following convergence on
C− SN

mN(z) ≍ m̂N(z) =
1

M
TrQN(z) and a∗NTN(z)aN ≍ a∗NQN(z)aN

with QN(z) = (ΣNΣ
∗
N − zIM)−1.

Let ĝN(z) := a∗NQN(z)aN
ŵ ′

N
(z)

1+σ2cN m̂N(z)
with

ŵN(z) = z(1 + σ2cNm̂N(z))
2 − σ2cN(1 + σ2cNm̂N(z)). ĝN(z) has no

pole on ∂Ry and

∣∣∣∣∣
1

2πı

∮

∂R−

y

(gN(z)− ĝN(z))dz

∣∣∣∣∣→ 0 a.s.,
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The new consistent estimator.

η̂N,new = 1
2πı

∮
∂R−

y
a∗NQN(z)aN

ŵ ′

N
(z)

1+σ2cN m̂N (z)
dz

Integral can be solved using the residue’s theorem

η̂N,new = a∗N

(∑M
k=1 ξ̂k,N ûk,N û

∗
k,N

)
aN with (ξ̂k,N) depending on

λ̂1,N , . . . , λ̂M,N and ω̂1,N , . . . , ω̂M,N .

η̂N,new depend on the (ûk,N û
∗
k,N)k=K+1,...,M and on the

(ûk,N û
∗
k,N)k=1,...,K
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Numerical evaluations.

Comparisons between:

The traditional subspace method

The spike subspace method

The improved subspace method
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Experiment 1

Parameters

a(ϕ) = 1√
M
[1, expıπ sin(ϕ), . . . , expı(M−1)π sin(ϕ)]T

source signals are AR(1) processes with correlation coefficient of 0.9

K = 2,M = 20,N = 40, ϕ1 = 16, ϕ2 = 18
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Mean of the MSE of ϕ̂1 and ϕ̂2 versus SNR.
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Mean of the MSE of the a(ϕi)
HΠ̂

⊥
Na(ϕi) versus SNR
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Experiment 2

Parameters

K = 5,M = 20,N = 40

angles equal to −20,−10, 0, 10, 20
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Mean of the MSE of the a(ϕi)
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1 Problem statement

2 K = 0: An overview of Marc̆enko and Pastur’s results

3 K fixed: spiked models

4 K may scale with M. Application to the subspace method.

5 Some research prospects
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Future applications

G-estimation of other parameters: number of sources, power
distribution, ...
Applications: cognitive radio or passive network metrology.

Application of the spiked models for local failure detection/diagnosis
in large data or power networks.
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Methodological future research

Spiked models:
◮ Performance of tests for isolated eigenvalues, e.g. with the help of

large deviations theory.
◮ Design and evaluation of sphericity tests.

G-estimation:
◮ Extension of the G-estimation techniques to other matrix models.
◮ Consistency and fluctuations of estimates.
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