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Abstract. Consider a n ˆ n sparse non-Hermitian random matrix Xn defined as the Hadamard product

between a random matrix with centered independent and identically distributed entries and a sparse Bernoulli

matrix with success probability Kn{n where Kn ď n (and possibly Kn ! n) and Kn Ñ 8 as n Ñ 8. Let En be

a deterministic nˆn finite-rank matrix. We prove that the outlier eigenvalues of Y n “ Xn `En asymptotically

match those of En.

In the special case of a rank-one deformation, assuming further that the sparsity parameter satisfies Kn "

log9 n and that the entries of the random matrix are sub-Gaussian, we describe the limiting behavior of the

projection of the right eigenvector associated with the leading eigenvalue onto the right eigenvector of the rank-

one deformation. In particular, we prove that the projection behaves as in the Hermitian case. To that end,

we rely on the recent universality results of Brailovskaya and van Handel [BvH24] relating the singular value

spectra of deformations of Xn to Gaussian analogues of these matrices.

Our analysis builds upon a recent framework introduced by Bordenave et.al. 2022 [BCGZ22], and amounts

to showing the asymptotic equivalence between the reverse characteristic polynomial of the random matrix and

a random analytic function on the unit disc with explicit dependence on the finite-rank deformation.

1. Introduction and main results

The study of eigenvalue outliers in random matrix theory has a rich and well-established history, particularly in

the symmetric and Hermitian settings, where additive finite-rank deformation often lead to predictable and well-

understood spectral deviations. A landmark result by Baik, Ben Arous, and Péché (BBP) demonstrated that

for sample covariance matrices with Gaussian entries, finite-rank deformations can induce outlier eigenvalues

that separate from the bulk spectrum once a critical threshold is exceeded; see [BBAP05]. This so-called

BBP transition was soon extended to general entries by Baik and Silverstein [BS06] and has since become

a foundational concept in the field, with extensions to more general settings such as covariance-type matrices

[Pau07], Wigner-type matrices [CCF09], and other deformed matrices [BGN11]. Key tools in these developments

include the resolvent method, master equations, and moments of large power.

The non-symmetric / non-Hermitian setting introduces additional challenges; nevertheless, significant progress

has been achieved. In particular, [Tao13] and [BC16] provide a complete characterization of the outlier distri-

bution in the i.i.d. case, assuming finite fourth moments for the entries.

More recently, the sparse circular law has been established under minimal moment assumptions in [RT19]

and [SSS25]. Building upon these advances, we prove that outlier results continue to hold across all sparsity

regimes. Our main technical tool is the analysis of the reverse characteristic polynomial, as developed in

[BCGZ22]. Furthermore, under additional assumptions on the matrix and its sparsity parameter, we establish

a result concerning the right-eigenvector associated with the largest eigenvalue in the case where the additive

deformation has rank one. To this end, we compare spectral quantities of the matrix with those of an analogous

Gaussian ensemble, leveraging universality results from [BvH24].
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By also relying on the technique of [BCGZ22], the author of the recent paper [Han25] also deals with the

outliers induced by finite rank deformations of square matrices with independent and identically distributed

entries. This paper deals among others with the sparse Bernoulli case with a finite rank additive deformation,

a model close to ours. The sparsity parameter of the Bernoulli elements is assumed to converge to infinity

at the rate nop1q. In this situation, it is moreover assumed in [Han25] that the finite rank deformation has a

finite number of non-zero elements. These assumptions are not required in our paper, where we only need the

deformation to have a bounded operator norm. Moreover, we do not put any assumption on the rate of increase

of the sparsity parameter. In addition, when our deformation is of rank one, we also study the angle between

the eigenvector associated to the outlier and the “true” vector, a problem not considered in [Han25]. On the

other hand, [Han25] tackles the problem of the extreme eigenvalues of finite product of matrices.

Random additively deformed non-Hermitian matrices appear in many applied fields, such as natural and

artificial neural networks where the random matrix Y n at hand represents the random interactions between

the neurons [SCS88, WT13]. We may also cite theoretical ecology where Y n, which is often sparse, models the

interactions among living species within an ecosystem [Bun17, ABC`24], see also the references therein. In

these fields, the eigenvalue of Y n with the largest modulus plays a central role in describing the time evolution

of the activity of n interacting neurons or of the abundances of the n species that constitute the ecosystem.

We introduce some notation before stating our results.

1.1. Notations. Let C` “ tz P C : ℑz ą 0u. The cardinality of a set S, counting multiplicities, is denoted

by |S|. For m P N, set rms “ H if m “ 0 and rms “ t1, . . . ,mu otherwise. Let z P C and A,B Ă C, then

dpz,Aq “ infξPA |z ´ ξ| and the Hausdorff distance between A abd B, denoted by dHpA,Bq is defined by

dHpA,Bq “ max

"

sup
zPA

dpz,Bq ; sup
zPB

dpz,Aq

*

.

When m ą 0, we denote as Sm the symmetric group over the set rms. Let } ¨ } be the matrix operator norm or

the vector Euclidean norm. For a matrix M , denote by M‹ its conjugate transpose; if u, v are column vectors

with equal dimension, then xu, vy “ u‹v. Denote by Im the mˆm identity matrix, or simply I if the dimension

can be inferred from the context. Denote by σpMq “ tλ1pMq, . . . , λmpMqu the spectrum of a m ˆ m matrix

M , by ρpMq its spectral radius, and by smpMq its least singular value. For a m ˆ m matrix M “ pMijqmi,j“1

and I,J Ă rms, let MI,J “ pMijqiPI,jPJ and MI “ pMijqi,jPI . Denote by adjpMq the adjugate of M , i.e., the

transpose of M ’s cofactors matrix. For a vector x P Cm and I Ă rms let xI “ pxiqiPI .

For a sequence of random variables pUnq and a random variable U with values in a common metric space,

denote by Un
P

ÝÑ
nÑ8

U and Un
law
ÝÑ
nÑ8

U the convergence in probability and in law, respectively. Let Un and Vn be

random variables in some metric space with probability distribution µn and νn. The notation

Un „ Vn pn Ñ 8q

refers to the fact that the sequences pµnq and pνnq are relatively compact, and that
ż

fdµn ´

ż

fdνn ÝÝÝÑ
nÑ8

0
´

ô EfpUnq ´ EfpVnq ÝÝÝÑ
nÑ8

0
¯

for each bounded continuous real function f on the metric space. We shall say then that pUnq and pVnq are

“asymptotically equivalent”. Note that pµnq and pνnq do not necessarily converge narrowly to some probability

distribution. We denote by νn ñn ν the weak convergence of probability measures.

Let f : A Ă X Ñ R. We define the function 1Af by

1Apxqfpxq “

$

&

%

fpxq if x P A ,

0 else.

Denote by Dpa, ρq the open disk of C with center a P C and radius ρ ą 0, by H the space of holomorphic

functions on Dp0, 1q, equipped with the topology of uniform convergence on compact subsets of Dp0, 1q. It is

well-known that H is a polish space.

The following conventions will be used throughout the article:
ř

H “ 0,
ś

H “ 1, detpAq “ 1 if A is a

matrix of null dimension. For complex sequences pwnq, pw̃nq, the notation un “ Opvnq implies the existence of
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a positive constant κ such that |un| ď κ|vn| for all n ě 1 sufficiently large. If we want to emphasize the fact

that the constant κ depends on some extra parameters z, η, we may write un “ Oz,ηpvnq.

1.2. Main results.

1.2.1. The model. We begin by introducing our random matrix model. Let χ be a complex-valued random

variable such that Epχq “ 0 and Ep|χ|2q “ 1. For each integer n ě 1, let An “ pAn
ijqni,j“1 P Cnˆn be a random

matrix with independent and identically distributed (i.i.d.) elements equal in distribution to χ.

Let pKnq be a sequence of positive integers such that Kn ď n. Let pBnq be a sequence of nˆn matrices with

i.i.d. Bernoulli entries such that, writing Bn “ pBn
ijqni,j“1, we have PtBn

11 “ 1 u “ Kn{n. We also assume that

Bn and An are independent. We consider the sequence of n ˆ n random matrices pXnqně1 given as follows.

Writing Xn “ pXn
ijqni,j“1, we set

Xn
ij “

1
?
Kn

Bn
ij A

n
ij .(1.1)

Notice that EXn
11 “ 0 and E|Xn

11|2 “ 1{n.

Let r ą 0 be a fixed integer, and consider 2r sequences of deterministic vectors pu1,nq, pu2,nq, ..., pur,nq,

pv1,nq, pv2,nq, ..., pvr,nq such that ut,n, vt,n P Cn for each t P rrs and each n ą 0. Consider the sequence pEnq of

n ˆ n deterministic matrices defined by

En “

r
ÿ

t“1

ut,npvt,nq‹ .

We make the following assumptions:

Assumption 1. The integer sequence pKnq satisfies

Kn ÝÝÝÑ
nÑ8

8 .

Assumption 2. There exists an absolute constant C ą 0 such that

r
ÿ

t“1

}ut,n} ` }vt,n} ď C.

In many applicative contexts, pKnq converges to infinity at a much slower pace than n. For this reason, the

parameter Kn is referred to as the sparsity parameter of the model of Xn.

Define the sequence of random matrices pY nq as

Y n “ Xn ` En.

It is well-known, see [SSS25, Theorem 1.4] which generalizes [RT19, Theorem 1.2], that the empirical spectral

distribution of Xn converges to the so-called circular law. We shall furthermore show in Theorem 1.4 below that

the spectral radius of Xn converges to 1. In this article, we study the asymptotic behavior of the eigenvalues

of Y n which Euclidean norm is greater than 1. We refer to these eigenvalues as outliers, which presence is due

to En. Their behavior will be described in Theorem 1.2 below. In the case of a single outlier, we describe the

behavior of the associated eigenvector. This will be the content of Theorem 1.6.

1.2.2. Eigenvalues and characteristic polynomial of Y n. Our approach is inspired by the technique developed

in [BCGZ22] to capture the asymptotic behavior of the spectral radius of random matrices with i.i.d. elements,

and later extended in [Cos23], [CLZ23], [FGZ23], and [HL25] to various other models. One key feature of

this approach is that it requires minimal assumptions on the moments of the random matrices’ entries, and

it is based on analyzing the asymptotic behavior of the reverse characteristic polynomial via convergence to a

random analytic function in the unit disk. This latter idea can be found in [Shi12].

Consider the reverse characteristic polynomial of matrix Y n, defined by

(1.2) qnpzq “ det pIn ´ zY nq .
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Clearly, qn is a H-valued random variable. In this paper, our first goal is to study the asymptotic distribution

of qn on H. More precisely, we seek an appropriate sequence of random analytic functions φn P H such that

qn „ φn , pn Ñ 8q ,

where φn is simpler to analyze that qn. Studying the large-n behavior of qn in the light of the notion of

asymptotic equivalence is well-suited to our purpose, since without additional assumptions on the matrices En,

there is no reason for pqnq to converge in law in H.

In what follows, we define the sequence of polynomials pbnq as

bnpzq “ detpI ´ zEnq .

This sequence is pre-compact in H as a sequence of polynomials with degrees bounded by r and with bounded

coefficients by Assumption 2.

Theorem 1.1. Let Assumptions 1 and 2 hold true. Consider a sequence pZkqkě1 of independent Gaussian

random variables with

EpZkq “ 0, Ep|Zk|2q “ 1, and EpZ2
kq “ pEA2

11qk .

Define

κpzq “

b

1 ´ z2EA2
11 with

?
1 “ 1, and F pzq “

8
ÿ

k“1

zk
Zk
?
k

for z P Dp0, 1q.

Also let Gnpzq “ bnpzq detpI ´ zXnq. Then

qn „ Gn , pn Ñ 8q(1.3)

as H–valued random variables. Also,

qn „ bn κ expp´F q , pn Ñ 8q ,(1.4)

as H–valued random variables.

Proof of Theorem 1.1 is given in Section 2.

This theorem captures the behavior of the eigenvalues of Y n which are away from the unit-disk. In a word,

since detpI ´ zY nq „ detpI ´ zEnqκpzq expp´F pzqq and since the function z ÞÑ κpzq expp´F pzqq has no zero

in Dp0, 1q, these eigenvalues are close for large n to their counterparts for En. This is formalized in the next

theorem which generalizes Theorem 1.7 of [Tao13] to sparser regimes. We need the following assumption.

Assumption 3. There exists ε ą 0 such that σpEnq X tz P C : 1 ă |z| ă 1 ` εu “ H for all large n.

Theorem 1.2. Let Assumptions 1 and 2 hold. Assume that Assumption 3 holds for some ε ą 0. Define the set

σ`pEnq “ σpEnq X tz P C : |z| ą 1u and σ`
ε pY nq “ σpY nq X tz P C : |z| ě 1 ` εu

and let mn “ |σ`pEnq|. Then,

P
␣

|σ`
ε pY nq| ‰ mn

(

ÝÝÝÑ
nÑ8

0 .

For each sequence pn1q converging to infinity such that mn1 ą 0 for each n1, the Hausdorff distance between the

sets σ`
ε pY n1

q and σ`pEn1

q satisfies:

dHpσ`
ε pY n1

q, σ`pEn1

qq
P

ÝÝÝÑ
nÑ8

0

(here, we set dHpH, σ`pEn1

qq “ 8).

Proof of Theorem 1.2 given Theorem 1.1. To prove the first assertion, assume towards a contradiction that

there exists a sequence pñq converging to infinity such that lim infn P
␣

|σ`
ε pY ñq| ‰ mñ

(

ą 0. From this sequence,

extract a subsequence also denoted as pñq such that bñ converges to some b8 in H. Notice that b8 is a polynomial

with a degree bounded by r. By Assumption 3, b8 has no zero in the ring p1 ` εq´1 ă |z| ă 1. Let m8 ď r be

the number of zeros of b8 in Dp0, 1q. When m8 ą 0, let tζ1, ¨ ¨ ¨ , ζs8
u be the set of these zeros not counting

multiplicities, where s8 ď m8 is the number of these zeros. In this case, denote as ki the multiplictity of the
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zero ζi for i P rs8s, and define the set Λ8 “ t1{ζ1, ¨ ¨ ¨ , 1{ζs8
u. Then, it holds by, e.g., Rouché’s theorem that

mñ “ m8 for all large ñ, and furthermore, if m8 ą 0, that the Hausdorff distance dHpσ`pEñq,Λ8q converges

to zero. Indeed, by this theorem, there are k1 eigenvalues of Eñ that converge to 1{ζ1, ..., ks8
eigenvalues of

Eñ that converge to 1{ζs8
, and these eigenvalues exhaust σ`pEñq for all large ñ.

We shall show that

(1.5) |σ`
ε pY ñq|

P
ÝÝÝÑ
nÑ8

m8 ,

obtaining our contradiction.

By Theorem 1.1, qñ converges in law towards the H–valued random function q8pzq “ b8pzqκpzq expp´F pzqq.

By relying on the explicit expressions of κ and F , notice that function κ expp´F q does not vanish on Dp0, 1q. If

m8 “ 0, then q8 does not vanish on Dp0, 1q either. Otherwise, the set of zeros of q8 coincides with tζ1, ¨ ¨ ¨ , ζs8
u

with the same multiplicities.

By Skorokhod’s representation theorem, there exists a sequence of H–valued random variables pq̌ñq and a

H–valued random variable q̌8 defined on some common probability space qΩ, such that q̌ñ
law
“ qñ, q̌8

law
“ q8, and

q̌ñ converges to q̌8 for all ω̌ P qΩ.

We now fix ω̌ and apply Rouché’s theorem. If m8 “ 0, then q̌ñ has eventually no zero in the compact set

tz : |z| ď 1{p1 ` εqu. Otherwise, q̌ñ has k1 zeros converging to ζ1, ¨ ¨ ¨ , ks8
zeros converging to ζs8

, and these

zeros exhaust the zeros of q̌ñ in tz : |z| ď 1{p1 ` εqu for all large ñ.

Getting back to qñ, it remains to notice that the zeros of qñ in tz : |z| ď 1{p1 ` εqu, when they exist, are the

inverses of the eigenvalues of Y ñ in the set tz : |z| ě 1 ` εu. This establishes the convergence (1.5).

The proof of the second assertion of Theorem 1.2 follows the same canvas. We just exclude the case where

m8 “ 0. □

Taking En “ 0, we obtain the following result.

Corollary 1.3. Let Assumption 1 hold and let ρpXnq be the spectral radius of Xn, then for every ε ą 0, we

have PpρpXnq ą 1 ` εq ÝÝÝÑ
nÑ8

0 .

Combining this corollary with the circular law for sparse matrices [SSS25, Theorem 1.4], we can generalize

[BCGZ22, Theorem 1.1] to the sparse case and get:

Theorem 1.4. Let Assumption 1 hold and let ρpXnq be the spectral radius of Xn, then

ρpXnq
P

ÝÝÝÑ
nÑ8

1 .

1.2.3. Eigenvectors of rank-one deformation. We now restrict our attention to rank-one deformations. Assuming

that r “ 1, write un “ u1,n and vn “ v1,n for simplicity. The deformation matrix becomes then En “ unpvnq‹.

We need the following assumption:

Assumption 4. The deterministic sequences punq and pvnq satisfy:

lim inf
nÑ8

|xvn, uny| ą 1 .

Obviously, En is a square nˆn matrix which only non-zero eigenvalue is xvn, uny. By the previous assumption,

pEnq satisfies Assumption 3, and we imediately have the following result:

Corollary 1.5 (corollary to Theorem 1.2). Let Assumptions 1, 2, and 4 hold true. For any fixed ε P

p0, plim inf |xvn, uny| ´ 1q{2q, consider the set σ`
ε pY nq defined in the statement of Theorem 1.2. Then,

P
␣

|σ`
ε pY nq| “ 1

(

ÝÝÝÑ
nÑ8

1 .

When the event r|σ`
ε pY nq| “ 1s is realized, let λmaxpY nq be the unique eigenvalue of Y n with the largest modulus,

otherwise set λmaxpY nq “ 0. Then,

λmaxpY nq ´ xvn, uny
P

ÝÝÝÑ
nÑ8

0 .
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In the remainder, when we mention the event r|σ`
ε pY nq| “ 1s, we assume that ε ą 0 is small enough according

to the statement of the previous corollary. Our objective is to analyze the projection on un of the right

eigenvector of Y n corresponding to λmaxpY nq (assuming r|σ`
ε pY nq| “ 1s is realized). Our main technical tools

are based on the results from [BvH24], which allow us to compare the spectral properties of Xn with a Gaussian

analogue to this matrix. We will need the following extra sub-Gaussian assumption concerning An’s entries.

Assumption 5 (sub-Gaussiannity). The random variables Aij follow a sub-Gaussian distribution, i.e., there

exists an absolute constant C ą 0 such that

Pp|An
11| ě tq ď 2 expp´Ct2q .

We are now in position to describe the eigenvectors of Y n “ Xn ` unpvnq‹ corresponding to the outlier

λmaxpY nq.

Theorem 1.6. Let Assumptions 1, 2, 4 and 5 hold true. Assume furthermore that

lim
nÑ8

log9 n

Kn
“ 0 .

When the event t|σ`
ε pY nq| “ 1u is realized, let ũn be an unit-norm right eigenvector of Y n corresponding to

λmaxpY nq. Otherwise, put ũn “ 0n. Then, it holds that
ˇ

ˇ

ˇ

ˇ

B

ũn,
un

}un}

F
ˇ

ˇ

ˇ

ˇ

2

´

ˆ

1 ´
1

|xun, vny|2

˙

P
ÝÝÝÑ
nÑ8

0 .

Proof of Theorem 1.6 is postponed to Section 4.

Remark 1.7. In the case where un is a unit-norm vector and where one considers the model Y n “ Xn`αunpunq‹

for some fixed α ą 1, then the result above boils down to

|xũn, uny|
2 P

ÝÝÝÑ
nÑ8

1 ´
1

α2
.

Interestingly, this corresponds to the same quantity as in the Hermitian case, see [BGN11, Section 3.1].

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We follow the strategy developed in [BCGZ22].

2.1. Tightness and truncation. We first state useful properties for H-valued random variables.

Proposition 2.1 (Tightness criterion [HL25, Proposition 3.1]). Let pfnq be a sequence of H-valued random

variables. If for every compact set K Ă Dp0, 1q,

sup
n

sup
zPK

E|fnpzq|2 ď CK ă 8 ,

for some K-dependent constant CK , then pfnq is tight.

Proposition 2.2 (Asymptotic equivalence criteria in H). Let pfnq and pgnq be two tight sequences of H-

valued random variables. Consider their power series representations in Dp0, 1q: fnpzq “
ř8

k“0 a
pnq

k zk and

gnpzq “
ř

kě0 b
pnq

k zk. If one of the following conditions holds:

(1) For every fixed integer m ě 1, pa
pnq

0 , ¨ ¨ ¨ , a
pnq
m q „n pb

pnq

0 , ¨ ¨ ¨ , b
pnq
m q,

(2) For every fixed integer m ě 1 and m-uple pz1, ¨ ¨ ¨ zmq P Dmp0, 1q,

pfnpz1q, ¨ ¨ ¨ , fnpzmqq „n pgnpz1q, ¨ ¨ ¨ , gnpzmqq ,

then fn „ gn as n Ñ 8.

Most of the time, we shall drop the dependence in n for notational convenience.

Proposition 2.3 (Tightness). Let Assumptions 1 and 2 hold. Let qn be given by (1.2), then the sequence

pqnqně1 is tight in H.
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Proof. We first recall a well-known general result. Let A and B be two nˆ n matrices with columns Ai and Bi

respectively for i P rns. Then, using the multilinearity of the determinant, we can write

detpA ` Bq “ det
”

A1 ` B1 A2 ` B2 ¨ ¨ ¨ An ` Bn

ı

“ det
”

A1 A2 ` B2 ¨ ¨ ¨ An ` Bn

ı

` det
”

B1 A2 ` B2 ¨ ¨ ¨ An ` Bn

ı

“ det
”

A1 A2 ¨ ¨ ¨ An ` Bn

ı

` det
”

A1 B2 ¨ ¨ ¨ An ` Bn

ı

` ¨ ¨ ¨

which will ultimately provide a “binomial-like” expression of detpA ` Bq that will have the following form.

Given k P t0, . . . , nu, let I P rns with |I| “ k and all the elements of I are different, and denote as pA,BqI the

n ˆ n matrix which ith column is Ai if i P I and Bi if i P rnszI. Then,

(2.1) detpA ` Bq “

n
ÿ

k“0

ÿ

IPrns:|I|“k

detpA,BqI .

Let us write M “ I ´ zE “ rMijsni,j“1, so that qpzq “ detp´zX ` Mq. Writing

E|qpzq|2 “
ÿ

σ,σ̃PSn

Ep´zX1,σp1q`M1,σp1qq . . . p´zXn,σpnq`Mn,σpnqqp´z̄X̄1,σ̃p1q`M̄1,σ̃p1qq . . . p´z̄X̄n,σ̃pnq`M̄n,σ̃pnqq,

we see that the element Xij acts on E|qpzq|2 through EXij and E|Xij |2 only. Therefore, E|qpzq|2 is invariant if

we assume that these elements are i.i.d. with X11 „ NCp0, 1{nq, which we do from now on in this proof.

Denoting as M “ UΣV ‹ a singular value decomposition of M , we have

|qpzq|2 “ detp´zX ` Mqp´z̄X‹ ` M‹q “ detp´zU`Σqp´z̄V ‹X‹U ` Σq
L
“ | detpzX ` Σq|2.

We also have that the matrix MM‹ “ I ´ zE ´ z̄E‹ ` |z|2EE‹ is equal to the identity plus a deformation

of rank 2r at most. Therefore, the diagonal n ˆ n matrix Σ of the singular values of M contains ones on its

diagonal except for 2r singular values at most. Moreover, using Assumption 2 and recalling that z P Dp0, 1q,

we obtain that there exists CΣ ě 1 independent of n and z such that }Σ} ď CΣ.

We now compute E|qpzq|2 “ E| detpzX ` Σq|2 where we develop detpzX ` Σq using the formula (2.1). Here,

we can notice that E detpzX,ΣqIdetpzX,ΣqĨ “ 0 if I ‰ Ĩ. Indeed, the case being, one of the matrices

pzX,ΣqI or pzX,ΣqĨ contains a column of zX that is not present in the other. Making a Laplace expansion of

the corresponding determinant along this column, we obtain that the cross expectation is zero. We therefore

get that

E|qpzq|2 “

n
ÿ

k“0

ÿ

IPrns:|I|“k

E |detpzX,ΣqI |
2
.

Let us work on one of these determinants. For a given k, let us assume for simplicity that I “ rks. Otherwise,

we can permute the rows and columns of pzX,ΣqI properly; this does not affect |detpzX,ΣqI |
2
. Writing

rksc “ rnszrks, we have

detpzX,ΣqI “ detpzX,Σqrks “ det

«

zXrks,rks 0

zXrksc,rks Σrksc,rksc

ff

“ zk detXrks,rks det Σrksc,rksc ,

and E| detpzX,Σqrks|
2 “ |z|2k

ˇ

ˇdet Σrksc,rksc

ˇ

ˇ

2 E| detXrks,rks|
2. By the properties of Σ stated above, we have

ˇ

ˇdet Σrksc,rksc

ˇ

ˇ

2
ď C4r

Σ . Moreover, if k “ 0, then E| detXrks,rks|
2 “ 1, otherwise,

E| detXrks,rks|
2 “

ÿ

σPSk

E
ˇ

ˇX1,σp1q . . . Xk,σpkq

ˇ

ˇ

2
“

k!

nk
.

Therefore, E| detpzX,Σqrks|
2 ď |z|2kC4r

Σ k!{nk, and we end up with

E|qpzq|2 “

n
ÿ

k“0

ÿ

IPrns:|I|“k

E |detpzX,ΣqI |
2

ď C4r
Σ

n
ÿ

k“0

ˆ

n

k

˙

k!

nk
|z|2k ď C4r

Σ

8
ÿ

k“0

|z|2k “
C4r

Σ

1 ´ |z|2
.

The tightness of pqnq follows by applying Proposition 2.1. □

Moreover it is sufficient to examine the characteristic polynomial of Y n, when the entries of An are bounded

almost surely. Specifically
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Proposition 2.4 (Truncation). Let Assumptions 1 and 2 hold. Let D ą 0 and define

AD
i,j “ Ai,j1|Ai,j |ďD´EAi,j1|Ai,j |ďD , Xn,D

i,j “
1

?
Kn

Bn
i,j A

D
i,j and Y n,D

ij “ Xn,D
ij `En

ij , pi, j P rnsq .

Let

Xn,D “

”

Xn,D
i,j

ı

i,jPrns
, Y n,D “ Xn,D ` En and qDn pzq “ det

`

In ´ zY n,D
˘

.

Then,

@z P Dp0, 1q, sup
n

E
ˇ

ˇqnpzq ´ qDn pzq
ˇ

ˇ

2
ď εpDq where εpDq ÝÝÝÝÑ

DÑ8
0.

Proof. We omit the supersript n in the sequel to lighten the notations. Without a risk of confusion, we replace,

e.g., Y n,D with Y D. We closely follow the principles and notations introduced in the previous proof. Let

M “ I ´ zE as above. Writing

E
ˇ

ˇqnpzq ´ qDn pzq
ˇ

ˇ

2
“ E

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

σPSn

˜

n
ź

i“1

p´zXi,σpiq ` Mi,σpiqq ´

n
ź

i“1

p´zXD
i,σpiq ` Mi,σpiqq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

2

and developing, we notice that E
ˇ

ˇqnpzq ´ qDn pzq
ˇ

ˇ

2
depends on each element Xij via the vector E

«

Xij

XD
ij

ff

p“ 0q

and the 2 ˆ 2 matrix

RD “ nE

«

Xij

XD
ij

ff

”

Xij XD
ij

ı

which does not depend on n. Therefore, we can assume without loss of generality that the vector
?
n

«

Xij

XD
ij

ff

is

a cicularly symmetric Gaussian vector (see the definition in [Tel99] for instance) with covariance matrix RD,

and in particular:

E

«

Xij

XD
ij

ff

“ 0 , nE

«

Xij

XD
ij

ff

”

Xij XD
ij

ı

“ RD and nE

«

Xij

XD
ij

ff

”

Xij XD
ij

ı

“ 0 .

Assuming this, we first observe that vecrX XDs is a C2n2

–valued circularly symmetric Gaussian vector, and so

is vector A vecrX XDs for any deterministic pˆ 2n2 matrix A. Consider now nˆn deterministic matrices U, V .

Applying [HJ94, Lemma 4.3.1] we have

vecrUXV UXDV s “ pV T b Uq vecrX XDs,

hence vecrUXV UXDV s is circularly symmetric Gaussian, in particular

ErUXV sijrUY V sst “ 0 for any i, j, s, t P rns and Y P tX,XDu .

We now wish to understand the covariance structure of the components of vecrUXV UXDV s in the case where

U and V are unitary.

ErUXV sijrUXV sst “
ÿ

k,ℓ

ÿ

p,q

UikUspVℓjVqtEXkℓXpq ,

“
ÿ

k

UikUsk

ÿ

ℓ

VℓjVℓtrRDs11 ,

“ rUU‹sisrV
s

tjrRDs11 “ δisδjt rRDs11 where δab “

$

&

%

1 if a “ b

0 else
.

Similarly we can prove that

ErUXV sijrUXDV sst “ δisδjt rRDs12 and ErUXDV sijrUXDV sst “ δisδjt rRDs22 .

Collecting all these properties, we have proved that for any n ˆ n deterministic, unitary matrices U, V ,

rX XDs
L
“ rUXV UXDV s.



EXTREME EIGENVALUES AND EIGENVECTORS 9

Therefore, using the singular value decomposition M “ UΣV ‹ and Equation (2.1), we have:

E
ˇ

ˇqnpzq ´ qDn pzq
ˇ

ˇ

2
“ E

ˇ

ˇdetp´zU‹XV ` Σq ´ detp´zU‹XDV ` Σq
ˇ

ˇ

2

“ E
ˇ

ˇdetpzX ` Σq ´ detpzXD ` Σq
ˇ

ˇ

2

“ E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“0

ÿ

IĂrns:|I|“k

detpzX,ΣqI ´ detpzXD,ΣqI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“

n
ÿ

k“0

ÿ

IĂrns:|I|“k

E
ˇ

ˇdetpzX,ΣqI ´ detpzXD,ΣqI
ˇ

ˇ

2
,

by relying on the fact (established in the previous proof) that

EdetpzX,ΣqIdetpzXD,ΣqĨ “ 0 if I ‰ Ĩ .

Let I “ rks as above for some k ě 1, then

E
ˇ

ˇdetpzX,ΣqI ´ detpzXD,ΣqI
ˇ

ˇ

2
“ |z|2kE

ˇ

ˇ

ˇ
detXrks,rks ´ detXD

rks,rks

ˇ

ˇ

ˇ

2
ˇ

ˇdet Σrksc,rksc

ˇ

ˇ

2
,

ď |z|2kCpΣ, rqE
ˇ

ˇ

ˇ
detXrks,rks ´ detXD

rks,rks

ˇ

ˇ

ˇ

2

,

where CpΣ, rq is a constant independent of n by Assumption 2.

Recall that E|A11|2 “ 1, notice that E|AD
11|2 ď 1 and

εpDq :“ E|A11 ´ AD
11|2 ÝÝÝÝÑ

DÑ8
0 .

We have:

E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

iPrks

X1i ´
ź

iPrks

XD
1i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ E
ˇ

ˇpX11 ´ XD
11qX12 ¨ ¨ ¨X1k ` ¨ ¨ ¨ ` XD

11 ¨ ¨ ¨XD
1,k´1pX1k ´ XD

1kq
ˇ

ˇ

2
ď

k

nk
εpDq

by Minkowski’s inequality. We therefore obtain that

E
ˇ

ˇ

ˇ
detXrks,rks ´ detXD

rks,rks

ˇ

ˇ

ˇ

2

“ E

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

σSk

X1σp1q ¨ ¨ ¨Xkσpkq ´ XD
1σp1q ¨ ¨ ¨XD

kσpkq

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď k!
k

nk
εpDq .

Now,
ÿ

IĂrns:|I|“k

E
ˇ

ˇdetpzX,ΣqI ´ detpzXD,ΣqI
ˇ

ˇ

2
ď

ˆ

n

k

˙

k!
k

nk
εpDq ,

and finally

E
ˇ

ˇqnpzq ´ qDn pzq
ˇ

ˇ

2
ď CpΣ, rq εpDq

8
ÿ

k“0

k|z|2k ď CεD .

The proposition is proven. □

2.2. Moments of Y n and Xn. We study the asymptotic behavior of the vector

`

1, trpY nq, . . . , trppY nqkq
˘

, k P N.

Throughout, we write trppY nqkq (and similarly for Xn, En); this is the quantity expanded below.

Circles: We consider directed circles (called circles) consisting of exactly k edges. In our setting, a circle is

an Eulerian cycle of a strongly connected directed multigraph; vertices may repeat and multiple edges (including

loops and parallel edges) are allowed. We identify underlying strongly connected directed multigraphs up to

graph isomorphism, and denote by Ck the collection of all Eulerian cycles of length k arising from all such

isomorphism classes.

Formally, an element C P Ck can be represented by a cyclic sequence

C “ tu1, u2, . . . , uk, u1u,
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where the vertices ui are not necessarily distinct, and each consecutive pair pui, ui`1q forms a directed edge

(with the convention uk`1 “ u1). We denote by V pCq the set of vertices appearing in C, and by

EpCq “
␣

pui, ui`1q : i “ 1, . . . , k
(

the multiset of edges. For an edge e “ pu, vq P EpCq, its multiplicity is

ˇ

ˇtẽ P EpCq : ẽ “ eu
ˇ

ˇ.

We call u the source of e and v its target.

For any C P Ck and B Ă EpCq, we denote by CzB the directed multigraph with edge multiset EpCqzB and

vertex set induced by these edges.

Labelings. Given B Ă EpCq and a labeling i P rns|V pCq|, we write i „ C if i assigns distinct indices from

rns to the vertices of C according to their first order of appearance along the circle. We denote by ipBq the

(multi)set of labeled edges corresponding to B.

With this notation,

tr
`

pY nqk
˘

“
ÿ

pi1,...,ikqPrnsk

k
ź

ℓ“1

pXn ` Enqiℓ,iℓ`1

“
ÿ

CPCk

ÿ

BĂEpCq

ÿ

i„C
iPrns

|V pCq|

ź

pi,jqPipBq

En
i,j

ź

pi,jqRipBq

Xn
i,j ,

under the convention ik`1 “ i1. Therefore,

tr
`

pY nqk
˘

´ tr
`

pXnqk
˘

´ tr
`

pEnqk
˘

“
ÿ

CPCk

ÿ

BĂEpCq

B‰H, EpCq

ÿ

i„C
iPrns

|V pCq|

ź

pi,jqPipBq

En
i,j

ź

pi,jqRipBq

Xn
i,j .(2.2)

Auxiliary notation.

Notation 1. ‚ For any finite multiset A, we denote by |A|no the cardinality of its underlying set (i.e.,

ignoring multiplicities).

‚ For C P Ck and B Ă EpCq, define

E
`

bdpCzBq
˘

“

!

e P B : D v P V pCzBq such that v is incident to e
)

.

Then bdpCzBq denotes the directed multigraph induced by the edge multiset EpbdpCzBqq.

‚ For C P Ck and B Ă EpCq, let CB be the directed multigraph induced by the edge multiset B. We write

i „ CB to indicate a labeling i P rns|V pCBq| assigning distinct values to the vertices of CB.

‚ For any directed multigraph G and v P V pGq, we denote by deg`
Gpvq (resp. deg´

Gpvq) the out-degree (resp.

in-degree) of v, counted with multiplicity.

A combinatorial inequality.

Lemma 2.5. Fix C P Ck and B Ă EpCq such that B ‰ H and B ‰ EpCq. Assume:

(1) CzB is weakly connected;

(2) for every e P EpCzBq, the multiplicity |tẽ P EpCq : ẽ “ eu| ě 2.

Then

|V pCzBq| ´
ˇ

ˇ

␣

v P V pCzBq X V pbdpCzBqq : deg`
CB

pvq ` deg´
CB

pvq ě 2
(
ˇ

ˇ

´
1

2

ˇ

ˇ

␣

v P V pCBq : deg`
CB

pvq ` deg´
CB

pvq “ 1
(
ˇ

ˇ ´ |EpCzBq|no ď ´1.

Proof. Since CzB is weakly connected, one has the standard bound

|V pCzBq| ď |EpCzBq|no ` 1.

We distinguish the following cases:

(1) |V pCzBq| “ |EpCzBq|no ` 1;
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(2) |V pCzBq| “ |EpCzBq|no and

ˇ

ˇ

␣

v P V pCzBq X V pbdpCzBqq : deg`
CB

pvq ` deg´
CB

pvq ě 2
(
ˇ

ˇ “ 0;

(3) |V pCzBq| “ |EpCzBq|no and

ˇ

ˇ

␣

v P V pCzBq X V pbdpCzBqq : deg`
CB

pvq ` deg´
CB

pvq ě 2
(
ˇ

ˇ ě 1;

(4) |V pCzBq| ă |EpCzBq|no.

Cases 3 and 4 are immediate from the definition of the left-hand side, so we treat 1 and 2.

Case 1. Here the underlying simple undirected graph of CzB is a tree. Define

V `pCzBq “ tv P V pCzBq : D pv, aq P EpCzBqu,

V ´pCzBq “ tv P V pCzBq : D pa, vq P EpCzBqu.

Since CzB is a finite tree, there exist vertices w R V `pCzBq and u R V ´pCzBq; otherwise, starting from any

vertex one could construct an infinite directed path, contradicting finiteness. Each of u,w is incident to at least

one edge of CzB, and by assumption those edges have multiplicity at least 2 in C. Because C is a circle, there

are at least two directed edges in C leaving w and at least two entering u. By the choice of u,w, these additional

edges must belong to B, yielding the required inequality.

Case 2. Since C is a circle and no boundary vertex has total degree at least 2 in CB , we have

|V pCzBq X V pbdpCzBqq| “
ˇ

ˇ

␣

v P V pCBq : deg`
CB

pvq ` deg´
CB

pvq “ 1
(
ˇ

ˇ(2.3)

“ |EpbdpCzBqq| ě 2.

Indeed, if (2.3) failed, then C either could not enter or could not exit CzB, contradicting that C is a circle.

The claim follows. □

Remark 2.6. If CzB has several weakly connected components, Lemma 2.5 applies to each component separately.

Main combinatorial consequence.

Proposition 2.7. Assume that |An
1,1| ď D for some (fixed) constant D ą 0. Then for every k P N,

tr
`

pY nqk
˘

´ tr
`

pXnqk
˘

´ tr
`

pEnqk
˘ P

ÝÝÝÑ
nÑ8

0.

Proof. We prove the claim by controlling the mean and the variance.

Step 1: bound on the mean. We show that

E
”

tr
`

pY nqk
˘

´ tr
`

pXnqk
˘

´ tr
`

pEnqk
˘

ı

“ O

ˆ

1

n

˙

.(2.4)

By (2.2), it suffices to bound

ÿ

CPCk

ÿ

BĂEpCq

B‰EpCq, H

ÿ

i„C
iPrns

|V pCq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPipBq

En
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
ź

pi,jqRipBq

Xn
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

1

n

˙

.(2.5)

For the expectation in (2.5) to be non-zero, every edge of CzB must have multiplicity at least 2.

Since the number of circles in Ck and the number of subsets B Ă EpCq depend only on k, it is enough to fix

C P Ck and a non-trivial B Ă EpCq and prove

ÿ

i„C
iPrns

|V pCq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPipBq

En
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
ź

pi,jqRipBq

Xn
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

1

n

˙

,(2.6)

under the assumption that every edge in CzB has multiplicity at least 2. We also assume for simplicity that

CzB is weakly connected (the case of several weakly connected components is treated component-wise).
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Since the entries of An are bounded by D, we obtain

ÿ

i„C
iPrns

|V pCq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPipBq

En
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
ź

pi,jqRipBq

Xn
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď D2k

ˆ

1
?
Kn

˙|EpCzBq| ˆ
Kn

n

˙|EpCzBq|no
ÿ

i„C
iPrns

|V pCq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPipBq

En
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Since each edge of CzB appears at least twice, we have

|EpCzBq|no ď
|EpCzBq|

2
.(2.7)

Moreover, connectivity of the underlying simple graph yields

|V pCzBq| ď |EpCzBq|no ` 1.(2.8)

It remains to bound

ÿ

i„C
iPrns

|V pCq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPipBq

En
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Using the representation of En and the entrywise bound

|En
i,j | ď r max

ℓPrrs
|uℓ,n

i | max
ℓPrrs

|vℓ,nj |,

we obtain (as in (2.9) in the original derivation)

ÿ

i„C
iPrns

|V pCq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPipBq

En
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď rk n|V pCzBq|´|V pCzBqXV pbdpCzBqq|
ź

vPV pCBq

¨

˝

ÿ

iPrns

max
ℓPrrs

|vℓ,ni |
deg´

CB
pvq

max
ℓPrrs

|uℓ,n
i |

deg`
CB

pvq

˛

‚.

(2.9)

Now, for each v P V pCBq:

‚ If deg`
CB

pvq ` deg´
CB

pvq ě 2, then by Assumption 2 (and the same Cauchy–Schwarz argument as in the

original proof),
ÿ

iPrns

max
ℓPrrs

|vℓ,ni |
deg´

CB
pvq

max
ℓPrrs

|uℓ,n
i |

deg`
CB

pvq
ď C

for some constant C ą 0.

‚ If deg`
CB

pvq ` deg´
CB

pvq “ 1, then by Cauchy–Schwarz,

ÿ

iPrns

max
ℓPrrs

|vℓ,ni |
deg`

CB
pvq

max
ℓPrrs

|uℓ,n
i |

deg´
CB

pvq
ď rC

?
n.

Thus, for some C “ Cpk, rq ą 0,

ÿ

i„C
iPrns

|V pCq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPipBq

En
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C n
|V pCzBq|´|V pCzBqXV pbdpCzBqq|` 1

2

ˇ

ˇ

ˇ
tvPV pCBq:deg`

CB
pvq`deg´

CB
pvq“1u

ˇ

ˇ

ˇ

.

Because C is a circle, any vertex v with deg`
CB

pvq “ 0 or deg´
CB

pvq “ 0 must lie in V pCzBq X V pbdpCzBqq.

Hence, setting

apCzBq :“ |V pCzBq| ´
ˇ

ˇ

␣

v P V pCzBq X V pbdpCzBqq : deg`
CB

pvq ` deg´
CB

pvq ě 2
(
ˇ

ˇ

´
1

2

ˇ

ˇ

␣

v P V pCBq : deg`
CB

pvq ` deg´
CB

pvq “ 1
(
ˇ

ˇ ,
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we conclude that for a constant Ck independent of n,

ÿ

i„C
iPrns

|V pCq|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPipBq

En
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
ź

pi,jqRipBq

Xn
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Ck pKnq
|EpCzBq|no´

|EpCzBq|

2 napCzBq´|EpCzBq|no .(2.10)

The desired Op1{nq bound follows from Lemma 2.5 together with (2.7). This proves (2.4).

Step 2: bound on the variance. We show that

Var
´

tr
`

pY nqk
˘

´ tr
`

pXnqk
˘

´ tr
`

pEnqk
˘

¯

“ O

ˆ

1

nKn

˙

.(2.11)

Recall that for complex random variables tWiu
m
i“1,

Var
´

m
ÿ

i“1

Wi

¯

“
ÿ

i1,i2Prms

E
”

`

Wi1 ´ EWi1

˘`

Wi2 ´ EWi2

˘

ı

.

Applying this to the expansion (2.2) yields

Var
´

tr
`

pY nqk
˘

´ tr
`

pXnqk
˘

´ tr
`

pEnqk
˘

¯

“
ÿ

C,C1PCk

ÿ

BĂEpCq

B‰H, EpCq

ÿ

B1
ĂEpC1

q

B1
‰H, EpC1

q

ÿ

i„C
iPrns

|V pCq|

ÿ

i1
„C1

i1
Prns

|V pC1q|

¨

ź

pi,jqPipBq

En
i,j

ź

pi1,j1qPi1pB1q

En
i1,j1 E

´

ź

pi,jqRipBq

Xn
i,j ´ E

ź

pi,jqRipBq

Xn
i,j

¯

ˆ

´

ź

pi1,j1qRi1pB1q

Xn
i1,j1 ´ E

ź

pi1,j1qRi1pB1q

Xn
i1,j1

¯

.(2.12)

By independence of the entries of Xn, the expectation in (2.12) vanishes unless the labeled edge sets in CzB

and C1zB1 agree on at least one edge, and every edge in the multigraph CzB Y C1zB1 has multiplicity at least

2. Hence, it suffices to show that for any such C,C1 and non-trivial B,B1,

ÿ

i„C
iPrns

|V pCq|

ÿ

i1
„C1

i1
Prns

|V pC1q|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPipBq

En
i,j

ź

pi1,j1qPi1pB1q

En
i1,j1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
´

ź

pi,jqRipBq

Xn
i,j ´ E

ź

pi,jqRipBq

Xn
i,j

¯´

ź

pi1,j1qRi1pB1q

Xn
i1,j1 ´ E

ź

pi1,j1qRi1pB1q

Xn
i1,j1

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

1

nKn

˙

.(2.13)

For simplicity, assume CzB and C1zB1 are weakly connected; the general case follows by decomposing into

weakly connected components. Since CzB and C1zB1 share an edge, the union CzB Y C1zB1 is also weakly

connected.

Set rC :“ C Y C1. After an appropriate ordering of vertices, rC defines a circle of length 2k. Let rCB denote

the subgraph induced by the edge multiset B Y B1.

Using the definition of Xn (cf. (1.1)) and the independence structure, together with the bound |An
ij | ď D, we

have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
´

ź

pi,jqRipBq

Xn
i,j ´ E

ź

pi,jqRipBq

Xn
i,j

¯´

ź

pi1,j1qRi1pB1q

Xn
i1,j1 ´ E

ź

pi1,j1qRi1pB1q

Xn
i1,j1

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2D2k

ˆ

Kn

n

˙|EpCzBYC1
zB1

q|no

.

Moreover, as in (2.9), one shows that

ÿ

i„C
iPrns

|V pCq|

ÿ

i1
„C1

i1
Prns

|V pC1q|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPipBq

En
i,j

ź

pi1,j1qPi1pB1q

En
i1,j1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C napCzB,C1
zB1

q,
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where

apCzB,C1zB1q “ |V pCzBq Y V pC1zB1q| ´

ˇ

ˇ

ˇ

!

v : deg`
rCB

pvq ` deg´
rCB

pvq ě 2
)
ˇ

ˇ

ˇ

´
1

2

ˇ

ˇ

ˇ

!

v : deg`
rCB

pvq ` deg´
rCB

pvq “ 1
)
ˇ

ˇ

ˇ
.

Since rC is a circle and every edge in CzB YC1zB1 has multiplicity at least 2, Lemma 2.5 applies and yields (for

some Ck depending only on k,M, r)

(2.13) ď
Ck

n
¨

1
b

K
|EpCzBq|`|EpC1zB1q|
n

¨ K |EpCzBYC1
zB1

q|no
n .

Finally, since all edges in CzB Y C1zB1 appear at least twice and the two graphs share an edge, we have

|EpCzB Y C1zB1q|no ď 2
`

|EpCzBq| ` |EpC1zB1q| ´ 1
˘

,

and therefore

(2.13) ď Ck
1

nKn
.

This proves (2.11).

Combining (2.4) and (2.11) gives trppY nqkq ´ trppXnqkq ´ trppEnqkq Ñ 0 in probability, completing the

proof. □

We continue with the asymptotic analysis of the joint law of the traces trppXnqkq. Recall the notation from

Theorem 1.1 and define, for k P N, the sequence

meank :“ 1tk evenu

`

EA2
1,1

˘k{2
.

Lemma 2.8. For any k ě 1, if |An
1,1| ď D almost surely, then

`

trpXnq, . . . , trppXnqkq
˘ law

ÝÝÝÑ
nÑ8

`

Z1 ` mean1,
?

2Z2 ` mean2, . . . ,
?
k Zk ` meank

˘

.

Proof. When Kn ě log n, the claim follows directly from Propositions 2.3 and 3.6 of [HL25], applied to our

model.

In general, the proof is analogous to that of Lemmas 3.4 and 3.5 in [BCGZ22]. For completeness, we sketch

the main steps.

Recall the notation Ck for the collection of directed circles of length k. Let k1, . . . , km P N, let Cℓ P Ckℓ
for

ℓ “ 1, . . . ,m, and let s1, . . . , sm P t¨, ˚u, where for any complex number x we set x¨ “ x and x˚ “ x. Define the

multigraph

rC :“
m
ď

ℓ“1

Cℓ.

Then the joint contribution of these circles satisfies

ÿ

i„ rC

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
m
ź

ℓ“1

ź

pv,uqPEpCℓq

`

Xn
ipvq,ipuq

˘sℓ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď D
řm

ℓ“1 kℓK
|Ep rCq|no´ 1

2

řm
ℓ“1 |EpCℓq|

n n|V p rCq|´|Ep rCq|no .(2.14)

Since the entries of Xn are centered, the contribution in (2.14) is negligible unless

|V prCq| “ |EprCq|no and 2 |EprCq|no “

m
ÿ

ℓ“1

|EpCℓq|.

We proceed as in [BCGZ22]. Decompose Ck as Ck “ C1
k Y C2

k, where C1
k consists of circles with exactly k

distinct vertices, and C2
k consists of circles with fewer than k vertices. Accordingly, we write

trppXnqkq “
ÿ

CPC1
k

ÿ

i„C
iPrns

k

ź

pv,uqPEpCq

Xn
ipvq,ipuq `

ÿ

CPC2
k

ÿ

i„C
iPrns

k

ź

pv,uqPEpCq

Xn
ipvq,ipuq

“: tkn ` rkn.

The proof is complete once we establish the following two facts.
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(1) For any k1, . . . , km P N and s1, . . . , sm P t¨, ˚u,

E
m
ź

ℓ“1

ptkℓ
n qsℓ ÝÝÝÑ

nÑ8
E

m
ź

ℓ“1

`

a

kℓ Zkℓ

˘sℓ .(2.15)

(2) For any k P N,

rkn
P

ÝÝÝÑ
nÑ8

meank.(2.16)

Given the bound (2.14), the convergence (2.15) and (2.16) follow exactly as in the proofs of Lemmas 3.4

and 3.5 of [BCGZ22], respectively. □

We conclude with an asymptotic bound on E| trppY nqkq|2, which is needed to establish relative compactness.

Lemma 2.9. For any k P N, if |An
1,1| ď D, then there exists a constant C “ Cpr, kq ą 0 such that

E
ˇ

ˇtrppY nqkq
ˇ

ˇ

2
ď C.

Proof. We begin with the expansion

E
ˇ

ˇtrppY nqkq
ˇ

ˇ

2
“

ÿ

C,C1PCk

ÿ

BĂEpCq

B‰H,EpCq

ÿ

B1
ĂEpC1

q

B1
‰H,EpC1

q

ÿ

i„C
iPrns

|V pCq|

ÿ

i1
„C1

i1
Prns

|V pC1q|

¨ ¨ ¨

ź

pi,jqPB

En
i,j

ź

pi1,j1qPB1

En
i1,j1 E

»

–

ź

pi,jqRipBq

Xn
i,j

ź

pi1,j1qRi1pB1q

Xn
i1,j1

fi

fl .(2.17)

We proceed as in the proof of Proposition 2.7. Fix C,C1 P Ck and non-trivial subsets B Ă EpCq, B1 Ă EpC1q.

It suffices to show that

ÿ

i„C
iPrns

|V pCq|

ÿ

i1
„C1

i1
Prns

|V pC1q|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

pi,jqPB

En
i,j

ź

pi1,j1qPB1

En
i1,j1 E

»

–

ź

pi,jqRipBq

Xn
i,j

ź

pi1,j1qRi1pB1q

Xn
i1,j1

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

1

n

˙

.(2.18)

If any edge of the multigraph C Y C1zpB Y B1q has multiplicity one, then the expectation in (2.18) vanishes.

Otherwise, every edge appears with multiplicity at least two, and the proof of (2.18) is identical to that of

(2.13).

Consequently,

E
ˇ

ˇtrppY nqkq
ˇ

ˇ

2
“ E

ˇ

ˇtrppXnqkq
ˇ

ˇ

2
` | trppEnqkq|2 ` 2E

“

trppXnqkq trppEnqkq
‰

` O

ˆ

1

n

˙

.

By Assumption 2, | trppEnqkq|2 is uniformly bounded, and E| trppXnqkq|2 is bounded by Lemma 2.8. This proves

the claim. □

All the necessary ingredients are now in place to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Recall the notation from Proposition 2.4. We first show that

qDn pzq „n bnpzq det
`

I ´ zXn,D
˘

„n bnpzqκDpzq expp´F q,(2.19)

where κDpzq “

b

1 ´ z2EpAD
1,1q2. Moreover, in what follows set

QD
n pzq “ bnpzqκDpzq expp´F q, Qnpzq “ bnpzqκpzq expp´F q.

Notice that for z P C, the series
ř8

k“1
zk

k pY n,Dqk is well-defined for |z| small enough, and we can express

qDn pzq as

(2.20) qDn pzq “ exp

˜

´

8
ÿ

k“1

tr
`

pY n,Dqk
˘ zk

k

¸

.

By Proposition 6.1 of [Cos23], we can rewrite, for |z| small enough,

exp

˜

´

8
ÿ

k“1

tr
`

pY n,Dqk
˘zk

k

¸

“ 1 `

n
ÿ

k“1

Pk

´

trpY n,Dq, . . . , tr
`

pY n,Dqk
˘

¯ zk

k!
,
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for some polynomials Pk which do not depend on n. By analytic continuation,

qDn pzq “ 1 `

n
ÿ

k“1

Pk

´

trpY n,Dq, . . . , tr
`

pY n,Dqk
˘

¯ zk

k!

for any z P C.

Thus, it suffices to examine the joint law of
`

trpY n,Dq, . . . , tr
`

pY n,Dqk
˘˘

for any k P N. In this case, we

combine Proposition 2.7, Lemma 2.8, and Lemma 2.9 to conclude

(2.21)
`

trpY n,Dq, . . . , tr
`

pY n,Dqk
˘˘

„n

`

trpXn,Dq, . . . , tr
`

pXn,Dqk
˘˘

`
`

trpEnq, . . . , tr
`

pEnqk
˘˘

„n

`

Z1 ` meanD
1 ,

?
2Z2 ` meanD

2 , . . . ,
?
k Zk ` meanD

k

˘

`
`

trpEnq, . . . , tr
`

pEnqk
˘˘

.

Notice that the Gaussian random variables Zk do not depend on D. By Proposition 2.2 and (2.21), we deduce

that (2.19) holds.

We continue with the proof of (1.4). Fix an integer m ą 0, and an m-tuple pz1, . . . , zmq P Dp0, 1qm. Let

φ : R2m Ñ R be a bounded Lipschitz function. Since for all z P Dp0, 1q,

lim
DÑ8

κDpzq “ κpzq,

it follows that

sup
n

ˇ

ˇEφ
`

Qnpz1q, . . . , Qnpzmq
˘

´ Eφ
`

QD
n pz1q, . . . , QD

n pzmq
˘
ˇ

ˇ ÝÝÝÝÑ
DÑ8

0.

Therefore,

ˇ

ˇEφ
`

qnpz1q, . . . , qnpzmq
˘

´ Eφ
`

Qnpz1q, . . . , Qnpzmq
˘
ˇ

ˇ

ď
ˇ

ˇEφ
`

qnpz1q, . . . , qnpzmq
˘

´ Eφ
`

qDn pz1q, . . . , qDn pzmq
˘
ˇ

ˇ

`
ˇ

ˇEφ
`

qDn pz1q, . . . , qDn pzmq
˘

´ Eφ
`

QD
n pz1q, . . . , QD

n pzmq
˘
ˇ

ˇ

`
ˇ

ˇEφ
`

QD
n pz1q, . . . , QD

n pzmq
˘

´ Eφ
`

Qnpz1q, . . . , Qnpzmq
˘
ˇ

ˇ .(2.22)

The first term on the right-hand side is bounded by a positive number εD independent of n and converging to

zero as D Ñ 8 by Proposition 2.4. The second term converges to zero as n Ñ 8 since qDn pzq „n QD
n pzq. We

just showed that the third term can be controlled similarly to the first term. Thus, the left-hand side converges

to zero as n Ñ 8. By applying Proposition 2.2, we obtain qn „n Qn.

Next we prove (1.3). Set

Snpzq “ bnpzq det
`

I ´ zXn
˘

, SD
n pzq “ bnpzq det

`

I ´ zXn,D
˘

.

Given the bounds from (2.22) and (2.19), it is sufficient to prove that

sup
n

ˇ

ˇEφ
`

Snpz1q, . . . , Snpzmq
˘

´ Eφ
`

SD
n pz1q, . . . , SD

n pzmq
˘
ˇ

ˇ ÝÝÝÝÑ
DÑ8

0.

The latter can be proven easily by using Assumption 2 to bound bnpzq and comparing detpI ´ zXnq with

detpI ´ zXn,Dq as is done in Lemma 3.3 of [BCGZ22]. □

3. Comparison with a Gaussian matrix

The goal of this section is to compare the spectral properties of matrix Xn as defined in (1.1) with analogous

quantities of a Gaussian random matrix Gn P Rnˆn with i.i.d. centered real Gaussian entries, each with variance

n´1. We mostly rely on results from [BvH24].

Let ξ P C be such that |ξ| ą 1. Consider the following matrices

(3.1) Hnpξq “

«

0 Xn ´ ξIn

pXn ´ ξInq‹ 0

ff

and Snpξq “

«

0 Gn ´ ξIn

pGn ´ ξInq‹ 0

ff

.

As is well known, the set of eigenvalues of Hnpξq counting multiplicities coincides with the union of the set

of singular values of Xn ´ ξIn counting multiplicities and the set of the opposites of these singular values. A

similar remark holds for Snpξq and Gn ´ ξIn. For simplicity we will often write Hn, Sn instead of Hnpξq, Snpξq.

We start with a comparison of the empirical spectral distribution of the matrices.
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Proposition 3.1. The spectral measures of Hn and Sn are asymptotically equivalent, that is, writing

νH
n

“
1

2n

ÿ

iPr2ns

δλipHnq and νS
n

“
1

2n

ÿ

iPr2ns

δλipSnq,

it holds that νH
n

„ νS
n

as random variables valued in the space of probability measures on R.

Proof. Follows directly by the discusson in Subsection 10.3 of [RT19]. □

Next we prove a classical result for sub-gaussian random variables.

Lemma 3.2. Let Assumption 5 hold. Then for some constant C 1 ą 0,

lim
nÑ8

P

˜

max
i,j

|Xn
i,j | ď C 1

ˆ

log n

Kn

˙1{2
¸

“ 1.(3.2)

Proof. By the union bound and Assumption 5 we get

P

˜

max
i,j

|Xn
i,j | ą C 1

ˆ

log n

Kn

˙1{2
¸

ď P

˜

max
i,j

|An
i,j |

?
Kn

ą C 1

ˆ

log n

Kn

˙1{2
¸

“ P
ˆ

max
i,j

|An
i,j | ą C 1 plog nq

1{2

˙

ď 2n2 expp´CpC 1q2 logpnqq .

It remains to choose C 1 large enough to conclude. □

For the empirical spectral distribution the finiteness of the second moment of the entries of An was sufficient.

For finer results one needs to make more assumptions for the matrix An. Recall that C` “ tz P C : ℑz ą 0u

and that snpMq denotes the least singular value of any n ˆ n matrix M .

We now present our comparison result, a corollary of [BvH24].

Theorem 3.3. Let Assumptions 1 and 5 hold. Let Gn be a n ˆ n matrix with i.i.d. centered real Gaussian

entries each with variance n´1 and the matrices Hnpξq and Snpξq be defined by (3.1). Let ξ P C with |ξ| ą 1.

Assume that

lim
nÑ8

log9
pnq

Kn
“ 0 ,

Then

(a) for every ε ą 0, lim
nÑ8

P p|snpXn ´ ξIq ´ snpGn ´ ξIq| ě εq “ 0 ,

(b) for every z P C`, lim
nÑ8

›

›EpSn ´ zIq´1 ´ EpHn ´ zIq´1
›

› “ 0 .

Remark 3.4. In the previous theorem, it turns out that assumption log9
pnq{Kn Ñ 0 is required to prove item

(a). The lighter assumption logpnq{Kn Ñ 0 is sufficient to establish item (b), see the proof below.

Proof. As a consequence of Assumption 5, the following estimate holds

(3.3) E max
i,jPrns

|An
ij |2 ď C1 log n ,

for some constant C ą 0 (see, for instance, [Ver18, Exercises 2.26 and 2.44]). Moreover, the singular value

snpGn ´ ξIq is positive with probability one and coincides on this probability one set with the smallest positive

eigenvalue of Sn.

In order to establish (a) we shall rely on [BvH24, Theorem 2.8]. Notice first that

|snpXn ´ ξIq ´ snpGn ´ ξIq| ď dHpσpHnq, σpSnqq ,

where σpHnq and σpSnq are respectively the spectra of Hn and Sn. The following quantities whose estimates

are straightforward appear in the statement of [BvH24, Theorem 2.8]:

κ “
›

›EpH ´ EHq2
›

›

2
“ 1 ,

κ˚ “ sup
}v},}w}“1

´

E |xv, pH ´ EHqwy|
2
¯1{2

ď
2

?
n

,

R “

ˆ

Emax
ij

|Xn
ij |2

˙1{2

ď

ˆ

C1 logpnq

Kn

˙1{2

.
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Now the theorem states that:

P
"

|snpGn ´ ξIq ´ snpXn ´ ξIq| ě C0εptq ; max
i,j

|Xij | ď R

*

ď 2n exp p´tq ,

for every t ě 0 with the conditions:

piq R ě

a

κR `
?

2R and piiq εRptq “ κ˚

?
t ` R1{3κ2{3t2{3 ` Rt ,

and where C0 is a universal constant.

We first set R “ C2

´

logpnq

Kn

¯1{4

and notice that for this value, P tmaxi,j |Xij | ď Ru Ñn 1. In fact, using

estimate (3.3) we have

P
"

max
i,j

|Xij | ą R

*

ď
C1

C2
2

d

logpnq

Kn
ÝÝÝÑ
nÑ8

0 ,

by assumption. Now setting t “ C3

´

Kn

logpnq

¯1{8

, we get

εRptq “ C
1{3
2 C

2{3
3 ` op1q .

Notice that with such a choice,

2ne´t “ 2 exp

#

logpnq ´ C3

ˆ

Kn

logpnq

˙1{8
+

“ 2 exp

#

logpnq

«

1 ´ C3

ˆ

Kn

log9
pnq

˙1{8
ff+

ÝÝÝÑ
nÑ8

0

by the condition Kn{ log9
pnq Ñ 8. It remains to choose C3 so that C

1{3
2 C

2{3
3 “ ε to conclude that

P t|snpGn ´ ξIq ´ snpXn ´ ξIq| ě 2C0εu

ď P
"

|snpGn ´ ξIq ´ snpXn ´ ξIq| ě C0εptq ; max
i,j

|Xij | ď R

*

` P
"

max
i,j

|Xij | ą R

*

ÝÝÝÑ
nÑ8

0 .

In order to establish (b) we shall rely on [BvH24, Theorem 2.11] which yields that for every z P C`

›

›EpzI ´ Hq´1 ´ EpzI ´ Sq´1
›

› ď
κ˚ ` R

1{10

ℑ2pzq
“

1

ℑ2pzq

˜

2
?
n

`

ˆ

logpnq

Kn

˙1{20
¸

.

Proof of Theorem 3.3 is completed.

□

Remark 3.5. The results of [BvH24] are fairly general. One may relax the sub-Gaussian assumption (Assumption

5) at the cost of increasing the sparsity parameter Kn and still have an analogue of Theorem 3.3.

We now prove a concentration result. Recall that Xn’s entries write Xn
ij “

Bn
ijA

n
ij?

Kn
.

Lemma 3.6. Assume that E|An
11|8 ă 8. Let z P C`, ε ą 0 and consider two sequences pw̃2nq and pq̃2nq of unit

vectors in C2n, where

w̃2n
i “ q̃2ni “ 0 for i P tn ` 1, ¨ ¨ ¨ , 2nu .

Then

lim
nÑ8

P
`ˇ

ˇxpHnpξq ´ zIq´1w̃2n, q̃2ny ´ ExpHnpξq ´ zIq´1w̃2n, q̃2ny
ˇ

ˇ ě ϵ
˘

“ 0 .

Remark 3.7. In the proof below, the condition E|A11|4 ă 8 appears in estimating the variance of a quadratic

form, see for instance (3.5). The eight moment is required when relying on [HLNV13, Theorem 3.6].

Proof. We write

w̃2n “

˜

wn

0n

¸

and q̃2n “

˜

qn

0n

¸

,

where wn, qn P Cn and 0n is the null vector in Cn. We will soon drop the index n and simply write w, q, I

instead of wn, qn, In. In the sequel, C denotes a constant whose value may change from line to line.

By the Schur complement formula, we have

xpHnpξq ´ zI2nq´1w̃2n, q̃2ny “ z xwn,
`

´z2In ` pX ´ ξInqpX ´ ξInq‹
˘´1

qny ,
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and we are led to study the concentration of the quadratic form xw,Q qy with

Q “ z
`

´z2I ` pX ´ ξIqpX ´ ξIq‹
˘´1

.

Notice that Q being the top-left corner of matrix pHn ´ zIq´1, we immediately get }Q} ď pℑpzqq´1. Denote by

Y “ X ´ ξI

and let the pyiq’s being the columns of matrix Y . In particular, yi “ xi ´ ξei and

Q “ z
`

´z2 ` Y Y ‹
˘´1

“ z

˜

´z2 `

n
ÿ

k“1

yky
‹
k

¸´1

.

For further use, we introduce Qi “ z
`

´z2 `
ř

k‰i yky
‹
k

˘´1
. Denote by

fpy1, ¨ ¨ ¨ , ynq “ xw,Q qy .

Let f̌i be the function f evaluated at py1, ¨ ¨ ¨ , yi´1 , y̌i , yi`1, ¨ ¨ ¨ , ynq where y̌i is an independent copy of yi. By

Efron-Stein’s inequality [BLB03, Theorem 3.1] we have

varpfq ď
1

2

n
ÿ

i“1

E|f ´ f̌i|
2 .

We will rely on the following elementary facts. Let M P Cnˆn a deterministic matrix, then

Epy‹
iMyiq “

1

n
TracepMq ` |ξ|2Mii ,(3.4)

varpy‹
iMyiq ď C

ˆ

E|A11|4

nKn
TracepMM‹q `

|ξ|2pMM‹qii

n

˙

.(3.5)

The function z ÞÑ y‹
iQ

ipzqyi is the Stieltjes transform of a non-negative measure, and the function

z ÞÑ ´
1

z ` y‹
iQ

ipzqyi
.

is the Stieltjes transform of a probability measure. In particular

ˇ

ˇ

ˇ

ˇ

1

z ` y‹
iQ

ipzqyi

ˇ

ˇ

ˇ

ˇ

ď
1

ℑpzq
.

In the sequel, we denote by Ei “ E p ¨ | yk, k ‰ iq and by vari the associated conditional variance. Using

Sherman-Morrisson’s inequality, we get

E
ˇ

ˇf ´ f̌i
ˇ

ˇ

2
“ EEi

ˇ

ˇ

ˇ

ˇ

y‹
iQ

iqw‹Qiyi
z ` y‹

iQ
iyi

´
y̌i

‹Qiqw‹Qiy̌i
z ` y̌‹

iQ
iyi

ˇ

ˇ

ˇ

ˇ

2

,

paq

ď 2EEi

ˇ

ˇ

ˇ

ˇ

ˇ

y‹
iQ

iqw‹Qiyi
z ` y‹

iQ
iyi

´
Ei

`

y‹
iQ

iqw‹Qiyi
˘

z ` Eipy‹
iQ

iyiq

ˇ

ˇ

ˇ

ˇ

ˇ

2

` 2EEi

ˇ

ˇ

ˇ

ˇ

ˇ

y̌i
‹Qiqw‹Qiy̌i
z ` y̌‹

iQ
iy̌i

´
Ei

`

y̌‹
iQ

iqw‹Qiy̌i
˘

z ` Eipy̌‹
iQ

iy̌iq

ˇ

ˇ

ˇ

ˇ

ˇ

2

,

“ 4EEi

ˇ

ˇ

ˇ

ˇ

ˇ

y‹
iQ

iqw‹Qiyi
z ` y‹

iQ
iyi

´
Ei

`

y‹
iQ

iqw‹Qiyi
˘

z ` Eipy‹
iQ

iyiq

ˇ

ˇ

ˇ

ˇ

ˇ

2

,

where paq follows from the introduction of the auxiliary term

Ei

`

y‹
iQ

iqw‹Qiyi
˘

z ` Eipy‹
iQ

iyiq
“

Ei

`

y̌‹
iQ

iqw‹Qiy̌i
˘

z ` Eipy̌‹
iQ

iy̌iq
,
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and the elementary inequality |a ` b|2 ď 2|a|2 ` 2|b|2. Introducing appropriate auxiliary terms and proceeding

similarly, we get

E
ˇ

ˇf ´ f̌i
ˇ

ˇ

2
ď 8EEi

ˇ

ˇ

ˇ

ˇ

ˇ

y‹
iQ

iqw‹Qiyi
z ` y‹

iQ
iyi

´
Ei

`

y‹
iQ

iqw‹Qiyi
˘

z ` y‹
iQ

iyi

ˇ

ˇ

ˇ

ˇ

ˇ

2

`8EEi

ˇ

ˇ

ˇ

ˇ

Ei

`

y‹
iQ

iqw‹Qiyi
˘

"

1

z ` y‹
iQ

iyi
´

1

z ` Eipy‹
iQ

iyiq

*
ˇ

ˇ

ˇ

ˇ

2

,

ď
8

ℑ2pzq
Evaripy

‹
iQ

iqw‹Qiyiq `
8

ℑ4pzq
E
ˇ

ˇEipy
‹
iQ

iqw‹Qiyiq
`

y‹
iQ

iyi ´ Eipy
‹
iQ

iyiq
˘
ˇ

ˇ

2
,

“ Oz

`

Evaripy
‹
iQ

iqw‹Qiyiq
˘

` Oz

´

E
ˇ

ˇEipy
‹
iQ

iqw‹Qiyiq
`

y‹
iQ

iyi ´ Eipy
‹
iQ

iyiq
˘
ˇ

ˇ

2
¯

.(3.6)

We first estimate varipy
‹
iQ

iqwQiyiq. By (3.5) we have

varipy
‹
iQ

iq w‹Qiyiq ď C

˜

TracepQiq w‹QirQis‹w q‹rQis‹q

nKn
`

|ξ|2
`

Qiq w‹QirQis‹w q‹rQis‹
˘

ii

n

¸

,

“ Oz

ˆ

1

nKn

˙

` Oz,ξ

˜

`

Qiq q‹rQis‹
˘

ii

n

¸

.(3.7)

We now estimate Eipy
‹
iQ

iqw‹Qiyiq. By (3.4) we have

Eipy
‹
iQ

iqw‹Qiyiq “
1

n
TracepQiqw‹Qiq ` |ξ|2

`

Qiqw‹Qi
˘

ii
“ Oz

ˆ

1

n

˙

` |ξ|2
`

Qiqw‹Qi
˘

ii
.

Notice that
ˇ

ˇ

`

Qiqw‹Qi
˘

ii

ˇ

ˇ

2
“

`

Qiqw‹Qi
˘

ii
ˆ
`

rQis‹wq‹rQis‹
˘

ii

ď
`

Qiqw‹QirQis‹wq‹rQis‹
˘

ii
ď

1

ℑ2pzq

`

Qiq q‹rQis‹
˘

ii
.

Hence

(3.8)
ˇ

ˇEipy
‹
iQ

iqw‹Qiyiq
ˇ

ˇ

2
“ Oz

ˆ

1

n2

˙

` Oz,ξ

´

ˇ

ˇ

`

Qiqw‹Qi
˘

ii

ˇ

ˇ

2
¯

“ Oz

ˆ

1

n2

˙

` Oz,ξ

``

Qiq q‹rQis‹
˘

ii

˘

.

We finally estimate varipy
‹
iQ

iyiq. By (3.5) we have

(3.9) varipy
‹
iQ

iyiq ď rK

˜

TracepQirQis‹q

nKn
`

|ξ|2
“

QirQis‹
‰

ii

n

¸

“ Oz

ˆ

1

Kn

˙

` Oz,ξ

ˆ

1

n

˙

“ Oz,ξ

ˆ

1

Kn

˙

.

Notice that the final upper estimate of varipy
‹
iQ

iyiq above is deterministic. Noticing that

Ei

␣

|EiU |2 ˆ |V |2
(

“ |EiU |2Ei|V |2 ,

and using (3.8)-(3.9), we get

EEi

ˇ

ˇEipy
‹
iQ

iqw‹Qiyiq
`

y‹
iQ

iyi ´ Eipy
‹
iQ

iyiq
˘
ˇ

ˇ

2
“ E

!

ˇ

ˇEipy
‹
iQ

iqw‹Qiyiq
ˇ

ˇ

2 Ei

ˇ

ˇy‹
iQ

iyi ´ Eipy
‹
iQ

iyiq
ˇ

ˇ

2
)

,

“ E
!

ˇ

ˇEipy
‹
iQ

iqw‹Qiyiq
ˇ

ˇ

2
varipy

‹
iQ

iyiq
)

,

“ Oz,ξ

ˆ

1

n2Kn

˙

` Oz,ξ

˜

E
`

Qiq q‹rQis‹
˘

ii

Kn

¸

.(3.10)

Plugging back estimates (3.7) and (3.10) into (3.6) and summing over i finally yields

varpfq ď
1

2

ÿ

i

E|f ´ f̌i|
2 “ Oξ,z

ˆ

1

Kn
`

ř

i EpQiq q‹rQis‹qii

Kn

˙

.

It remains to notice that
ÿ

i

E
`

Qiq q‹rQis‹
˘

ii
“ Ozp1q

by [HLNV13, Theorem 3.6] to conclude.

□

We now present fairly standard results concerning the Gaussian matrix Sn.
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Theorem 3.8. Let ξ P C with |ξ| ą 1. Let Gn be a n ˆ n matrix with i.i.d. real Gaussian entries each with

variance n´1 and Snpξq the 2n ˆ 2n matrix defined by (3.1).

The following facts hold true for matrix Snpξq.

(a) There exists a probability measure µξ such that

1

2n

ÿ

iPr2ns

δλipSnq ùñ
nÑ8

µξ a.s.

(b) The probability measure µξ is symmetric and has a density supported in p´Cξ,´cξq Y pcξ, Cξq for some

positive constants 0 ă cξ ă Cξ.

(c) If mξ denotes the Stieltjes transform of µξ, then mξ is the unique function that satisfies the following

fixed point equation

´
1

mξpwq
“ w ` mξpwq ´

|ξ|2

w ` mξpwq
, with ℑpmξpwqq , ℑpwq ą 0,(3.11)

(d) There exists a positive constant čξ such that

lim
nÑ8

PpsnpGn ´ ξIq ě čξq “ 1 .

Let w̃2n, q̃2n be two deterministic unit vectors in C2n satisfying w̃2n
i “ q̃2ni “ 0 for i ě n ` 1.

(e) Let η P R`, then

lim
nÑ8

ˇ

ˇ

@

w̃2n, pSn ´ iηIq´1q̃2n
D

´ mξpiηqxw̃2n, q̃2ny
ˇ

ˇ “ 0 a.s. .

(f) Let z P C`, then for every ε ą 0,

lim
nÑ8

P
`
ˇ

ˇ

@

w̃2n, pSn ´ zIq´1q̃2n
D

´
@

w̃2n,EpSn ´ zIq´1q̃2n
D
ˇ

ˇ ě ε
˘

“ 0 .

Proof. Random matrix models like Sn are very popular and have been heavily studied. (a) and (b) can be found

in Proposition 3.1 of [BYY14];(c) can be found in [CESX23, (2.17)]; (d) can be proven by a direct application

of [DS07, Theorem 1.1]. Finally (e) and (f) are consequences of [HLNV13, Theorem 1.1]. □

Corollary 3.9. Let η ą 0 and mξ the Stieltjes transform defined in Theorem 3.8-(c), then one has:

lim
ηÑ0

ℑpmξpiηqq

η
“

1

|ξ|2 ´ 1

Proof. Let ρξ denote the density of µξ, notice that ρξ is symmetric. Recall that µξ is supported in p´Cξ,´cξq Y

pcξ, Cξq for positive constants cξ, Cξ. First, define the function

hpηq :“
ℑpmξpiηqq

η
“ 2

ż Cξ

cξ

ρξpxq

x2 ` η2
dx .

Then hpηq is Lipschitz continuous on a small interval p0, εq with ε ă cξ since

|hpη1q ´ hpη2q| ď 4 |η1 ´ η2| ε

ż Cξ

cξ

ρξpxq

px2 ` η21qpx2 ` η22q
dx ď

4ε

c4ξ
|η1 ´ η2| .

In particular, the limit limηÑ0 hpηq exists. The symmetry of the density ρξ yields that mξpiηq “ ´mξpiηq hence

ℜmξpiηq “ 0 .

Rewriting the fixed point equation in Theorem 3.8-(c) in terms of function hpηq yields

1 “ hpηqη2p1 ` hpηqq `
|ξ|2hpηq

1 ` hpηq
.(3.12)

Taking the limit of (3.12) as η Ñ 0 we end up with the desired result:

hp0q “
1

|ξ|2 ´ 1
.

□

We are now in position to compare quadratic forms based on the resolvent of Hn and on the resolvent of Sn.
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Corollary 3.10. Let An satisfy Assumption (5), z P C`, ε ą 0 and

lim
nÑ8

log n

Kn
“ 0 .

Let w̃2n, q̃2n P C2n be deterministic unit vectors satisfying w̃2n
i “ q̃2ni “ 0 for i ě n ` 1, then

lim
nÑ8

P
`
ˇ

ˇxpHnpξq ´ zIq´1w̃2n, q̃2ny ´ xpSnpξq ´ zIq´1w̃2n , q̃2ny
ˇ

ˇ ě ϵ
˘

“ 0.

Proof. In the notations below, we drop the indices. The claim follows from the inequality

ˇ

ˇxpH ´ zIq´1w̃, q̃y ´ xpS ´ zIq´1w̃, q̃y
ˇ

ˇ

ď
ˇ

ˇxpH ´ zIq´1w̃, q̃y ´ ExpH ´ zIq´1w̃, q̃y
ˇ

ˇ

`
ˇ

ˇxpS ´ zIq´1w̃, q̃y ´ ExpS ´ zIq´1w̃, q̃y
ˇ

ˇ `
›

›EpS ´ zIq´1 ´ EpH ´ zIq´1
›

› .

The first term of the r.h.s. goes to zero in probability by Lemma 3.6; the second term goes to zero by Theorem

3.8-(f); the last term goes to zero by Theorem 3.3-(b).

□

4. Proof of Theorem 1.6

Recall the definition of Xn in (1.1) and the fact that Y n “ Xn `unpvnq‹. In all this section, we shall assume

without generality loss that

xvn, uny ÝÝÝÑ
nÑ8

ξ P C with |ξ| ą 1,

since it is sufficient to establish the convergence in probability to all sub-sequential limits of xvn, uny.

We start our analysis with a well-known linear algebra result (see, e.g., [BGN11, Tao13]) that we prove for

completeness.

Lemma 4.1. Let z0 R σpXnq. Then, z0 P σpY nq if and only if

1 `
@

pXn ´ z0Iq´1un, vn
D

“ 0.

The case being, a right eigenvector corresponding to the eigenvalue z0 of Y n is

pXn ´ z0Iq´1un.

Proof. For the first part, since z0 is not an eigenvalue of Xn and by the property that detpI`ABq “ detpI`BAq

for rectangular matrices A and B with compatible dimensions, we get that

detpY n ´ z0Iq

detpXn ´ z0Iq
“ detpI ` pXn ´ z0Iq´1unpvnq‹q “ 1 `

@

pXn ´ z0Iq´1un, vn
D

.

The claim follows.

For the second part, for z0 R σpXnq, we have that

pY n ´ z0IqpXn ´ z0Iq´1un “ un ` unpvnq‹pXn ´ z0Iq´1un “
`@

pXn ´ z0Iq´1un, vn
D

` 1
˘

un.

Due to the first part of the lemma, if z0 is an eigenvalue of Y n, the right hand side of this expression is zero.

Thus Y npXn ´ z0Iq´1un “ z0pXn ´ z0Iq´1un which is the required result. □

Let us briefly present the strategy of proof. Thanks to the former result, we are led to study the behavior of
B

un

}un}
,

pXn ´ λmaxpY nqIq´1un

}pXn ´ λmaxpY nqIq´1un}

F

on an appropriate probability event. With the help of the results of the former section, we first show that

pXn ´λmaxpY nqIq´1 can be replaced with pXn ´ ξIq´1 in this expression. This is the aim of Lemma 4.2 below.

With the help of Theorem 1.1, we then consider the asymptotics of xun, pXn ´ ξIq´1uny{}un}2 (Lemma 4.3).

The remainder of the proof consists in studying }pXn ´ ξIq´1un}{}un} with help of the results of Section 3

again.
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Lemma 4.2. There exists a sequence pE4.2
n q of probability events such that 1E4.2

n
Ñ 1 in probability, the smallest

singular values of Xn ´ ξI and Xn ´λmaxpY nqI are lower bounded by positive constants on E4.2
n , and moreover,

it holds that

1E4.2
n

}pXn ´ λmaxpY nqIq´1 ´ pXn ´ ξIq´1}
P

ÝÝÝÑ
nÑ8

0 .

Proof. We mainly need to control the smallest singular value snpXn ´ ξIq, and to use Corollary 1.5, which

shows in our context that

λmaxpY nq
P

ÝÝÝÑ
nÑ8

ξ .

To control snpXn ´ ξIq, we apply Theorems 3.3-(a) and 3.8-(d) to obtain the existence of a constant c ą 0

satisfying

lim
n

P tsnpXn ´ ξIq ě cu “ 1 .

Defining the event

E4.2
n “ tsnpXn ´ ξIq ě cu X t|λmaxpY nq ´ ξ| ď c{2u ,

we know from what precedes that PtE4.2
n u Ñn 1. Moreover, by Weyl’s inequality, we obtain that

snpXn ´ λmaxpY nqIq ě snpXn ´ ξIq ´ |ξ ´ λmaxpY nq| .

Therefore, snpXn ´ λmaxpY nqIq ě c{2 on E4.2
n , and both matrices Xn ´ ξI and Xn ´ λmaxpY nqI have their

smallest singular values lower bounded by a positive constant on E4.2
n . In particular, the expression

1E4.2
n

}pXn ´ λmaxpY nqIq´1 ´ pXn ´ ξIq´1}

is well-defined. On E4.2
n , we furthermore have

}pXn ´ λmaxpY nqIq´1 ´ pXn ´ ξIq´1} “ }pXn ´ λmaxpY nqIq´1pXn ´ ξIq´1pλmaxpY nq ´ ξq} ,

ď |λmaxpY nq ´ ξ| }pXn ´ λmaxpY nqIq´1} }pXn ´ ξIq´1} ,

ď
2

c2
|λmaxpY nq ´ ξ| ,

and the second statement follows from the convergence of λmaxpY nq to ξ in probability. □

Next we turn our attention to xpXn ´ ξIq´1un, uny on the event where pXn ´ ξIq is invertible.

Lemma 4.3. Let E4.3
n be the event where pXn ´ ξIq is invertible. Then, 1E4.3

n
Ñn 1 in probability, and

1E4.3
n

1

}un}2

@

pXn ´ ξIq´1un, un
D P

ÝÝÝÑ
nÑ8

´
1

ξ
.

Proof. The convergence 1E4.3
n

Ñn 1 in probability follows obviously from, e.g., Theorem 1.4. Arguing as in the

proof of Lemma 4.1, we furthermore have

1E4.3
n

detpI ´ ξ´1pXn ` unpunq‹qq “ 1E4.3
n

`

1 `
@

un, pXn ´ ξIq´1un
D˘

detpI ´ ξ´1Xnq .

By Assumptions 2 and 4, the sequence p}un}q converges to a limit β ą 0 along a subsequence that we still

denote as pnq. We fix this subsequence. Setting

Ěn “ unpunq‹ and Y̌ n “ Xn ` Ěn ,

and defining the H2–valued random vector rqY̌n qXn sT as
˜

qY̌n pzq

qXn pzq

¸

“

˜

detpI ´ zY̌
n

q

detpI ´ zXnq

¸

,

we easily see that the sequence prqY̌n qXn sT q is tight in the space H2 equipped with the product distance, and

furthermore, by inspecting again the proof of Theorem 1.1 (in particular, Proposition 2.7 with Ěn “ unpunq‹

and Lemma 2.8), that
˜

qY̌n

qXn

¸

law
ÝÝÝÑ
nÑ8

κ expp´F q

˜

b8

1

¸

with b8pzq “ 1 ´ β2z .
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By Slutsky’s theorem, we then get that

1E4.3
n

˜

qY̌n

qXn

¸

law
ÝÝÝÑ
nÑ8

κ expp´F q

˜

b8

1

¸

.

By Skorokhod’s representation theorem, there exists a sequence of C2–valued random variables prpY̌n pXn sT q and

a C2–valued random variable prpY̌8 pX8sT q on a probability space rΩ, such that
˜

pY̌n

pXn

¸

law
“ 1E4.3

n

˜

qY̌n p1{ξq

qXn p1{ξq

¸

and

˜

pY̌8

pX8

¸

law
“ κp1{ξq expp´F p1{ξqq

˜

b8p1{ξq

1

¸

,

and prpYn pXn sT q converges to prpY̌8 pX8sT q for all ω̃ P rΩ. Recalling that κ expp´F q ‰ 0, it holds that the random

variable pY̌n {pXn converges pointwise to pY̌8{pX8
law
“ b8p1{ξq. This implies that

1E4.3
n

`

1 `
@

un, pXn ´ ξIq´1un
D˘

“ 1E4.3
n

qY̌n p1{ξq

qXn p1{ξq

P
ÝÝÝÑ
nÑ8

b8p1{ξq “ 1 ´
β2

ξ
,

and the result of the lemma follows. □

It remains to establish an asymptotic result for 1
}un}2

}pXn ´ ξIq´1un}2. It will be more convenient to work

with the hermitisation Hnpξq of Xn defined in (3.1). Furthermore, it will also be convenient to introduce a

small parameter η ą 0 and work on the resolvent pHn ´ zIq´1 of Hn evaluated at z “ iη. Specifically:

Lemma 4.4. There exists a sequence of events pE4.4
n q such that Hn is invertible on E4.4

n , E4.2
n Ă E4.4

n , and

1E4.4
n

}pHnq´1 ´ pHn ´ iηIq´1} ď C4.4η

for some constant C4.4 ą 0.

Proof. Recall that λ is an eigenvalue of the Hermitian matrix Hn if and only if λ or ´λ is a singular value of

Xn ´ ξI. Thus, the event

E4.4
n “ tsnpXn ´ ξIq ě cu

where c ą 0 is the one chosen in the proof of Lemma 4.2 satisfies the first two assertions of the statement.

On the event E4.4
n , it holds that }pHnq´1} ď 1{c. On the same event, since the singular values of pHn ´ iηIq´1

are of the form 1{|λk ´ iη| where the λk’s are the real eigenvalues of Hn, we obtain that }pHn ´ iηIq´1} ď 1{c.

By the resolvent identity, on this event, we therefore obtain the following estimate:

}pHnq´1 ´ pHn ´ iηIq´1} “ }pHnq´1pHn ´ iηIq´1η} ď }pHnq´1} ˆ }pHn ´ iηIq´1} η ď
η

c2
.

□

For the resolvent pHn ´ iηIq´1 we have that

Lemma 4.5. Consider a sequence of deterministic unit vectors w̃2n P C2n satisfying

w̃2n
i “ 0 for i P tn ` 1, ¨ ¨ ¨ , 2nu ,

then the following limit holds:

}pHn ´ iηIq´1w̃2n}2
P

ÝÝÝÑ
nÑ8

ℑpmξpiηqq

η
,

where mξ is the Stieltjes transform of the probability measure ξξ defined in the statement of Theorem 3.8.

Proof. Denoting as ℑM “ pM ´ M‹q{p2iq the imaginary part of a complex matrix, it holds by the resolvent’s

identity that
`

pHn ´ iηIq´1
˘‹

pHn ´ iηIq´1 “
1

η
ℑ
`

pHn ´ iηIq´1
˘

.

From this, we conclude that

}pHn ´ iηIq´1w̃2n}2 “
@

pHn ´ iηIq´1w̃2n, pHn ´ iηIq´1w̃2n
D

“

A

`

pHn ´ iηIq´1
˘‹

pHn ´ iηIq´1w̃2n, w̃2n
E

“

B

1

η
ℑ
`

pHn ´ iηIq´1
˘

w2n, w2n

F

,

and the claim follows by combining Corollary 3.10 with Theorem 3.8-(e). □
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We are now ready to examine the asymptotic behavior of 1
}un}2

}pXn ´ ξIq´1un}2.

Lemma 4.6. Let un P Cn be a deterministic vector, then the following limit holds:

1E4.4
n

}pXn ´ ξIq´1un}

}un}

P
ÝÝÝÑ
nÑ8

1
a

|ξ|2 ´ 1
.

Proof. Denote by q2n P C2n the deterministic unit vector defined by

q2n “

˜

un{}un}

0n

¸

.

Recall that Hn is invertible on E4.4
n and notice that on this event pHnq´1 writes

pHnq´1 “

˜

0 pXn ´ ξIq´‹

pXn ´ ξIq´1 0

¸

.

In particular

1E4.4
n

}pXn ´ ξIq´1un}

}un}
“ 1E4.4

n
}pHnq´1q2n} .

Fix an arbitrarily small ε ą 0 and choose η ą 0 small enough so that

C4.4η ď
ε

2
and

d

ℑmξpηq

η
ą

1
a

|ξ|2 ´ 1
´

ε

4
,

which is possible by Corollary 3.9. With this choice, we have by Lemma 4.4

ˇ

ˇ1E4.4
n

›

›pHnq´1q2n
›

› ´ 1E4.4
n

›

›pHn ´ iηIq´1q2n
›

›

ˇ

ˇ ď 1E4.4
n

›

›pHnq´1q2n ´ pHn ´ iηIq´1q2n
›

› ď
ε

2
.

Now
#
ˇ

ˇ

ˇ

ˇ

ˇ

1E4.4
n

}pXn ´ ξIq´1un}

}un}
´

1
a

|ξ|2 ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ě ε

+

Ă

#
ˇ

ˇ

ˇ

ˇ

ˇ

1E4.4
n

›

›pHn ´ iηIq´1q2n
›

› ´
1

a

|ξ|2 ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ě
ε

2

+

Ă

#
ˇ

ˇ

ˇ

ˇ

ˇ

›

›pHn ´ iηIq´1q2n
›

› ´

d

ℑmξpηq

η

ˇ

ˇ

ˇ

ˇ

ˇ

ě
ε

4

+

.

Taking the probability of both events, combined with Lemma 4.5, yields the desired result. □

We conclude with the proof of Theorem 1.6.

Proof of Theorem 1.6. We need to show that
ˇ

ˇ

ˇ

ˇ

B

un

}un}
, ũn

F
ˇ

ˇ

ˇ

ˇ

2
P

ÝÝÝÑ
nÑ8

1 ´
1

|ξ|2
.

To this end, we are allowed to multiply the left hand side with 1
|σ`

ε pY nq|“11E4.2
n

which converges to one in

probability by Corollary 1.5 and Lemma 4.2.

On the event t|σ`
ε pY nq| “ 1u, the right eigenspace of Y n associated with λmaxpY nq is one-dimensional. By

Lemma 4.1, we are therefore reduced to showing that

1
|σ`

ε pY nq|“11E4.2
n

ˇ

ˇ

@

un, pXn ´ λmaxpY nqIq´1un
D
ˇ

ˇ

2

}un}2}pXn ´ λmaxpY nqIq´1un}2
P

ÝÝÝÑ
nÑ8

1 ´
1

|ξ|2
.

Noticing that E4.2
n Ă E4.3

n , we obtain by Lemmas 4.2 and 4.3 that

1E4.2
n

1

}un}2

@

pXn ´ λmaxpY nqIq´1un, un
D P

ÝÝÝÑ
nÑ8

´
1

ξ
.

By Lemmas 4.2, 4.4 and 4.6, it holds that

1E4.2
n

}pXn ´ λmaxpY nqIq´1un}

}un}

P
ÝÝÝÑ
nÑ8

1
a

|ξ|2 ´ 1
,

and the result is obtained through a direct calculation. □
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5. Open problems

We now present several open problems that emerge naturally from our results. Most of these appear approach-

able using refinements of existing techniques, while one in particular—concerning assumptions on Theorem

1.6—poses a more significant theoretical challenge and remains largely unresolved.

Open Problem 1 (sparser regimes). The bounds in (2.11) and (2.4) tend to zero even when Kn remains

bounded as n Ñ 8. Our current methods already yield an analogue of (1.3) in the case Kn “ K ą 0. To fully

extend the result, one must compute the moments of TrpXnq, as in Lemma 2.8. The limiting distribution is not

Gaussian—in the directed Erdős–Rényi case, for instance, the non-Gaussian limit is derived in [Cos23].

Open Problem 2 (types of sparsity). Extend the analysis to alternative sparsity regimes beyond that defined

in (1.1). For example, consider the Hadamard product of an i.i.d. matrix with the adjacency matrix of a

Kn-regular graph, uniformly sampled from the space of such graphs. The interplay between randomness and

structured sparsity presents new analytical challenges.

Open Problem 3 (unbounded eigenvalues of En). Proposition 2.7 remains valid if }En} “ Opnop1qq. Investi-

gate whether, after proper normalization, the sequence qnpzq remains tight and whether Theorem 1.1 continues

to hold when }En} Ñ 8 as n Ñ 8.

Open Problem 4 (assumptions on Theorem 1.6). Can one remove the distributional and sparsity assumptions

in Theorem 1.6? Doing so would require asymptotic lower bounds on the least singular value snpXn ´ ξIq. Our

approach depends on the universality results of [BvH24], which justify these extra assumptions. Removing them

appears to be a substantially harder problem and is currently out of reach.

Open Problem 5 (eigenvectors of finite-rank perturbation). Generalize Theorem 1.6 to the case of a defor-

mation with an arbitrary finite rank, similarly to what was done in the Hermitian case by, e.g., [BGN11]). This

generalization is useful for many applicative contexts where the matrix En bears an “information” buried in the

sparse noise matrix Xn.
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