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@ Problem statement
@ Introduction to the Marcenko-Pastur distribution.
@ Some generalizations.
@ Short review of important previous works.
@ Brief overview of applications to digital communications
@ Introduction to the applications to statistical signal processing

© K = 0: An overview of Margenko and Pastur’s results
© K fixed: spiked models
@ K may scale with M. Application to the subspace method.

© Some research prospects
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Fundamental example.

Vii® Vi ... Vin
V. V. ...V
yo| v Ve v
Vi Vm2 .. Vwwn

(Vij)i<i<mi<j<n i.i.d. complex Gaussian random variables CA/(0, o2).

V1,V2,...,vy columns of V, R = E(v,v!’) = 0?1y

Empirical covariance matrix:

N

o1, 1 u
R= VvV :NZV,,V,,
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Behaviour of the empirical distribution of the eigenvalues of R large
M and N.

How behave the histograms of the eigenvalues (;\;);:17___7,\/; of R when M
and N increase.

Well known case: M fixed, N increases i.e. % small
= Zn vl = E(v,vH) = 021y by the law of large numbers.

If N >> M, the eigenvalues of %VVH are concentrated around o?2. J
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[llustration.

70

40t 1

30F 1
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If M et N are of the same order of magnitude.
M, N — +00 such that % =cy € [a,b], a>0,b < +00.
° IA?,-’J- ~ 026,-_j but

o ||R — o2ly|| does not converge torwards 0.

The histograms of the eigenvalues of R tend to concentrate around
the probability density of the so-called Marcenko-Pastur distribution:

|fCN < L

P = gl Va2~ A~ o2(1 — Ve

QWCNA

if Ae[o?(1—an)?, 021+ en)?]

= 0 otherwise

Result still true in the non Gaussian case
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[llustrations I.

2 25 3
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[llustrations II.
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[llustrations IlI.

M=256,M =2/3 02 =1
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Possible to evaluate the asymptotic behaviour of linear

statistics

M
Z = —Tface(f(R)) / f(N)pey(X) dA

k:

Example 1: f(\) = -

PP
o LTrace (lA? —l—pzl)_ ~ f p;’i;\z) d\ = my(—p?)
mu(—p?) unique positive solution of the equation
1
2
my(—p°) = 5 =
P™ ¥ T2 eymu (=)

Closed form solution (see below)
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Example 2: f(\) = log(1 + %)
% log det (IM + %) nearly equal to
1 2 2 2 o?
o log (1 + o*cymn(—p?)) +log (1 + o cvmy(—p%) + (1 - CN)?

o) (cumn(=7) + =)

Closed form formula
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Fluctuations of the linear statistics.

The bias

v [%T& (f(ﬁ))] = [ ) peuN)dr + O(375)

The variance

M [%Tr(f(ﬁ)) - / £ pCN()\)dA] L N(0, A?)
In other words:

1% A2
M

)

S

fR) = [ FO) pey(N)dA = (0
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@ Problem statement

@ Some generalizations.
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Generalizations of these behaviours, W = -

TN

Y = Ccl/2w, C > 0 deterministic, zero mean correlated model.

o Y =CY2wWC2 C >0, c > (0 deterministic, zero mean bi-correlated
model also known as Kronecker model in the MIMO context.

Y = A + W, A deterministic, information plus noise model.
Y=A+ C1/2Wél/2, Rician bi-correlated MIMO channel.

o Y=U(A®W)Q" U,Q unitary deterministic matrices, A
deterministic, Sayeed model.

Y=A+U(A®W)Q", non zero mean Sayeed model.

Replace i.i.d. matrix W by an isometric random Haar distributed
matrix (obtained from a Gram-Schmidt orthogonalization of W when
cN > 1).
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@ Problem statement

@ Short review of important previous works.
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Some important contributors.

In statistical physics.
Wigner (1950), Dyson, Mehta, Brézin, ....

In probability theory

@ Marcenko, Pastur and colleagues from 1967, Girko from 1975, Bai,
Silverstein from 1985.

@ Voiculescu and the discovery of the free probability theory from 1993.

@ From 1995, a large community using various techniques.

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 16 / 133



In our field

Digital communications: from 1997

@ Seminal works of Tse and colleagues and Verdid and colleagues in
1997 on performance analysis of large CDMA systems

@ Performance analysis of large MIMO systems
@ Various applications to ressource allocation

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 17 / 133



Statistics and statistical signal processing
@ Before 2007, some works of Girko who was the first to address
parameter estimation problems in the context of large random
matrices.

@ El-Karoui (2008) followed by a number of other researchers addressed
the population estimation: estimate the entries of diagonal matrix P
from matrix %VPVH.

@ Seminal works of Mestre-Lagunas (2008) and Mestre (2008) on the
behaviour of the subspace method when the number of sensors and
the number of snapshots converge torward oo at the same rate.

@ More recent works on applications to source number estimation
(Nadler 2010), to source detection (Bianchi et al. 2011), to power
distribution estimation problems in the context of multiusers
communication systems (Couillet et al. 2011).
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@ Problem statement

@ Brief overview of applications to digital communications
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Performance analysis of large CDMA systems .

The simplest context: Tse and Hanly, Verdd and Shamai 1999
@ M spreading factor, K number of users
@ received M—dimensional vector y = hWs + n
@ s K—dimensional vector of the transmitted symbols
@ n additive white noise, E(nn") = p?l
® W M x K matrix of the codes allocated to the users, modelled as a

realization of a zero mean i.i.d. matrix such that IE|W,-,J-|2 = %

[

h amplitude of the received signal
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Performance of the MMSE receiver.
MMSE Estimation of s;, W = (wy, W5)

—1
SINR By = wl? (wzwg' n %) wy

Analysis of By when M, K — oo, in such a way that £ € [a, b|
© Bu =B = 4T (WaWH + 27
° By ~ Bm,« deterministic positive solution of the equation
1

P K1 1
hE T "M T pwm.

BM,* =

@ Allows to have a better understanding of the MMSE receiver: find the

loading factor for which By . is above a target SINR, find the loading
factor maximizing the throughput % log(1 + Bm), -

v
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Examples of extensions to more realistic models.

Downlink with frequency selective channel (Debbah et.al. 2003)

@ y = HWs + n, H Toeplitz matrix

1 M=t 1

ME= P K11
m=0 |h(e2i7rm/M)|2 M 148w~

° BM,* =

Downlink with frequency selective channel and random orthogonal
Haar distributed code matrix (Debbah et.al. 2003)

<

1 = 1

o = —
BM’* M p2 1— K—1 IBM,* + K-1 1
m=0 [h(e2im/M)|2 M 1+Bm,« M 1+, «

Uplink with frequency selective channel (Li et.al. 2004)

oy= Z,’f:l H,wgs, + n; the channel matrices Hy are Toeplitz.

v

22 / 133



Applications to optimal precoding of MIMO systems.

M receive antennas, N transmit antennas

y=Hx+n
@ H MIMO channel, M x N non observable Gaussian random matrix
with known (or well estimated) second order statistics
@ x transmitted vector
@ n additive white Gaussian noise, E(nn'") = p?1
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The optimum precoding problem

Find the covariance matrix Q of x so as to maximize some figure of merit
of the system

Typical example: /(Q) =E [Iog det (IM + %{'Hﬂ
To be maximized w.r.t. Q on the convex domain Q >0 and +Tr(Q) < 1.
Q — /(Q) is a concave function, but is in general difficult to evaluate in

closed form its gradient and hessian. Have to be evaluated using
Monte-Carlo simulations (Vu-Paulraj 2005).
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A possible alternative: maximize a large system
approximation of /(Q)

Example of bicorrelated Rician channels H = A + CY/2WC/2
(Dumont et.al. 2010)

o Eigenvectors of the optimum matrix Q, have no closed form
expression

o 1(Q) =1(Q) + O(4). and 1(Q.) = I(Q.) + O(4;) where
o 1(Q) = log det (lM +QxG (5(0),5(0))) ny (5(0),5(0))
where ((5(Q),S(Q)) are the unique solutions of a system of 2 non

linear equations depending on Q, A, C, C,
G is a matrix valued function of (6(0),5((})) given in closed form,

j(é(Q),S(Q)) is a function of (6(0),5(0)) given in closed form.

v
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Maximization of /(Q) using an iterative waterfilling
algorithm

1(Q) = logdet [l + Q x G (6(Q).5(@))| +7 (5(Q). 5(Q)).
o Q1) available
@ Compute (5(Q(k_1)),S(Q(k—1))) = (6k—1) §(k-1))
o Q) = Argmax log det (IM +Q x G(5(k_1),5(k_1))) . waterfilling
® k=k+1

o If the algorithm converges, it converges torwards Q.

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 26 /133



@ Problem statement

@ Introduction to the applications to statistical signal processing
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The model considered in the following

Observation: M-dimensional time series y, observed from
n=1,...,N.
%y, = lele AkSk,n +Vp = As, + v,
® ((sk,n)nez)k=1,k are K < M non observable "source signals”,
Sp = (517,,, oo aSK,n)T
@ A = (ay,...,ak) deterministic unknown rank K < M matrix

(v,,),,eZ additive complex white Gaussian noise such that
E(v,vl) = o?ly

In matrix form
® Yy =(y1,-.-,yn) observation M x N matrix
o Yy =ASy+Vy

By = ASy

o Wi =

°ZN:\Y/—%,
o Xy =By+Wy

\/__

v
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The problems to be addressed.

Detection of the presence of signal(s) from matrix Xy
@ K =1 versus K = 0 to simplify

@ Various generalizations are possible

Estimation of direction of arrival (DOA) from matrix X .

@ a, = a(pxk) where p — a(yp) is known

o Estimate the parameters (¢ )k=1,. K

Problems addressed when M and N are of the same order of magnitude:
M, N — oo while the ratio ¢y = % is bounded away from 0 and upper
bounded.
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In the following

Study of the properties of X, when
@ K =0, noise only
@ K does not scale with M, i.e. K < M, spiked model: applications
to the detection K = 1 versus K = 0, application to the subspace
DOA estimation method
@ K may scale with M, i.e. K is not much less than 0, application to
the subspace DOA estimation method
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@ Problem statement

© K = 0: An overview of Margenko and Pastur’s results
® The Stieltjes transform
@ Gaussian tools
® Marcenko-Pastur Probability distribution
@ A symmetric view of Maréenko-Pastur equation
@ Behavior of the individual entries of the resolvent
@ Finer convergence results

© K fixed: spiked models
@ K may scale with M. Application to the subspace method.

© Some research prospects
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The Stieltjes transform | (measure with density)

The Stieltjes transform is one of the numerous transforms associated to
a measure. It is particularly well-suited to study Large Random Matrices

and was introduced in this context by Marcenko and Pastur (1967).

Definition
If the measure 1 admits a density f with support S:
du(N) =f(A)dx on S,

then the Stieltjes transform W, (z) is defined as:

v.(2) = L%dm

— _gz—(k“) ( /S /\kf(/\)d)\>
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The Stieltjes transform | (properties)
Let im(z) be the imaginary part of z € C.

Property 1 - identical sign for imaginary part
. . f(\)
imWV,(z) = im(z /

M( ) ( ) < ()\ _ X)

SdA

Property 2 - monotonicity
If z=x € R\ S, then V,(x) well-defined and:

Vi(x) = /g()\fi);)(yd)\ > 0 = V,(x) / onR\S .

Property 3 - Inverse formula

f(\) = 1 lim imW,(A+y),

T y—0*t

Note that if A\ € R\ S, then ¥, (x) e R = f(\)=0.

v
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The Stieltjes transform Il (measure with Dirac
components)

Stieltjes transform for a Dirac measure

1 if x € A

0 else. b

Let 0, be the Dirac measure at x: d,(A) = {

5 1
Vs, (2) = 2 in particular, Ws (z) = -

» Important example:

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011

34 / 133



The Stieltjes transform Il (link with the resolvent)

Let X be a M x M Hermitian matrix:

A1 0
X=U U*
0 AMm

and consider its resolvent Q(z) and spectral measure Ly:

M
Qz)=X—-z)1, Ly= %Z% :
k=1

The Stieltjes transform of the spectral measure is the normalized trace of
the resolvent:

Viu(2) =+ tr Q(z) -
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© K = 0: An overview of Margenko and Pastur’s results
@ Gaussian tools
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Gaussian tools

Let the Z;'s be independent complex Gaussian random variables and
denote by z = (Z3,- -+, Z,). The two following results are extremely
efficient when dealing with matrices with Gaussian entries (Pastur 2005).

Integration by part Formula

E(Z:®(2,2)) = E|Z4*E (aT‘D)
0Z |
Poincaré-Nash Inequality
. oo |? oo |2
7)) < g — ad
Var(¢(z,z))_kzz:lE|Zk| (E 3z, +E = >
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© K = 0: An overview of Margenko and Pastur’s results

® Marcenko-Pastur Probability distribution
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Marcéenko - Pastur Probability distribution

We go back to Marcenko and Pastur framework and consider

VN
where Vy is a M x N matrix with i.i.d. complex Gaussian random
variables CA/(0, 02).

We are interested in the limiting spectral distribution of WyW?},. Consider
the associated resolvent and Stieltjes transform:

Wy

Q(z) = (WAW5 — 21 L, () = %trQ(z) .
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Marcéenko - Pastur Probability distribution

We compute hereafter the equation satisfied by the Stieltjes transform
associated to the limiting spectral distribution. Afterwards, we rely on the

inverse formula for Stietjes transforms to get Maréenko - Pastur
distribution.

Main assumption

The ratio ¢y = % is bounded away from zero and upper bounded as
M, N — .

The three main steps are:

@ To prove that var (Amy(z)) = O(N~2). This enables to replace
mn(z) by Emp(z) in the computations .

© To establish the limiting equation satisfied by Empy(z).

© To recover the probability distribution with the help of the inverse
formula for Stietjes transforms.
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Step 1: Marcenko - Pastur Equation

Proposition
var (fw(z)) = O (%) '
Proof: N _ —(Qw;)-Q;
oW, o

By summing over r, then over i and j, we obtain:

1 2 * 2%

WE (#tr ww*) = o(%) .
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Step 1: Marcenko - Pastur Equation (end of proof)

By Poincaré-Nash inequality

2
8ﬁ1N(z)

oW,

= (o) e ()

which ends the proof. B

i | 9n(2) 2
OW;

var (y(z)) < D EW [ |[E
iJj
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Step 2: Marcenko - Pastur Equation

Proposition

Efmpn(z) — my(z) — 0 where mpy(z) satisfies:

mN(z) =

-1 M
N

y CN =
z |1+ o2cympy(z) — L(IZ_CN)]

Proof: The mere definition of the resolvent yields

| WW*
Q-1 W

V4 V4

hence

5ri E(QWW* ryi
EQW. — _? + u

)
V4

where §,; stands for the Kronecker symbol.
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Step 2: Marcenko - Pastur Equation (proof I)

Write N M
E(QWW?), ; = Z Z E (Qr,sWs,jWU)

j=1s=1

Applying the integration by parts formula yields

E (Qr,sws,jWij) = E‘Wsd‘ E laws,j (Qrs )]

2

= T [04E(Qrs) — E ((Qu)) Qs sW,,))]

Summing over s and then over j yields:

E(QWW"), ; = 0?EQy,; — o cyE [ (QWW"), ]
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Step 2: Marcenko - Pastur Equation (proof II)

Taking r = i, summing over i/ and dividing by M yields:
1 * 2m A 2 A 1 *
E(—=trQWW~* | = oc’Emy — o°cE | my | — tr QWW
M M
As QWW* = | + zQ, we obtain:
14 zEfmy = 0*Efy — o cE [y (1 4 ziy)]
Using Poincaré-Nash inequality enables the following decorrelation:

E [fy (1 + zmy)] = (Emy) (1 + zEmy) + O (%)
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Step 2: Marcenko - Pastur Equation (proof III)

Gathering the previous results yields:

1
(1 + ZEﬁ’IN) (1 + UchEr’f’IN) = UzEﬁ’IN +0O (W)

Asymptotically, Efmy — my — 0 which satisfies:
(1 + sz) (1 + UchmN) = Usz s

which also writes:
-1

1+ raum(e) - ]

mN(z) =

This ends the proof. B
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Step 3: Marcenko - Pastur Probability distribution

Proposition
The probability distribution associated to the Stieltjes transform my
admits the density p, defined as:

VA=AD) (A=A .
ch()\) = { : 27ro'2)£N+ ) ifAe ()‘—, )‘+) .
0

else.

where A\_ = 02(1 — \/cy)? and Ay = o%(1 + /cn)>.
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Step 3: Margenko - Pastur Probability distribution (proof)

Proof: Solving the equation satisfied by m:

m(z) = — (z [1 + o2 eymu(z) — MD_I

z
yields
—z4+0?(1—cn)++/(z=A)(z— A
mN(z) _ ( N)2 2\/( )( "r) )
o°CNZ
Using the inverse formula yields:
A) = L lim i A
Pey(A) = o Jim, im mu(A + ty)
A=22)(A+—A .
_ YRR e (asay)
0 else.

which is the desired result W
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Concluding remarks

» The fact that my — my — 0 implies that for f bounded and
continuous,

1 .«
7 Z F(Ain) — / F(A)pey (A)dA =0 .

pcy (resp. my) is a deterministic equivalent of the spectral
measure Ly (resp. my).

» if cy — ¢ € (0,00), then p., — pc, where pc, is obtained by
replacing cy by ¢, and

M
1 «
i > f(Aiw) = / F(A)pe, (A)dA .
i=1
in this case, the spectral measure converges to p, .
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© K = 0: An overview of Margenko and Pastur’s results

@ A symmetric view of Maréenko-Pastur equation

Hachem, Loubaton and Najim (EUSIPCO)

Large random matrices

DA



A companion quantity in MP equation |

Instead of WW*, consider W*W. Assuming N > M, both matrices have
the same eigenvalues up to N — M zeroes. The associated Stieltjes
transform therefore writes:

mn(z) = %tr(W*W —zl)?
N
1 1 N—M 1
= — —_ = 7t —_ 1 —_ —
N (kz_:l Ak — 2z z > enfn(z) = ( CN)z
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A companion quantity in MP equation ||

As my — my — 0, m — My — 0 which satisfies:

mn(z) = enmy(z) — (1 — CN)E .

The inverse Stieltjes transform yields:

(ST) " L(mn) = pey(N) and (ST)"? (-%) —

Hence, we obtain

Pou(dA) = cnpey(NAA + (1 — cn)do(dA) )

where g accounts for the null eigenvalues of W*W.
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A symmetric view of MP equation

As

m(z) = —<z [1+U2CNmN(z)—M]>_1

ﬁ?N(Z) = cNmN(z) - (1 - CN); .

We readily obtain: my(z) = AT m(@) Similarly, we can obtain the

companion equation: my(z) = WM . Hence a symmetric
presentation of MarCenko-Pastur equation:

—1
mN(Z z(1+o2mp(2)) (1)
~ _ -1
mN(Z) — z(1+o2eymp(2))

~—
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© K = 0: An overview of Margenko and Pastur’s results

@ Behavior of the individual entries of the resolvent
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Behavior of the individual entries of the resolvent

Proposition

(diagonal) EQ;i(z) = mN(Z)"‘O(ﬁ) )

(off-diagonal) EQ,i(z) = (’)(#) for r#i.

(quadratic form) Eu*Q(z)v. = mpy(z)(u*v)+ O (#)
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Behavior of the individual entries of the resolvent (proof I)

Proof: As previously, we have
E(QWW"),; = 0*EQ,; — *cnE | iy (QWW), |
Since QWW* = | 4 zQ, we obtain: (QWW*)U- =6, + zQ, ; Hence:

S+ ZEQ,; = 0’EQy;i — o’ cnE [y (8 + 2Qy,)]
= 0%EQ,,; — o’ cndriEiy — zo” cnE [AnQy,] -

Poincaré-Nash inequality yields
- . 1
E[mnQr,i] = EmyEQ,; + O (W)

(follows from the fact that var Q, ; = O(N71)).
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Behavior of the individual entries of the resolvent (proof II)

» If r = i then the result is obvious
» If r =1, then

°EQi,i 1
1+ZEQ,',,':—U Q. +O< )

1+ UchEﬁ’)N N3/2

Summing over i and dividing by M yields

2 A
o Empy 1
1 Emy=——-——+0(—=
+ zEmp 1—|—O'2CNEﬁ7N+ <N3/2> )

hence the required result.
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© K = 0: An overview of Margenko and Pastur’s results

@ Finer convergence results
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Convergence of the extreme eigenvalues

Denote by
AN = 2 ANN

the ordered eigenvalues of WW* and recall that the support of
Mar&enko-Pastur distribution is (62(1 — \/cn)?, 0%(1 + /cn)?). Then:

Theorem
If cy — ¢, then the following convergences hold true:

Sv —2 s G214 /E)
M—00

El

Ay —=— o*(1-/c)
’ N,M—s o0
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Fluctuations of the extreme eigenvalues |

A Central Limit Theorem holds for the largest eigenvalue of matrix WW*
as N, M — oo. The limiting distribution is known as Tracy-Widom's
distribution.

Fluctuations of 3\1,,\/

Let cy — c«. When correctly centered and rescaled, 3\17,\/ converges to a
Tracy-Widom distribution:

N2/3 " ;\17N—02(1+\/CN)2 L
o2 1/3 N,M—oo
(1+ /<) (\}C—N 4+ 1)

Frw .

The function Fry, stands for Tracy-Widom c.d.f. and is precisely
described in the following slide.

A similar result holds for 3\M7N, the smallest eigenvalue of matrix WW*. J
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Fluctuations of the extreme eigenvalues |l

Definition of Tracy-Widom'’s distribution
The c.d.f. Fry is defined as:

Frw(x) = exp (—/ (u—x)g*(u) du) VxeR,
where g solves the Painlevé Il differential equation:

q'(x) = xq(x)+2¢*(x),
g(x) ~ Ai(x) as x— oco.

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011

61 / 133



@ Problem statement
© K = 0: An overview of Margenko and Pastur’s results

© K fixed: spiked models
@ Problem Description
@ Main results
@ Some Applications
@ Proofs of main results: outline of the approach

@ K may scale with M. Application to the subspace method.

© Some research prospects
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Signal model

Rcv signal Channel  Src signal Noise
sl
Y1 YN = a;---ag + vy
K
Yy = Ay Sn + Vy
M x N M x K K x N M x N

Ty =N12Yy =By + Wy
Recall that noise matrix W has independent CA/(0, 0% /N).
We assume here that the number of sources K is < N.

Yy = Matrix with Gaussian iid elements + fixed rank perturbation.

Asymptotic regime: N — co, M/N — ¢, and K is fixed. ]
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Multiplicative Spiked Model

Assume Sy is a random matrix with independent CA/(0,1) elements
(Gaussian iid source signals), and Ay is deterministic. Then

Ty = (AnAy + 021) " Xy

where Xy is M x N with independent CA/(0,1/N) elements.

Consider a spectral factorization

A1

AnA% = Uy Ak Uy
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Multiplicative Spiked Model

Let Py be the M x M matrix
[ A 2 /A 2
PN:diag( 1—20,..., Ki—ztf’]_’“"])'
o o

ULZy = oPyUL Xy 2 PAWy

Then

where Wy is M x N with independent CA/(0,02/N) elements as above.

Py is a fixed rank perturbation of Identity.
= Multiplicative spiked model:

eigenvalues of ZyX) =  eigenvalues of PyWyWj Py
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Additive Spiked Model

Assume Sy, is a deterministic matrix and By = N~Y/2AxSy is such
rank(By) = K (fixed).
We call the model Xy = By + Wy an additive spiked model.

Impact of By on spectrum of X yX7, in the asymptotic regime 7
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Impact of Py or By 7

Let FN and Fp be the distribution functions associated with the spectral
measures of XX} and WyWy7, respectively. Then

~ 1 W%) —
sup [Fn(x) — Frn(x)| < - rank (ZyZy — WyWy) 0
X M N—oo

So XX} and WyW3, have the same (Marlenko Pastur) limit spectral
measure, either for the multiplicative or the additive spiked model.

However, XX might have isolated eigenvalues.
We shall restrict ourselves to the additive case and study these
isolated eigenvalues as well as the projections on their eigenspaces.
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Spectrum example for XX},

12

101 M

3 4 5 6 7 8 9 10

An eigenvalue histogram for M = 64, N = 3M, and 0% =1.
Yy = By + Wy where By has rank 2 with singular values 2 and 2.5.

0
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© K fixed: spiked models

@ Main results
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Notations

Spectral factorizations:

ALN *
ByBy = |uiny - ukn upy - UK
AK,N
where A\ y > -+ > Ak n.
Assuming N > M
ALN *
AM,N

where 3\17,\/ >0 > S\MJ\/.
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Main result on the eigenvalues

Theorem 1
Model is Xy = By + Wy where

@ By is a deterministic rank-K matrix such that A\, y — pi for

k=1,...,K,
@ Wy isa M x N random matrix with independent CA/(0, 0%/ N)
elements.

Let /i < K be the maximum index for which p; > 02\/c_*. Then for
k=1,...,i,

2 2
Ny 22 = (et 0 (it @) | 2y 4 ey
oo Pk

while
)\,’+1 N i) 0'2(1 aF \/C*)z.
" N—oo
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Main result on the eigenvectors

Theorem 2

Assume the setting of Theorem 1. Assume in addition that
p1>p1 > >pi (>02/c). For k=1,...,i let

I‘Ik,N = ukyNu*,;N and I‘Ika = ﬁk,NﬁI,N-
Then for any sequence ap of deterministic M x 1 vectors such that

supy |lan]| < oo,

aiflonan — h(aiMonan 2550, hx) = 2700 P00

(xm(x)m(x))’

and m and /m are given by Equations (1) when cy is replaced with c,.

Generalization to the case of multiple limit eigenvalues py is possible.
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© K fixed: spiked models

@ Some Applications

Hachem, Loubaton and Najim (EUSIPCO)

Large random matrices



Passive Signal Detection

@ X = By + Wy, non observable signal + AWGN.
@ Assume K =1 source:
By = N_1/2a17Ns}V, rank one matrix such that [|By||? Y 0.
—00

HO : Xy=Wy (Noise)

Hypothesis test: { H1 - Ty =By+Wy (InfotNoise)

Generalized Likelihood Ratio Test (GLRT)

ALN

T —
N M Tt (Zhh)

Asymptotic behavior ?
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Passive Signal Detection and Additive Spiked Models

@ Under either HO or H1, M~ tr (ZyX3) Na-s- o2
—00

@ Under H1 (consequence of main result on eigenvalues):
> If p> 0?\/c., then
N as. (U2C* + P) (p + 0'2)

ALN v = >0 (14 /),
N— oo P

5\2,/\/ L) 02(1 —+ \/a)z
N— oo

> If p < 0?\/c., then

An —2 (14 V)2
N— o0

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 75 /133



Passive Signal Detection and Additive Spiked Models

We therefore have
@ Under HO,
Tv —2 (14 /)2
N—oo
o Under H1,
» If p > 02\/c,, then

;o _as (%c +p) (p+0?)
N N— oo U2p

> (1+Ve)?

» If p < 0%\/c,, then
Ty _)Na.s. (1 + \/a)Q
—00

p > 02\/?* provides the limit of detectability by the GLRT.

@ False Alarm Probability can be evaluated with the help of the
Tracy-Widom law.

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011

76 / 133



Source localization

Problem

K radio sources send their signals to a uniform array of M antennas during
N signal snapshots.

Estimate arrival angles ¢, ..., ok

Example with two sources
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Source localization with a subspace method (MUSIC)

Model: £y = NY2ANSy + Wy with
N——
By 1

el sin ¢

B

o Ay = [an(p1) -+ an(px)] with an(p) =

ez(M—i)ﬂsincp
@ Sy is deterministic, rank(Sy) =

Let My be the orthogonal projection matrix on the span of AA*, or
equivalently, on the eigenspace of EXX* = BB* 4 52l associated with
the eigenvalues > o2 (“signal subspace”). Let My = Iy, — My be the
orthogonal projector on the “noise subspace”.

MUSIC algorithm principle

an(p) Myan(p) =0 & @€ {o1,... 0k}

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 78 / 133



MUSIC algorithm

Traditional MUSIC: angles are estimated as local minima of

an(e) Myan(p)

where ﬁN is the orthogonal projection matrix on the eigenspace associated
. . =1 =
with the K largest eigenvalues of TX* and My = Iy — My.

~1 .
Asymptotic behavior of ay(¢)*Myan(yp) well known when M is fixed and
N — oo.

@ Behavior in our asymptotic regime ?

@ Is it possible to improve the traditional estimator and to adapt it to
our asymptotic regime 7
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MUSIC algorithm and the spiked additive model
Modified MUSIC estimator: application of Theorem 2
Assume that IimNinf/\K’N > 02\/c_*. Then

. () bin® as
an(p) Myan(e) — Z hOwn) N 0
k=1
uniformly on ¢ € [0, 7].
Modification of the traditional estimator
M
a(p) Mta(p) = a(p)* (Zu oy — ") a(p)
k=
K
N | 1
<% a (Z( 5 )ﬁﬁ+Zﬁk )a(gp
k=1 k=K1
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© K fixed: spiked models

@ Proofs of main results: outline of the approach
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Eigenvalues: principle of the proof of Theorem 1

We follow the approach of Benaych-Georges and Nadakuditi'2011.
We study the isolated eigenvalues of XX, or equivalently, the isolated
singular values of X.

A matrix algebraic lemma

Let A be a M x N matrix. Then o7,

...,0maN are the singular values of
A if and only if

O1y--+3OMAN; —01,---, —OMAN, 07"'70
~——
N — M|

are the eigenvalues of
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Eigenvalues: principle of the proof of Theorem 1

Drop index N. Let B = UVAV*, A = diag (A1,...,Ak) be a spectral
factorisation of B. Write

SRR [F N
=W+ CJC".

Assume \ ¢ spectrum(WW*) and A € spectrum(ZX*) or equivalently

det( f|M+N)¢0 and det( f|M+N)_0

We have

det (X — xI) = det (W — xI + CJC*)
= det (W — xI) det (IzK +ICT (W — x1) 7! c)
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Eigenvalues: principle of the proof of Theorem 1

Using inversion formula for partitioned matrices,

[ W]Th [ xQ(d) wQ(x?)
W =) lz[w* —xl] :lé(xz)w* X(j(x2)]

where we recall that Q(x) = (WW* — xI)~!, and where we set
Q(x) = (W*W — xI)~ 1,

Hence \/X is a zero of

det (ng +JCT (W — xI) c)

C(C1)Rder|  UQEAU e+ UWQEEVYA
Ik + VAV QX)W U xVAV*Q(x*)VVA
H(x)
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Eigenvalues: principle of the proof of Theorem 1

When x? > 02(1 + ,/¢,)?, Q(x?) and Q(x?) are well defined for N large,
because ||[WW*|| Na—s> (1 + /c.)>.
—00

By the approach developed in the previous chapter
U Q(x*)U =25 m(x)lk, V*Q(x*)V —= m(x?)lk, and
N—oo N—oo

V*Q(x*)W* U —22 0,
N—oo

hence

P1
O a.s. . xm(x2)IK IK N
H(x) — H(x) = I xin(x2)F where T =

PK
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Eigenvalues: principle of the proof of Theorem 1

Consider the equation

K
det H(v/x) = [ (em(x)m(x)oi —1) =0 . (2)
k=1

o Let 74 = 0%(1 + \/cx)?. From the general properties of the Stieltjes
Transforms, function G(x) = xm(x)i(x) decreases from G(v{) to
zero for x € (74, 00).

@ Recall the py's are arranged in decreasing order. Assume
pk > 1/G(v]). Then the k™ largest zero v of (2) (which satisfies
G(vk) = 1/pk) will satisfy vx > 4.

@ In that situation, due to det H — a5 det H outside the eigenvalue bulk,
we infer that A\x —vas Yk. Otherwise, N —ras Ve
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[llustration

Exploiting the expressions of m(z) and m(z) (Stieltjes Transforms of M-P
distributions), condition px > 1/G(v}) can be rewritten px > 02,/c;.

In this case, solving G(x) = 1/p« gives vk = (02c. + pk) (px + 02) /px.
Hence Theorem 1.
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Eigenvectors: principle of the proof of Theorem 2

Matrix algebraic lemma (cont'd)

A pair (u,v) of unit norm vectors is a pair of (left,right) singular vectors of
the M x N matrix A associated with the singular value o if and only if

uj . . .
omli2 [v] is a unit norm eigenvector of

associated with the eigenvalue o.
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Eigenvectors: principle of the proof of Theorem 2

Quadratic form a*la can be written as a Cauchy-integral: using the
previous lemma,

e . 0 X “a
a I'Ika = ﬁ ) [a 0] <|:Z* 0:| _Z|M+N> |:0:| dz

where path Cj encloses eigenvalue v/ k.

Recalling that [0 Z] = [ 0 W

0 W 0] + CJC*, we obtain using the

inversion formula for partitioned matrices
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Eigenvectors: principle of the proof of Theorem 2

a1 ) 0 W “a
a‘Mia = — Ck[a 0}<[W* 0]—zl> [0] dz

=0 forvlarge N

+ % 75: b*(z)H(z)~'b(z) dz

where

foy zU*9(22)
b(Z) - |:\/KV*Q(Z2)W*:| a,
zU*Q(z2)U Ik + U*WQ(z2)VVA

and recall that H(z) = I+ \/KV*(NQ(zz)W*U zx/KV*(Aj(zz)V\/K

Hachem, Loubaton and Najim (EUSIPCO) Large random matrices August / September 2011 90 / 133



Eigenvectors: principle of the proof of Theorem 2

Let

b(z) = [ 0 a] and recall H(z) = [Zm(lz;)"‘ zmz’;)r

Since j\k —as Vk = (O'QC* + pk) (pk + 02) / Pk, we replace Cy with a
deterministic path C, centered around -, and

~ r 1

a*fa "E" = § b*(2)H(z) b(z) dz
1T Cp

—em(yie)? ()

— (em(ve) (k)

a'Mga

using the residue theorem.
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@ Problem statement
© K = 0: An overview of Margenko and Pastur’s results
© K fixed: spiked models

@ K may scale with M. Application to the subspace method.
@ Motivation.
® The "asymptotic” limit eigenvalue distribution gy
@ Contours enclosing only the eigenvalue 0 of BNBﬂ
@ The G-MUSIC algorithm.

© Some research prospects
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@ Motivation.

@ K may scale with M. Application to the subspace method.
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Yy =ASy +Vy
@ A M x K deterministic, the source K x N matrix Sy deterministic.

@ K and M are possibly of the same order of magnitude: K may scale
with N in contrast with the context of spiked models.

@ After normalization by V'N:

Yy =By+Wy
e By 'i\/s_"’ deterministic, Rank(By) = K = K(N) < M = M(N)

o2
N

o W) complex Gaussian i.i.d. matrix, E|W; ;|2 =
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Xy=By+Wy
Noise subspace: Orthogonal of the range of By = orthogonal of the
range of A under mild conditions,

(]

Orthogonal projection matrix I'I*,

Estimate consistently aMya for each unit norm M-dimensional
deterministic vector a

. . ol .
The conventional estimate aI1ya is not consistent:

(]

A | )
alMya — aHI'Ik,a does not converge to 0 if M and N converge to co
at the same rate
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@ K may scale with M. Application to the subspace method.

® The "asymptotic” limit eigenvalue distribution gy
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Characterization of the limit eigenvalue distribution ppy

Dozier-Silverstein 2007: It exists a deterministic probability measure
wy carried by R™ such that

1 M

@ 4> ke10(A— j\k,N) — pun — 0 weakly almost surely
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Characterization of the limit eigenvalue distribution ppy

Dozier-Silverstein 2007: It exists a deterministic probability measure
wy carried by R™ such that

°o L SM L0 — Ak.v) — sy — 0 weakly almost surely

How to characterize iy

o Stieltjes transform my(z) = [p+ “K(_dz)‘) defined on C — R™

o my(z) = 5 TrTu(z) with

° Tn(z) = <#‘Z"’N(Z) — 2(1 4 o?cympy(2))ly + o%(1 — CN)|M>
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Equivalent form of the equation

mp(z) is solution of the equation

my\Z 1 -
T+ 022/,\(/n3/v(2) = 7 Trace(ByBj, — wi(2)ln) ™ = fiv(wiu(2))

o wy(z) = z(L + o?ecymp(2))? — 0%(1 — cn)(L + o?cymp(2))

o fy(w) = HTrace(ByBy — wiy) 1 =4SNV 1
kN
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Equivalent form of the equation

mp(z) is solution of the equation

mmy\zZ 1 -
T 022/,\(/n3/v(2) = 7 Trace(ByBj, — wi(2)ln) ™ = fiv(wiu(2))

o wy(z) = z(L + o?ecymp(2))? — 0%(1 — cn)(L + o?cymp(2))

o fy(w) = HTrace(ByBy — wiy) 1 =4SNV 1
kN

Convergence results: Qy(z) = (ZyZy — zly) ™t

o LTiQu(z) = Mn(z) < my(z) = 5T Tw(2)
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Equivalent form of the equation

mp(z) is solution of the equation

my(z 1 _
1+ 022//\(/n3N(Z) = g7 Trace(BnBY, — wi(2)lm) ™" = fu(wn(z))

o wy(z) = z(L + o?ecymp(2))? — 0%(1 — cn)(L + o?cymp(2))

o fy(w) = HTrace(ByBy — wiy) 1 =4SNV 1
kN

Convergence results: Qy(z) = (ZyZy — zly) ™t
o LTiQu(z) = Mn(z) < my(z) = 5T Tw(2)
@ Hachem et al.(2010), for ||dy| =1,

dT\/QN(Z)dN = d}k\ITN(Z)dN.
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Properties of uy, cy = % <1

Dozier-Silverstein-2007
@ For each x € R, lim,_,, ,cc+ my(z) = mp(x) exists
@ x — my/(x) continuous on R, continuously differentiable on R\0Sy
o un(dA) absolutely continuous, density LIm(my(x))
@ Sy support of uy. Int(Sy) = {x € R, Im(mpy(x)) > 0}
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Characterization of the support Sy of uy.

Reformulation of Dozier-Silverstein 2007 in
Vallet-Loubaton-Mestre-2010
@ Function ¢y(w) defined on R by
on(w) = w(l — o?cyfu(w))? 4 0?(1 — cn)(1 — o?cnfu(w))
@ ¢p has 2Q positive extrema with preimages

Wl(’/\i) < Wl(fVJr) < Wz(’/\i) < ...W((?Nl < ng_)F These extrema verify

MO SN (S )

o Sy = [X](_’N_),X](_’A_I’_)] U... [thlz,xgtlj_]

W™, )

@ Each eigenvalue \; y of ByB}, belongs to an interval (w7, W 1
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@ If ¢y is small enough or o small enough, there are Q = K + 1
clusters nearly centered around o2 and (Ax + 02)k=1... k-

o If cy or o2 increases, certain clusters merge, and Q < K + 1.
@ An eigenvalue A\ y of ByB7, is said to be associated to the cluster
— + . — +
[Xq7N,Xq7N] if A G]qu, Wq7N[.
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lllustration (1).

The parameters.
@ g2=2
@ Eigenvalues of ByBj,: 0 and 5 with multiplicity %
2]

o Eigenvalues of ByBy, + o 2 and 7 with multiplicity %
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lllustration (1).

The parameters.
@ g2=2
@ Eigenvalues of ByBj,: 0 and 5 with multiplicity %
o Eigenvalues of ByB}, + o2l : 2 and 7 with multiplicity %

Remark
o fy(w) =3 (—% + ﬁ) independent of M, N

@ yuy does not depend on M, N if ¢y = % = c independent of M, N
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lllustration (I1).

c=M=005

True Density and Empirical Distribution
0.7

0.6

0.5~

02r-

0.1
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lllustration (I1I).

=z

c= =0.2

0.3

025

01

0.05

True Density and Empirical Distribution

o
i "
”||'|'|"|
N
10

12 14
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lllustration (IV).

=z

= = (0.5

True Density and Empirical Distribution

0.3

01

'l | gy
[ it
L
12
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Sy in the context of spiked models.

Assumptions: cy — ¢, ey — px > 02y/c, for k=1,... K,
Pk 7 P

(o2cetpi)(pr+o?) fork=1,...,K

O NN =Yk = e

@ Q = K +1 clusters

o [y Xl = [0°(1 = vep)? = O(g), o*(1 + Vew)® — O(g)]

o [xe s X nl = [ kt2—kns CN)_O(\/LN)a’(/)()\K—H—k,Na CN)+O(ﬁ)]
fork=2...,K+1

0'2 0'2
° Y(\c)= % so that ¥(Aki2—k N, cn) close from

Y(PK+2—k, Cx) = VK+2—k-
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[llustration

_ M _
C—N—

0.5,N =100, K=2,0%=1

0.9
0.8 i
0.7+ B
0.6 4
05+ b
04F 4
03r B
0.2 4
01r 7
0 I . . I LN P cavan o I
-4 -2 0 2 4 6 8 10 12 14 16
o F = = =
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0 K may scale with M. Application to the subspace method.

@ Contours enclosing only the eigenvalue 0 of BNBH
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Some useful properties of wy(z)

WN(Z) = Z(]. aF O'2CNIT1N(Z))2 — 0'2(1 — CN)(]. aF a2cNmN(z)).

Im(wy(z)) > 0 if Im(z) >0

Int(Sn) = {x, Im(wn(x)) > 0}

wy/(x) is real and increasing on each component of Sf,

WN(X;N) =W,y WN(X;:N) = W;:N

wp(x) is continuous on R and continuously differentiable on R\0Sy )
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lllustration of the behaviour of x — wy(x)

[llustration 2 clusters.

Im{w(x)}

+

w(xz_) = w2_ w(x2 )= w;

\ 4

/ U )

+y =t
w()cl)—w1
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In the case of the MP distribution, By = 0

(]
(]
(]
)

wp(x) is real and increasing on (—oc, 0?(1 — v/cy)?)
(0?1 — /e )?) = —0* e

()| = 22y i x € [02(1 — Va2, 02(1 + vy
wn(1+Vey)?) = a?Vey

wy(x) is real and increasing on (02(1 + /cy)?, +00)
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lllustration in the spiked case K =2, N = 100, M =50, 0% =1 J

Im(w, ()
N
1

-1 ! ! ! ! ! ! -
= 2 4 6 8 10 E Dac

0
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@ K may scale with M. Application to the subspace method.

@ The G-MUSIC algorithm.
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Valid under the following hypotheses.

Assumptions.

@ 0 is the unique eigenvalue associated with [Xl_N,lerN] for each N large
enough,

. . — . _l’_ . . —
o 0 < lim '”fol,N < limsupy Xy < I|m|anx2’N

- - + + - +
& XN XN 3y ) Xo,N QN

o for all N large enough , t;,t;",t; independent of N
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Consequences of the assumptions

@ almost surely for N large enough

)\K+1,N,~~~,>\M,N € (tl_, ti’_) and )\LN, .. -,>\K,N >t
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Consequences of the assumptions

@ almost surely for N large enough

)\K+1,N,~~~,>\M,N € (tl_, tii_) and )\LN, .. ~,)\K,N >t

@ almost surely for N large enough,
Ok Omn € (t,t) and @ Ok N>ty
+1,N5- - WM N 1°°%1 LNy WKN 2

with @1y > ... > Om, n the solutions of the equation
1+ o2cyfp(z) = 0 with Ay (z) = LTrQu(2)
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Consequences of the assumptions

@ For y > 0, we define the domain
Ry={u+iviuve(ty =6t +8,vel-yyl}.

Then, if t1+ +0<ty,C, =wy(0Ry) encloses 0 and no other
eigenvalue of ByB7, for NV large enough.
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Consistent estimation of ny = aNI'IﬁaN.

From residues theorem:

1 _
=5 ¢ ay(ByBy —Au) Layd),
Cy
1 * * -1 /
=5 - ay (ByBy — wy(2)ly) " aywy(z)dz
o4
1 : wy(2)
= — T d
N = o oR; anTn(z)an 1+ o2cymp(2) z
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The integrand can be estimated consistently.

gn(z) = ay Tu(2)an i

@ From the previous result, we have the following convergence on

C—Sn

1
mN(z) = ﬁ]N(Z) = MTI'QN(Z) and a‘,‘\,TN(z)aN = a’,“VQN(z)aN

with QN(Z) = (ZNET\I = ZlM)_l
o Let gN(Z) = aT\IQN(Z)aN#(Zm)N(Z) Wlth

Wy (z) = z(1 + o?enmin(z2))? — o?en(L + oy mn(z)). En(z) has no
pole on IR, and

77§, (@) ~an(e)dz| 0 as,
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The new consistent estimator.

NN, new = ﬁ faR; ayQn(z )aN#(;)N(Z)dz
@ Integral can be solved using the residue’s theorem
® 7N new = Ay (Zk 1 §k LR N) ay with (§k n) depending on
)‘l,Na .. )\M n and &1 N, -, OmN-

® 7N new depend on the (Uk,Nﬁi,N)k:KH,...,M and on the
(O N K N k=1, K
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Numerical evaluations.

Comparisons between:
@ The traditional subspace method
@ The spike subspace method

@ The improved subspace method
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Experiment 1

Parameters
0 a(p) = {1, exp™SNE), . expi(M- TS T
@ source signals are AR(1) processes with correlation coefficient of 0.9

o K=2,M=20,N =40, o1 = 16, x» = 18
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Mean of the MSE of ¢ and ¢, versus SNR.
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Mean of the MSE of the a(gp;)Hﬁﬁa(go,-) versus SNR

0
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10 4
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Experiment 2

Parameters

o K=5M=20,N =40

@ angles equal to —20,—10,0,10,20
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Mean of the MSE of the a(gp;)Hﬁﬁa(go,-) versus SNR
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@ Problem statement

© K = 0: An overview of Margenko and Pastur’s results

© K fixed: spiked models

@ K may scale with M. Application to the subspace method.

© Some research prospects

u]
|
1
Il
!

Dar
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Future applications

@ G-estimation of other parameters: number of sources, power
distribution, ...
Applications: cognitive radio or passive network metrology.

@ Application of the spiked models for local failure detection/diagnosis
in large data or power networks.
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Methodological future research

@ Spiked models:

» Performance of tests for isolated eigenvalues, e.g. with the help of
large deviations theory.
» Design and evaluation of sphericity tests.

@ G-estimation:

» Extension of the G-estimation techniques to other matrix models.
» Consistency and fluctuations of estimates.
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