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ABSTRACT. Consider a n x n sparse non-Hermitian random matrix X" defined as the Hadamard product
between a random matrix with centered independent and identically distributed entries and a sparse Bernoulli
matrix with success probability K, /n where K, < n (and possibly K, « n) and K,, — o0 asn — o. Let E™ be
a deterministic n x n finite-rank matrix. We prove that the outlier eigenvalues of Y = X" + E™ asymptotically
match those of E™.

In the special case of a rank-one deformation, assuming further that the sparsity parameter satisfies K, »
log? n and that the entries of the random matrix are sub-Gaussian, we describe the limiting behavior of the
projection of the right eigenvector associated with the leading eigenvalue onto the right eigenvector of the rank-
one deformation. In particular, we prove that the projection behaves as in the Hermitian case. To that end,
we rely on the recent universality results of Brailovskaya and van Handel [BvH24| relating the singular value
spectra of deformations of X™ to Gaussian analogues of these matrices.

Our analysis builds upon a recent framework introduced by Bordenave et.al. 2022 [BCGZ22], and amounts
to showing the asymptotic equivalence between the reverse characteristic polynomial of the random matrix and

a random analytic function on the unit disc with explicit dependence on the finite-rank deformation.

1. INTRODUCTION AND MAIN RESULTS

The study of eigenvalue outliers in random matrix theory has a rich and well-established history, particularly in
the symmetric and Hermitian settings, where additive finite-rank deformation often lead to predictable and well-
understood spectral deviations. A landmark result by Baik, Ben Arous, and Péché (BBP) demonstrated that
for sample covariance matrices with Gaussian entries, finite-rank deformations can induce outlier eigenvalues
that separate from the bulk spectrum once a critical threshold is exceeded; see [BBAPO05]. This so-called
BBP transition was soon extended to general entries by Baik and Silverstein [BS06] and has since become
a foundational concept in the field, with extensions to more general settings such as covariance-type matrices
[Pau07], Wigner-type matrices [CCF09], and other deformed matrices [BGN11]. Key tools in these developments
include the resolvent method, master equations, and moments of large power.

The non-symmetric / non-Hermitian setting introduces additional challenges; nevertheless, significant progress
has been achieved. In particular, [Tao13] and [BC16] provide a complete characterization of the outlier distri-
bution in the i.i.d. case, assuming finite fourth moments for the entries.

More recently, the sparse circular law has been established under minimal moment assumptions in [RT19]
and [SSS25]. Building upon these advances, we prove that outlier results continue to hold across all sparsity
regimes. Our main technical tool is the analysis of the reverse characteristic polynomial, as developed in
[BCGZ22]. Furthermore, under additional assumptions on the matrix and its sparsity parameter, we establish
a result concerning the right-eigenvector associated with the largest eigenvalue in the case where the additive
deformation has rank one. To this end, we compare spectral quantities of the matrix with those of an analogous

Gaussian ensemble, leveraging universality results from [BvH24].
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2 EXTREME EIGENVALUES AND EIGENVECTORS

By also relying on the technique of [BCGZ22], the author of the recent paper [Han25] also deals with the
outliers induced by finite rank deformations of square matrices with independent and identically distributed
entries. This paper deals among others with the sparse Bernoulli case with a finite rank additive deformation,
a model close to ours. The sparsity parameter of the Bernoulli elements is assumed to converge to infinity
at the rate n°(). In this situation, it is moreover assumed in [Han25] that the finite rank deformation has a
finite number of non-zero elements. These assumptions are not required in our paper, where we only need the
deformation to have a bounded operator norm. Moreover, we do not put any assumption on the rate of increase
of the sparsity parameter. In addition, when our deformation is of rank one, we also study the angle between
the eigenvector associated to the outlier and the “true” vector, a problem not considered in [Han25]. On the
other hand, [Han25] tackles the problem of the extreme eigenvalues of finite product of matrices.

Random additively deformed non-Hermitian matrices appear in many applied fields, such as natural and
artificial neural networks where the random matrix Y™ at hand represents the random interactions between
the neurons [SCS88, WT13]. We may also cite theoretical ecology where Y, which is often sparse, models the
interactions among living species within an ecosystem [Bunl7, ABC*24], see also the references therein. In
these fields, the eigenvalue of Y with the largest modulus plays a central role in describing the time evolution
of the activity of n interacting neurons or of the abundances of the n species that constitute the ecosystem.

We introduce some notation before stating our results.

1.1. Notations. Let Ct = {z € C : $2z > 0}. The cardinality of a set S, counting multiplicities, is denoted
by |S|. For m € N, set [m] = @ if m = 0 and [m] = {1,...,m} otherwise. Let z € C and A, B < C, then
d(z,A) = infeea |z — €| and the Hausdorff distance between A abd B, denoted by dg (A, B) is defined by
dg (A, B) = max {sup d(z,B); supd(z, A)} .
zeA zeB

When m > 0, we denote as &,, the symmetric group over the set [m]. Let | - | be the matrix operator norm or
the vector Euclidean norm. For a matrix M, denote by M™ its conjugate transpose; if u,v are column vectors
with equal dimension, then (u,v) = u*v. Denote by I, the m x m identity matrix, or simply I if the dimension
can be inferred from the context. Denote by o(M) = {A\(M),..., A\ (M)} the spectrum of a m x m matrix
M, by p(M) its spectral radius, and by s,,(M) its least singular value. For a m x m matrix M = (M;;){"_;
and Z,J < [m], let Mz, 7 = (Mij)iez,jes and Mz = (M;;); jez. Denote by adj(M) the adjugate of M, i.e., the
transpose of M’s cofactors matrix. For a vector x € C™ and Z < [m] let z7 = (x;)ez-

For a sequence of random variables (U, ) and a random variable U with values in a common metric space,
denote by U, n%:o U and U, 7i—vi>o U the convergence in probability and in law, respectively. Let U,, and V,, be

random variables in some metric space with probability distribution p, and v,. The notation
U, ~V, (n— )

refers to the fact that the sequences (u,,) and (v,) are relatively compact, and that
| st~ | gdva 0 (= BFU) - Ef(V) 2 0)

n—0o0 n—o0
for each bounded continuous real function f on the metric space. We shall say then that (U,) and (V,,) are
“asymptotically equivalent”. Note that (u,) and (v,) do not necessarily converge narrowly to some probability
distribution. We denote by v, =, v the weak convergence of probability measures.

Let f: Ac X —> R. We define the function 14 f by
fz) ifxeA,
La(x)f(z) =

0 else.

Denote by D(a, p) the open disk of C with center a € C and radius p > 0, by H the space of holomorphic
functions on D(0, 1), equipped with the topology of uniform convergence on compact subsets of D(0,1). It is
well-known that H is a polish space.

The following conventions will be used throughout the article: >, = 0, [[ = 1, det(A) = 1 if Ais a

matrix of null dimension. For complex sequences (wy,), (), the notation u, = O(v,) implies the existence of
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a positive constant x such that |u,| < k|v,| for all n > 1 sufficiently large. If we want to emphasize the fact

that the constant x depends on some extra parameters z,n, we may write u, = O, ,(v,).
1.2. Main results.

1.2.1. The model. We begin by introducing our random matrix model. Let x be a complex-valued random
variable such that E(x) = 0 and E(|x|?) = 1. For each integer n > 1, let A” = (A})7;_; € C**" be a random
matrix with independent and identically distributed (i.i.d.) elements equal in distribution to x.

Let (K,,) be a sequence of positive integers such that K, < n. Let (B™) be a sequence of n x n matrices with
we have P{B}, = 1} = K,,/n. We also assume that
B™ and A™ are independent. We consider the sequence of n x n random matrices (X™),>1 given as follows.

Writing X™ = (X7})7

i,j=1>

i.i.d. Bernoulli entries such that, writing B" = (Bj;)};_1,

we set

n 1 n n
Notice that EX7, = 0 and E| X}, |2 = 1/n.
Let r > 0 be a fixed integer, and consider 2r sequences of deterministic vectors (u!™), (u®"), ..., (u™"),
(b)), (*"), ..., (v™") such that ub™, v*™ € C" for each t € [r] and each n > 0. Consider the sequence (E™) of

n X n deterministic matrices defined by

We make the following assumptions:
Assumption 1. The integer sequence (K,,) satisfies
K, —— .
n—oo

Assumption 2. There exists an absolute constant C > 0 such that

r
Z Hut,n
t=1

In many applicative contexts, (K,,) converges to infinity at a much slower pace than n. For this reason, the

|+ 05"

<cC.

parameter K, is referred to as the sparsity parameter of the model of X™.

Define the sequence of random matrices (Y) as
Y"=X"4+E".

It is well-known, see [SSS25, Theorem 1.4] which generalizes [RT19, Theorem 1.2], that the empirical spectral
distribution of X™ converges to the so-called circular law. We shall furthermore show in Theorem 1.4 below that
the spectral radius of X™ converges to 1. In this article, we study the asymptotic behavior of the eigenvalues
of Y™ which Euclidean norm is greater than 1. We refer to these eigenvalues as outliers, which presence is due
to E™. Their behavior will be described in Theorem 1.2 below. In the case of a single outlier, we describe the

behavior of the associated eigenvector. This will be the content of Theorem 1.6.

1.2.2. FEigenvalues and characteristic polynomial of Y™. Our approach is inspired by the technique developed
in [BCGZ22| to capture the asymptotic behavior of the spectral radius of random matrices with i.i.d. elements,
and later extended in [Cos23], [CLZ23], [FGZ23], and [HL25] to various other models. One key feature of
this approach is that it requires minimal assumptions on the moments of the random matrices’ entries, and
it is based on analyzing the asymptotic behavior of the reverse characteristic polynomial via convergence to a
random analytic function in the unit disk. This latter idea can be found in [Shil2].

Consider the reverse characteristic polynomial of matrix Y, defined by

(1.2) Gn(z) = det (I, —2Y™) .



4 EXTREME EIGENVALUES AND EIGENVECTORS

Clearly, ¢, is a H-valued random variable. In this paper, our first goal is to study the asymptotic distribution
of g, on H. More precisely, we seek an appropriate sequence of random analytic functions ¢,, € H such that
dn ~ Pn s (’I’L - OO) >

where ¢, is simpler to analyze that ¢,. Studying the large-n behavior of ¢, in the light of the notion of
asymptotic equivalence is well-suited to our purpose, since without additional assumptions on the matrices E™,
there is no reason for (g,) to converge in law in H.

In what follows, we define the sequence of polynomials (b,,) as
bn(z) = det(I — zE™).
This sequence is pre-compact in H as a sequence of polynomials with degrees bounded by r and with bounded
coefficients by Assumption 2.
Theorem 1.1. Let Assumptions 1 and 2 hold true. Consider a sequence (Zi)r=1 of independent Gaussian
random variables with
E(Zy) =0, E(|Z*) =1, and  E(Z}) = (EA3)".
Define

ee]
(=T i Vim1, o FGI= 34D raepo)

k=1

=

Also let Gp(z) = by (2) det(I — zX™). Then

(1.3) @n ~ Gn, (0 — )

as H-valued random variables. Also,

(1.4) Gn ~ bk exp(=F), (n— ),
as H-valued random variables.

Proof of Theorem 1.1 is given in Section 2.

This theorem captures the behavior of the eigenvalues of Y™ which are away from the unit-disk. In a word,
since det(I — 2Y™) ~ det(I — zE™)k(z) exp(—F(z)) and since the function z — k(z)exp(—F(z)) has no zero
in D(0,1), these eigenvalues are close for large n to their counterparts for E™. This is formalized in the next

theorem which generalizes Theorem 1.7 of [Tao13] to sparser regimes. We need the following assumption.
Assumption 3. There exists € > 0 such that o(E™) n {z€C : 1 <|z| <1+¢} = for all large n.

Theorem 1.2. Let Assumptions 1 and 2 hold. Assume that Assumption 3 holds for some € > 0. Define the set
ot (E")=0(E")n{zeC: |z| > 1} and oY) =oc(Y")n{zeC: |z| >1+¢}

and let my, = |ot(E™)|. Then,
For each sequence (n') converging to infinity such that m,, > 0 for each n’, the Hausdorff distance between the
sets o (Y™) and ot (E™) satisfies:

dp(o (Y"),0" (E")) =0

n—0o0

(here, we set dg (F, 0 (E™)) = ).

Proof of Theorem 1.2 given Theorem 1.1. To prove the first assertion, assume towards a contradiction that
there exists a sequence (72) converging to infinity such that lim inf,, P {|oj (Y™)] # mﬁ} > 0. From this sequence,
extract a subsequence also denoted as (i) such that b; converges to some by, in H. Notice that by, is a polynomial
with a degree bounded by r. By Assumption 3, by, has no zero in the ring (1 +¢)~! < |z| < 1. Let mq < r be
the number of zeros of by, in D(0,1). When my > 0, let {(1,---,(s., } be the set of these zeros not counting

multiplicities, where s, < my, is the number of these zeros. In this case, denote as k; the multiplictity of the
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zero (; for i € [sy], and define the set Ay, = {1/C1,--+,1/Cs, }- Then, it holds by, e.g., Rouché’s theorem that
mj = my, for all large 72, and furthermore, if m, > 0, that the Hausdorff distance dgr (o (E™), Ay) converges

to zero. Indeed, by this theorem, there are k; eigenvalues of E™ that converge to 1/(y, ..., ks, eigenvalues of

Sco

E™ that converge to 1/(s, , and these eigenvalues exhaust o (E™) for all large 7.
We shall show that

(1.5) o (YY) L mey,

obtaining our contradiction.

By Theorem 1.1, g converges in law towards the H—valued random function g (2) = by (2)k(2) exp(—F(2)).
By relying on the explicit expressions of x and F', notice that function x exp(—F') does not vanish on D(0, 1). If
My = 0, then g, does not vanish on D(0, 1) either. Otherwise, the set of zeros of g4 coincides with {(1,- -+, (s, }
with the same multiplicities.

By Skorokhod’s representation theorem, there exists a sequence of H—valued random variables (¢z) and a
H-valued random variable ¢, defined on some common probability space (vl, such that ¢z law Q7 doo law (oo, and
grn converges to ¢, for all w € Q.

We now fix @ and apply Rouché’s theorem. If mq, = 0, then ¢z has eventually no zero in the compact set

{z : |2] < 1/(1 +¢)}. Otherwise, ¢i has k1 zeros converging to (1, - -, ks, zeros converging to (s, and these

S
zeros exhaust the zeros of ¢ in {z : |z| < 1/(1 + &)} for all large 7.
Getting back to g, it remains to notice that the zeros of g7 in {z : |z| < 1/(1 +¢)}, when they exist, are the
inverses of the eigenvalues of Y™ in the set {z : |2| = 1 + ¢}. This establishes the convergence (1.5).
The proof of the second assertion of Theorem 1.2 follows the same canvas. We just exclude the case where

My = 0. O
Taking E™ = 0, we obtain the following result.

Corollary 1.3. Let Assumption 1 hold and let p(X™) be the spectral radius of X™, then for every e > 0, we
have P(p(X™) > 1 +¢) — 0.

Combining this corollary with the circular law for sparse matrices [SSS25, Theorem 1.4], we can generalize
[BCGZ22, Theorem 1.1] to the sparse case and get:

Theorem 1.4. Let Assumption 1 hold and let p(X™) be the spectral radius of X™, then

n P

n— oo
1.2.3. Eigenvectors of rank-one deformation. We now restrict our attention to rank-one deformations. Assuming

1,n

that r = 1, write 4™ = '™ and v™ = v1" for simplicity. The deformation matrix becomes then E™ = u"(v™)*.

We need the following assumption:

Assumption 4. The deterministic sequences (u™) and (v™) satisfy:
liminf [(v™, u™)| > 1.
n—o0

Obviously, E™ is a square n x n matrix which only non-zero eigenvalue is (v™, u™). By the previous assumption,

(E™) satisfies Assumption 3, and we imediately have the following result:

Corollary 1.5 (corollary to Theorem 1.2). Let Assumptions 1, 2, and 4 hold true. For any fized ¢ €
(0, (lim inf |[(v™, u™)| — 1)/2), consider the set o (Y™) defined in the statement of Theorem 1.2. Then,

P{lof(Y")=1} —— 1.

When the event [|oF (Y™)| = 1] is realized, let Amax(Y™) be the unique eigenvalue of Y™ with the largest modulus,
otherwise set Apax(Y™) = 0. Then,

Amax (Y™) — ™, 0™y —— 0.

n—o0
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In the remainder, when we mention the event [|o (Y™)| = 1], we assume that € > 0 is small enough according
to the statement of the previous corollary. Our objective is to analyze the projection on u™ of the right
eigenvector of Y™ corresponding t0 Apax(Y™) (assuming [|oF (Y™)| = 1] is realized). Our main technical tools
are based on the results from [BvH24], which allow us to compare the spectral properties of X™ with a Gaussian

analogue to this matrix. We will need the following extra sub-Gaussian assumption concerning A™’s entries.

Assumption 5 (sub-Gaussiannity). The random wvariables A;; follow o sub-Gaussian distribution, i.e., there

exists an absolute constant C > 0 such that
P(|AY| =t) < 2exp(—Ct?).

We are now in position to describe the eigenvectors of Y = X" + u™(v™)* corresponding to the outlier
Amax(Y™).

Theorem 1.6. Let Assumptions 1, 2, 4 and 5 hold true. Assume furthermore that

1 9
lim 2" _ 9.
n—0o0 n

When the event {|oF (Y™)| = 1} is realized, let @™ be an unit-norm right eigenvector of Y™ corresponding to
Amax(Y™). Otherwise, put ™ = 0,,. Then, it holds that

u™ 2 1 P
@, — 5 —(1-— 0.
K u"|> ( |<u”,v">|2> n—00

Proof of Theorem 1.6 is postponed to Section 4.

*

Remark 1.7. In the case where u™ is a unit-norm vector and where one considers the model Y = X"+ au" (u")

for some fixed o > 1, then the result above boils down to

. 2 P 1
|<a", u™ )| — 1*@-

Interestingly, this corresponds to the same quantity as in the Hermitian case, see [BGN11, Section 3.1].

2. PrROOF OF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1. We follow the strategy developed in [BCGZ22].
2.1. Tightness and truncation. We first state useful properties for H-valued random variables.

Proposition 2.1 (Tightness criterion [HL25, Proposition 3.1]). Let (f,) be a sequence of H-valued random
variables. If for every compact set K < D(0,1),
supsup E| f,(2)[* < Cx < 0,
n zeK

for some K -dependent constant C, then (fy,) is tight.

Proposition 2.2 (Asymptotic equivalence criteria in H). Let (f,) and (g,) be two tight sequences of H-

valued random wvariables. Consider their power series representations in D(0,1): fo(2) = Yp, algn)zk and

9n(2) = D=0 bl(cn)zk, If one of the following conditions holds:
(1) For every fized integer m > 1, (a(()"), e 415,?)) ~n (b((Jn), B ,bsy?)),
>

(2) For every fixed integer m = 1 and m-uple (z1,- - z,) € D™(0, 1),

(fu(z1), s falzm)) ~n (gn(21)s- s 9n(2m)) »

then fn, ~ g, asn — 0.
Most of the time, we shall drop the dependence in n for notational convenience.

Proposition 2.3 (Tightness). Let Assumptions 1 and 2 hold. Let q, be given by (1.2), then the sequence
(qn)n>1 is tight in H.
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Proof. We first recall a well-known general result. Let A and B be two n x n matrices with columns A; and B;

respectively for ¢ € [n]. Then, using the multilinearity of the determinant, we can write

det(A+ B) =det | A, + By Ay + By - Ay+ B,
et[A1 Ay + By --- An+Bn]+det[Bl Ay+ By --- An+Bn]
:det[Al Ay .- An+Bn]+det[A1 By --- An+Bn]+

which will ultimately provide a “binomial-like” expression of det(A + B) that will have the following form.
Given k € {0,...,n}, let Z € [n] with |Z| = k and all the elements of Z are different, and denote as (A, B)z the
n x n matrix which i*® column is A; if i € T and B, if i € [n]\Z. Then,

(2.1) det(A + B) Z > det(4,B)z.
k=0 Ze[n]:|Z|=k

Let us write M = I — zE = [M;;]}};_;, so that ¢(2) = det(—zX + M). Writing

Elq(2)]* = Z E(—2X1,001)+Mi1,601)) - (=2 X0 00) F Mp.om) (=2X1 50+ M1 51)) - - - (—2X 0 5(0) + M 5(n))
0,066,
we see that the element X;; acts on E|g(z)|? through EX;; and E|X;;|? only. Therefore, E|q(z)|? is invariant if
we assume that these elements are i.i.d. with X3 ~ N¢(0,1/n), which we do from now on in this proof.
Denoting as M = UXV™ a singular value decomposition of M, we have

£

lq(2)|?> = det(—2X + M)(—2X* + M*) = det(—2U ") (—2V*X*U + %) = |det(2X + X)[2.

We also have that the matrix MM* = [ — 2E — ZE* + |2|2EE* is equal to the identity plus a deformation
of rank 2r at most. Therefore, the diagonal n x n matrix ¥ of the singular values of M contains ones on its
diagonal except for 2r singular values at most. Moreover, using Assumption 2 and recalling that z € D(0,1),
we obtain that there exists Cx; > 1 independent of n and z such that |X| <

We now compute E|g(z)|? = E|det(zX + X)|? where we develop det(zX + E) using the formula (2.1). Here,
we can notice that Edet(zX, E)Im =0ifZ # 7. Indeed, the case being, one of the matrices
(2X,%)7 or (2X,X)5 contains a column of zX that is not present in the other. Making a Laplace expansion of
the corresponding determinant along this column, we obtain that the cross expectation is zero. We therefore
get that

Elq(z) Z > Eldet(zX,%)z]*.
k=0 Ze[n]:|T|=k

Let us work on one of these determinants. For a given k, let us assume for simplicity that Z = [k]. Otherwise,
we can permute the rows and columns of (2X, )z properly; this does not affect |det(zX,¥)z|*. Writing
[k]¢ = [n]\[k], we have

2 X [k],[k] 0

det(2X, %)z = det(2X, X)) = det l
2X (ke (k] Bik]e, k]

1 =z detX [k],[k detZ [k]e,[k]e>

and E|det(z ,Z) k]‘Q = | |2k|det2[k]
|det E[k]c[ c

][k]|2. By the properties of ¥ stated above, we have

’< C$r. Moreover, if k = 0, then E| det X[k]’[k]|2 = 1, otherwise,

2 k!
nk’

E| det X[k],[k] |2 = Z E |X1’U(1) . Xk,zr(k)

oeSy

Therefore, E| det(2X, X) ]2 < [2[**CFk!/n*, and we end up with

Elq(2) Z Z E |det(zX, %)z Z < ) |22k < & Z 12[2F = |z|2

k=0 Te[n]:|T|=k

The tightness of (g, ) follows by applying Proposition 2.1. O

Moreover it is sufficient to examine the characteristic polynomial of Y, when the entries of A™ are bounded

almost surely. Specifically
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Proposition 2.4 (Truncation). Let Assumptions 1 and 2 hold. Let D > 0 and define

n 1 " . -
ATy = Aijliaep-BAijla ep s X7 = =Bl AT ond  YRU = XGPES . (jen]).
Let
xmP = [X;gD] - ymP = XmP 4 B and  qP(2) = det (I, — 2Y™P) |
’ i,j€[n
Then,

VzeD(0,1), supE|q,(z) — qf(z)}z <e(D) where e(D) —— 0.

D—

Proof. We omit the supersript n in the sequel to lighten the notations. Without a risk of confusion, we replace,
e.g., Y™P with YP. We closely follow the principles and notations introduced in the previous proof. Let
M =1 — zFE as above. Writing
|2

Elga(2) — 47 (2)] =E

Z <n( ZXz ,o (%) + Mz o z) n zXD + Mz o'(z)))

oeG,, \i=1 i=1

Xij
and developing, we notice that E |g,(z) — ¢ (z)‘2 depends on each element X;; via the vector E [Xé] (=0)

and the 2 x 2 matrix

Rp = nE [X”] x5 X7|
Xzj
Xij
D
ij
a cicularly symmetric Gaussian vector (see the definition in [Tel99] for instance) with covariance matrix Rp,

is

which does not depend on n. Therefore, we can assume without loss of generality that the vector 4/n l

and in particular:
X X X,
]E[ g]=0, n]E[ ”][XU X] Rp and nIE[ ”MX XD]:O
Xij XZJ X”

Assuming this, we first observe that vec[X Xp] is a €27 valued circularly symmetric Gaussian vector, and so
is vector Avec[X Xp] for any deterministic p x 2n? matrix A. Consider now n x n deterministic matrices U, V.
Applying [HJ94, Lemma 4.3.1] we have

vec[UXV UXPV] = (VI @U) vec[X XP],
hence vec[UXV UXPV] is circularly symmetric Gaussian, in particular
E[UXV];;[UYV]s =0 forany i,j,s,te[n] and Y e{X,XP}.

We now wish to understand the covariance structure of the components of vec[UXV UXPV] in the case where

U and V are unitary.

E[UXV]i;[UXV ] DI UikUap VeVt EX ke Xopg

k.t p,q
D UikTak Y ViVt Rplia
k ¢

1 ifa=05b

[UU*]is[Vt]j[RD]n = 4;50;¢ [Rpli1 where 64y =
0 else

Similarly we can prove that
E[UXV]ZJ[UXDV]St = 6i55jt [RD]lg and E[UXDV]ij[UXDV]St = 5i56jt [RD]22
Collecting all these properties, we have proved that for any n x n deterministic, unitary matrices U, V,

£

(X xP] = [UXV UXPV].



EXTREME EIGENVALUES AND EIGENVECTORS

Therefore, using the singular value decomposition M = UXV* and Equation (2.1), we have:

Elg.(2) —gP(2)]" = E|det(—2U*XV + %) — det(—2U* XPV + )|

— Eldet(X + ) — det(2X" + %)
2
E|Y > det(zX,%)r — det(2X", %)z
k=0Zc[n]:|Z|=k

MY Efdet(=X, )7 — det(2XP, )",
k=0 Zc[n]:|Z|=k

by relying on the fact (established in the previous proof) that
Edet(2X,%)zdet(:XP,%); =0 if Z#Z.

Let Z = [k] as above for some k > 1, then

2 2 2
E |det(2X, £)7 — det(:X2, %] |2/ |det Xgeg g — det XBy g [det Spge e [*

N

2
Izl2kC(E,T)E’detX[kL[k]—detX[glv[kl‘ ’

where C(X, r) is a constant independent of n by Assumption 2.
Recall that E|A;1|? = 1, notice that E|AT|? < 1 and

€(D) = ]E|A11 — Aﬁ|2 D—> 0.
—00

We have:
2
2 k
E[]Xu-[[X] = E|Xn-XDXi X+ + X7 X0 (X —XR)[ < —e(D)
i€[k] i€[k] "
by Minkowski’s inequality. We therefore obtain that
2
D 2 D D k
E‘detX[ka] *detX[k])[k]‘ = ]E Z Xlo'(l)"'Xko'(k) 7X10'(1).”X/€0'(k) < k ﬁE(D)
oSy
Now,
D 2 n k
> Eldet(zX,%)z —det(2XP,5)z|” < L) B —peD),
Ic[n]:|Z]=k
and finally

Elw(s) — @) < CEneD) Sk < Cep.

The proposition is proven.
2.2. Moments of Y and X". We study the asymptotic behavior of the vector
(L,tr(Y™), ..., tr((Y™)")), keN.

Throughout, we write tr((Y™)*) (and similarly for X", E™); this is the quantity expanded below.

Circles: We consider directed circles (called circles) consisting of exactly k edges. In our setting, a circle is
an Eulerian cycle of a strongly connected directed multigraph; vertices may repeat and multiple edges (including
loops and parallel edges) are allowed. We identify underlying strongly connected directed multigraphs up to
graph isomorphism, and denote by Cj the collection of all Eulerian cycles of length k arising from all such
isomorphism classes.

Formally, an element C € Cj, can be represented by a cyclic sequence

C = {u17u27 e 7uk7u1}a
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where the vertices u; are not necessarily distinct, and each consecutive pair (u;,u;+1) forms a directed edge

(with the convention ug+1 = u1). We denote by V(C) the set of vertices appearing in C, and by
E(C) = {(ujuis1) 1 =1,...,k}
the multiset of edges. For an edge e = (u,v) € E(C), its multiplicity is
[{é€ E(C):é=¢}|

We call u the source of e and v its target.

For any C € C, and B < E(C), we denote by C\B the directed multigraph with edge multiset £(C)\B and
vertex set induced by these edges.

Labelings. Given B c E(C) and a labeling i € [n]/V(©)l we write i ~ C if i assigns distinct indices from
[n] to the vertices of C according to their first order of appearance along the circle. We denote by i(B) the
(multi)set of labeled edges corresponding to B.

With this notation,

k
tr((Yn)k) = H(Xn + En)ibiz“
(31 5eeesik )E[N]* £=1

PR VI Y D U

CeCx BCE(C) NPT SICOLIC) (i.5)#i(B)

under the convention i;1 = i1. Therefore,
(2.2) tr((Y™)F) = t((X™)F) — ta((B™)F) = D] > Z [T &5 ] X0y
CeCr, BcE(C) ~C (i,5)€i(B) (i,7)¢i(B)
B;ﬁ@, E(C 1e[n]‘v(c)‘

Auziliary notation.

Notation 1. e For any finite multiset A, we denote by |Al,o the cardinality of its underlying set (i.e.,
ignoring multiplicities).
e For CeCy and B c E(C), define

E(bd(C\B)) = {e € B: Jve V(C\B) such that v is incident to e}.

Then bd(C\B) denotes the directed multigraph induced by the edge multiset E(bd(C\B)).

e For CeCy and B < E(C), let Cg be the directed multigraph induced by the edge multiset B. We write
i ~ Cp to indicate a labeling i € [n]!V (€8 assigning distinct values to the vertices of Cp.

e For any directed multigraph G and v € V(G), we denote by degf;(v) (resp. degg(v)) the out-degree (resp.

in-degree) of v, counted with multiplicity.
A combinatorial inequality.

Lemma 2.5. Fiz C € Cy, and B < E(C) such that B # & and B # E(C). Assume:

(1) C\B is weakly connected;
(2) for every e e E(C\B), the multiplicity |{¢ € E(C) : é =e}| = 2.
Then

[V(C\B)| — |{ve V(C\B) n V(bd(C\B)) : deg¢,, (v) + degg,, (v) = 2}
L {v e V(Cp) : degd, (v) + ey, (1) = 1}] — [E(C\B)o < -
Proof. Since C\B is weakly connected, one has the standard bound
[V(C\B)| < [E(C\B)|no + L.

We distinguish the following cases:

(1) [V(C\B)| = [E(C\B)|no + 1;
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(2) [V(C\B)| = [E(C\B)|no and
[{v e V(C\B) n V(bd(C\B)) : deg&, (v) + degg,, (v) = 2} = 0;
(3) [V(C\B)| = |E(C\B)|no and
[{v e V(C\B) n V(bd(C\B)) : deg , (v) + degg , (v) = 2}| = 1;
(4) [V(C\B)| < |E(C\B)|no-
Cases 3 and 4 are immediate from the definition of the left-hand side, so we treat 1 and 2.
Case 1. Here the underlying simple undirected graph of C\B is a tree. Define
V*H(C\B) = {ve V(C\B) : 3(v,a) € E(C\B)},
V7(C\B) = {ve V(C\B) : 3(a,v) € E(C\B)}.
Since C\B is a finite tree, there exist vertices w ¢ V*(C\B) and u ¢ V~(C\B); otherwise, starting from any
vertex one could construct an infinite directed path, contradicting finiteness. Each of u, w is incident to at least
one edge of C\B, and by assumption those edges have multiplicity at least 2 in C. Because C is a circle, there

are at least two directed edges in C leaving w and at least two entering u. By the choice of u, w, these additional

edges must belong to B, yielding the required inequality.
Case 2. Since C is a circle and no boundary vertex has total degree at least 2 in Cp, we have
(2.3) [V(C\B) n V(bd(C\B))| = |{ve V(Cp) : deg§ , (v) + degg , (v) = 1}

= |E(bd(C\B))| = 2

Indeed, if (2.3) failed, then C either could not enter or could not exit C\B, contradicting that C is a circle.
The claim follows. g

Remark 2.6. If C\B has several weakly connected components, Lemma 2.5 applies to each component separately.
Main combinatorial consequence.
Proposition 2.7. Assume that |A7 ;| < D for some (fived) constant D > 0. Then for every k € N,

6((Y")") = t((X™)*) = 6((B")") ——— 0.

n—0o0

Proof. We prove the claim by controlling the mean and the variance.

Step 1: bound on the mean. We show that

(2.4) E[i((r™)) — t((X™)F) — (")) | = o(l) .

n

By (2.2), it suffices to bound

25 YRS VD Y I 1 Ve R

o BiE(E S)@ sepayvion | P (i.3)¢i(B

For the expectation in (2.5) to be non-zero, every edge of C\B must have multiplicity at least 2.

Since the number of circles in Ci and the number of subsets B — E(C) depend only on k, it is enough to fix

C € Cy, and a non-trivial B < E(C) and prove

(2.6) ST enllE TT xn - (;)

e[ ']‘\9(@\ (.5)€i(B) (4,5)¢i(B)

under the assumption that every edge in C\B has multiplicity at least 2. We also assume for simplicity that

C\B is weakly connected (the case of several weakly connected components is treated component-wise).
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Since the entries of A™ are bounded by D, we obtain

Z [T euE [T x5

e G |60)EH(B) (i.))¢i(B)

|E(C\B)| |E(C\B)no
o)™ (&) 5 | ]

VK, n :
n [1]~|V(C)| (¢,7)€i(B)
Since each edge of C\B appears at least twice, we have
E(C\B
(2.7) |E(C\B)|no < w
Moreover, connectivity of the underlying simple graph yields
(2.8) [V(C\B)| < |E(C\B)|no + 1.
It remains to bound
Z _ ﬂ Eis|-
ie['rl;]w“gj(cﬂ (4,4)€i(B)
Using the representation of E™ and the entrywise bound
|En | <7 max|u "| max [0,
’ Le[r]
we obtain (as in (2.9) in the original derivation)
(2.9)
Z 1_[ Eln] <r n\V(C\B)\ |[V(C\B)nV (bd(C\B))| H En[a}]( |UZ/ ”|d8g63 (v) En?}]( |’U,[ n|degc (v)
. el ’ ) elr elr
ie[TlL]leg(c)l (i,7)€i(B) veV(Cpg) \i€[n]

Now, for each v € V(Cp):

o If degl  (v) +degg, (v) = 2, then by Assumption 2 (and the same Cauchy—Schwarz argument as in the

original proof),

d d
max \vz " cgcp (v) max |u£ " °8&, (v) <C
. Le(r] Lelr

i€[n]
for some constant C > 0.

o If degEB (v) +degg,, (v) = 1, then by Cauchy-Schwarz,

max |vf mdegg, (v )max |ul ndegey, (v) rCa/n.
. Le(r] Le[r]
i€[n]
Thus, for some C' = C(k,r) > 0,
D 1 =< 0|V (C\B)=IV(C\B)AV (bd(C\B))|+ §|{veV (Cp):dent , (v)+degg,, (v) =1}

e TS |GDSE)

Because C is a circle, any vertex v with degé (v) = 0 or degg, (v) = 0 must lie in V(C\B) n V(bd(C\B)).
Hence, setting

a(C\B) := |V (C\B)| — Hv e V(C\B) n V(bd(C\B)) : degEB( ) +degg,, (v 2}|

1
— 5 [{ve V(Ca) : degg, (v) + degg, (v) = 1}].
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we conclude that for a constant C}, independent of n,

> [T znlE [T x5

e G [GDEB) (1)) #i(B)
(2.10) < O (K,)/EC\B) o= S EL 1a(C\B)~|B(C\B) o

The desired O(1/n) bound follows from Lemma 2.5 together with (2.7). This proves (2.4).

Step 2: bound on the variance. We show that

(2.11) Var ({(1™)%) = {(X")*) = 6 (E")4)) = O<n;<n) .

Recall that for complex random variables {W;},,

Var(ZmlWi) - Y E[(Wi —EWi,) (Wi, —EW,).

i1,i2€[m]

Applying this to the expansion (2.2) yields

Var (b((Y")") — (X)) —u((B))) = Y, Y] )P IDY
C,C’eCr, BcE(C) B'cE(C) i~C i'~C’
B#Q, E(C) B'+, E(C’)ie[n]lv(c)‘ i’E[n]‘V(c')\

[T =z 11 E2, E( [T x- J] X&)
(4,4)€i(B) (i,4)eV(B’) (4,5)¢i(B) (4,5)¢i(B)
(2.12) (I xm -2 [ X5,)
(,3") ¢ (B’) (',5")¢1 (B’)
By independence of the entries of X™, the expectation in (2.12) vanishes unless the labeled edge sets in C\B
and C'\B’ agree on at least one edge, and every edge in the multigraph C\B u C’\B’ has multiplicity at least
2. Hence, it suffices to show that for any such C, C’ and non-trivial B, B’,

2o a1 By 11 By

i~C '~C" |(i,5)€i(B) (i,57)ev(B’)
ie[n]IV(@I i'e[n]lV (NI

(2.13) XE( [T x-E J] Xffj)( [I -8 [] ﬁ) _O(nfl<n>'

(,5)¢i(B) (,5)¢i(B) (i,5") ¢ (B’) (#",4") ¢ (B’)

For simplicity, assume C\B and C'\B’ are weakly connected; the general case follows by decomposing into
weakly connected components. Since C\B and C’\B’ share an edge, the union C\B u C'\B’ is also weakly
connected.

Set C := C u C'. After an appropriate ordering of vertices, C defines a circle of length 2k. Let C B denote
the subgraph induced by the edge multiset B u B’.

Using the definition of X™ (cf. (1.1)) and the independence structure, together with the bound [A};| < D, we

have

e( 1 xn-e T] xo)( [1 ¥-8 [] 5,) <20 (52

>E(C\BUC’\B’)|,,0
(i,9)¢i(B) (i,9)¢i(B) (i,3")¢1 (B) (i,3")¢1 (B')

Moreover, as in (2.9), one shows that

Z Z n Eﬁj 1_[ W,], < Cna(c\BVC,\B/)’

i~C i'~C’ (4,4)€i(B) (¢,5")€i’ (B")
ie[n]!V(@I ile[n]\V(C')\
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where

a(C\B,C\B') = [V(C\B) u V(C\B')| — ‘{v sdeg, (v) + deggy (v) = 2}‘

~ % ‘{U degf, (1) +degy, (v) = 1}‘ .

Since C is a circle and every edge in C\B u C’\ B’ has multiplicity at least 2, Lemma 2.5 applies and yields (for
some Cy, depending only on k, M, r)

(2.13) < & ! . KIB(©BUC B s
n \/K,‘LE(C\B)”‘E(C’\B’”

Finally, since all edges in C\B u C’\B’ appear at least twice and the two graphs share an edge, we have
|E(C\B U C\B')|so <2(|E(C\B)| + |E(C'\B")| - 1),

and therefore

2.13) < C, .
(2.13) koK

This proves (2.11).
Combining (2.4) and (2.11) gives tr((Y™)*) — tr((X™)*) — tr((E™)*) — 0 in probability, completing the
proof. O

We continue with the asymptotic analysis of the joint law of the traces tr((X™)). Recall the notation from

Theorem 1.1 and define, for k£ € N, the sequence
k/2
meang 1= 1 cven} (IEA%J) / .
Lemma 2.8. For any k > 1, if |A7 ;| < D almost surely, then

(br(X7™), ... tr((X™)F)) 42

n—o0

(Z1 + meany, V2 Zy + means, ..., VkZ; + meang).

Proof. When K,, > logn, the claim follows directly from Propositions 2.3 and 3.6 of [HL25], applied to our
model.

In general, the proof is analogous to that of Lemmas 3.4 and 3.5 in [BCGZ22]. For completeness, we sketch
the main steps.

Recall the notation Ci for the collection of directed circles of length k. Let ky,... &k, € N, let C; € Cy, for

£=1,...,m,and let s1,...,5, € {-, *}, where for any complex number xz we set ' = x and z* = Z. Define the

~ 605
{=1

Then the joint contribution of these circles satisfies

multigraph

o NI T ()| < okt s men e mer,
i~C| ¢=1(v,u)eE(Cy) ’

Since the entries of X™ are centered, the contribution in (2.14) is negligible unless
V©) = Bl and  2[EQ)|o - 2 E(Co)l.

We proceed as in [BCGZ22]. Decompose Cy as Cr = Ci u CZ, where C} consists of circles with exactly k
distinct vertices, and C} consists of circles with fewer than k vertices. Accordingly, we write

w(@XM =3 2 I Xosw+ 2 2 I Xiwiw

CeC;, 1~C (v,u)eE(C) CeC? 1~C (v,u)eE(C)
1E[n] 1E[n]

=: tﬁ + rn.

The proof is complete once we establish the following two facts.
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(1) For any ki,...,ky, € Nand sq,...,s, € {-, %},

(tkg > ﬁ \/721%

:]s

(2.15) E —

=1

(2) For any k € N,

(2.16) LN meany,.
n—0o0

Given the bound (2.14), the convergence (2.15) and (2.16) follow exactly as in the proofs of Lemmas 3.4
and 3.5 of [BCGZ22], respectively. O

We conclude with an asymptotic bound on E|tr((Y™)¥)|2, which is needed to establish relative compactness.
Lemma 2.9. For any k € N, if |[A? 1| < D, then there exists a constant C = C(r, k) > 0 such that
Elr((Y™)")|* < C.

Proof. We begin with the expansion

B @O = 2 N h

C,C’eC,, BcE(C) B'cE(C) ~C i'~C’
B#@,E(C) B'~g, E(C)le[n]‘ Ol yremn)veEen

(2.17) 11 e I EFjEl O[] XY H Xp.

(i.j)eB (i".5")eB’ (i,4)#1(B) ("53¢ (B')
We proceed as in the proof of Proposition 2.7. Fix C, C’ € Cj, and non-trivial subsets B < E(C), B’ <« E(C’).
It suffices to show that

(2.18) Z Z [T EY 1_[ epuEl ] X ] Xiy =0(711>.
]

i (i,)eB ")eB’ (i,7)¢i(B) (@.3")¢i'(B")
&[n

If any edge of the multigraph C u C’\(B u B’) has multiplicity one, then the expectation in (2.18) vanishes.

ie [n]“’(mI e (c )l

Otherwise, every edge appears with multiplicity at least two, and the proof of (2.18) is identical to that of
(2.13).
Consequently,

Bln((r) )" = B (X[ + (B + 2B[m(Ce) ) ()] + 03 ).

By Assumption 2, | tr((E™)*)|? is uniformly bounded, and E| tr((X™)*)|? is bounded by Lemma 2.8. This proves
the claim. 0

All the necessary ingredients are now in place to complete the proof of Theorem 1.1.
Proof of Theorem 1.1. Recall the notation from Proposition 2.4. We first show that
(2.19) 42 (2) ~n bp(2) det(I — zX"’D) ~n bn(2) kP (2) exp(—F),
where k7 (2) = 1/1 — 22E(AP,)2. Moreover, in what follows set

Q1 (2) = ba(2) kP (2) exp(=F),  Qu(2) = ba(2) K(2) exp(—F).
Notice that for z € C, the series 3", %(Y"’D)k is well-defined for |z| small enough, and we can express

q; (2) as
0 ok
(2.20) q?(2) = exp (— 2 tr((Y"’D)k) k) .

k=1

By Proposition 6.1 of [Cos23], we can rewrite, for |z| small enough,

eXp( Ztr Y"D) )— Zi: (tr (ymPy, . .. r((Y"’D)k))%7
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for some polynomials P, which do not depend on n. By analytic continuation,

n k
z
0P () = 1+ 3 Be(y™P), (Y P)h))
k=1 :
for any z € C.
Thus, it suffices to examine the joint law of (tr(Y™),... tr((Y™P)¥)) for any k € N. In this case, we

combine Proposition 2.7, Lemma 2.8, and Lemma 2.9 to conclude

(2.21) (tr(Y"’D)7 . ,tr((Y”’D)k)) ~n (tr(X”’D)7 . ,tr((X"’D)k)) + (tr(E™),. .. ,tr((E")k))
~n (Z1 + mean? V2 Zy + mean?’, ... Vk Z), + mean?) + (tr(E"),... tr((E™)F)).

Notice that the Gaussian random variables Z; do not depend on D. By Proposition 2.2 and (2.21), we deduce
that (2.19) holds.
We continue with the proof of (1.4). Fix an integer m > 0, and an m-tuple (z1,...,2,) € D(0,1)™. Let
¢ : R?™ — R be a bounded Lipschitz function. Since for all z € D(0,1),
lim kP (z) =
lim 5P (z) = (),

it follows that
sup ‘E@(Qn(zl)v SERE) Qn(zm)) - EQD(QT?(Zl), CREE) Qg(zm))‘ — 0.

D—0

Therefore,

[E@(qn(21), -5 qn(2m)) — Ep(Qn(z1), - -, Qnlzm))]
< B (gn(21); -+ n(zm)) — B (ar (21) - - a5 (2m))|
+Ep (g (21), -4 (2m)) —Ep(QF (1), -, Q7 (2m))]
(2.22) + [E@(QF (z1), ..., QF (zm)) —E@(Qn(21), .., Qnlzm))|-

The first term on the right-hand side is bounded by a positive number €p independent of n and converging to
zero as D — o0 by Proposition 2.4. The second term converges to zero as n — oo since ¢2(2) ~, QP(z). We
just showed that the third term can be controlled similarly to the first term. Thus, the left-hand side converges
to zero as n — . By applying Proposition 2.2, we obtain ¢, ~, Q-

Next we prove (1.3). Set

Sp(2) = bn(2) det(I — 2X™), SP(2) = bp(2) det(I — 2X™P).

n

Given the bounds from (2.22) and (2.19), it is sufficient to prove that

st:bp [E(Sn(21)s-- -5 Sn(zm)) — Ep(SP(21), .-, S,?(zm))| — 0.

D—o

The latter can be proven easily by using Assumption 2 to bound b,(z) and comparing det(I — zX"™) with
det(I — 2X™P) as is done in Lemma 3.3 of [BCGZ22]. O

3. COMPARISON WITH A (GFAUSSIAN MATRIX

The goal of this section is to compare the spectral properties of matrix X™ as defined in (1.1) with analogous
quantities of a Gaussian random matrix G™ € R™*™ with i.i.d. centered real Gaussian entries, each with variance
n~1. We mostly rely on results from [BvH24].

Let £ € C be such that || > 1. Consider the following matrices

X" — ¢l n_gl
0 &l and S™(E) = 0 G &l .

BU O e (G"—€L) 0

As is well known, the set of eigenvalues of H"(£) counting multiplicities coincides with the union of the set
of singular values of X™ — £I,, counting multiplicities and the set of the opposites of these singular values. A

similar remark holds for S™(§) and G™ —&1,,. For simplicity we will often write H™, S™ instead of H™(£), S™(£).

We start with a comparison of the empirical spectral distribution of the matrices.
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Proposition 3.1. The spectral measures of H™ and S™ are asymptotically equivalent, that is, writing

= — Z 5)\ (H™) and VS :7 Z Xi(S™))

zE [2n] ze [2n]

it holds that v" ~ 15" as random variables valued in the space of probability measures on R.
Proof. Follows directly by the discusson in Subsection 10.3 of [RT19]. O
Next we prove a classical result for sub-gaussian random variables.

Lemma 3.2. Let Assumption 5 hold. Then for some constant C' > 0,

1 1/2
(3.2) 7111_1&]P’ (max|X <’ ( (;iln> ) =1

Proof. By the union bound and Assumption 5 we get

P max | X[, > C’ logn . < P|ma 1AL >’ logn) "*
i,jX 0 K, = m‘X VK, K,
= P (max|AZj| > ' (logn)l/2> < 2nPexp(—C(C")*log(n)).
/L’J
It remains to choose C’ large enough to conclude. (I

For the empirical spectral distribution the finiteness of the second moment of the entries of A™ was sufficient.
For finer results one needs to make more assumptions for the matrix A™. Recall that Ct = {z € C : Sz > 0}
and that s, (M) denotes the least singular value of any n x n matrix M.

We now present our comparison result, a corollary of [BvH24].

Theorem 3.3. Let Assumptions 1 and 5 hold. Let G™ be a n x n matriz with i.i.d. centered real Gaussian
entries each with variance n=' and the matrices H™(€) and S™(&) be defined by (3.1). Let £ € C with || > 1.

Assume that
. log®(n)
lim —=—~~

n—0o0

=0,
Then "
(a) for everye >0, nlgrolo]P’(Lsn(X" —&I) —s5,(G" = &I)| =€) =0,
(b) for every z e Ct, T}gigo |E(S™ — 2I)"' —E(H™ — 2I)"| = 0.
Remark 3.4. In the previous theorem, it turns out that assumption log®(n)/K, — 0 is required to prove item
(a). The lighter assumption log(n)/K, — 0 is sufficient to establish item (b), see the proof below.

Proof. As a consequence of Assumption 5, the following estimate holds

(3.3) E max |A

i,j€[n

< Cilogn,

z]|

for some constant C' > 0 (see, for instance, [Ver18, Exercises 2.26 and 2.44]). Moreover, the singular value
sn(G™ — &1) is positive with probability one and coincides on this probability one set with the smallest positive
eigenvalue of S,.

In order to establish (a) we shall rely on [BvH24, Theorem 2.8]. Notice first that

lsn (X" = &I) — sn(G" = &I)| < du(o(H"),0(5™)) ,
where o(H™) and o(S™) are respectively the spectra of H™ and S™. The following quantities whose estimates

are straightforward appear in the statement of [BvH24, Theorem 2.8]:

k = |E(H-EH?| =1,
1/2 2
Ky = sup  (E|v, (H — EH)w)|? < —,
ol Juwl=1 ( ) Vn
1/2 1/2
R = <EmaX|X |2> < <C11[(;g(n)> .
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Now the theorem states that:
IP’{|sn(G" —&I) — sn (X, — ED)| = Coe(t) meax | Xi;] < R} < 2nexp(—t) ,
for every t > 0 with the conditions:
() R=ViR+v2R and (i) er(t) = ket + R332 4 Re
and where Cj is a universal constant.
We first set R = Cy (%)1/4 and notice that for this value, P {max; ; | X;;| < R} —, 1. In fact, using

estimate (3.3) we have

Cy [log(n)
P{“}%X'X”'>R} <o\ K, e

0,

1/8
by assumption. Now setting ¢t = Cj3 (lo{gﬁ) , we get
er(t) = CY3C33 + 0(1).

Notice that with such a choice,

2ne”! = 2exp {log(n) —Cs (1;;’7‘1))1/8} = 2exp {log(n) [1 —Cs (é’(ﬂ)) v 1 } — 0

by the condition K, /log”(n) — oo. It remains to choose Cs so that 021/305/3

= ¢ to conclude that
P{|sn(G" = &I) — sp(X,, — EI)| = 2Cpe}
< P1sa(G" = €0) = 50X, ~ D] > Cuclt): max|Xs| < Rf + P {max X, > RY 0,
2,7 ,] n—

In order to establish (b) we shall rely on [BvH24, Theorem 2.11] which yields that for every z € C*

1 ot k*+ RV 1 2 log(n) 1/20
|E(z1 — H) E(zI —9)7'| < S0~ 30 <ﬁ+< K. ) .

Proof of Theorem 3.3 is completed.
|

Remark 3.5. The results of [BvH24] are fairly general. One may relax the sub-Gaussian assumption (Assumption
5) at the cost of increasing the sparsity parameter K, and still have an analogue of Theorem 3.3.
We now prove a concentration result. Recall that X™’s entries write X/’ = %
Lemma 3.6. Assume that E|AY|® < 0. Let 2 € CT, ¢ > 0 and consider two sequences (w") and (G*") of unit
vectors in C2", where
W =" =0 for ie{n+1,---,2n}.

Then
lim P ([((H" (&) — 21)~'@*", ") — B(H™(§) — 21) '™, §*")| =€) = 0.

n—oo

Remark 3.7. In the proof below, the condition E|A;;|* < co appears in estimating the variance of a quadratic

form, see for instance (3.5). The eight moment is required when relying on [HLNV13, Theorem 3.6].

e and " = ¢ ,
0n On

where w"”,q" € C" and 0,, is the null vector in C". We will soon drop the index n and simply write w, q, I

Proof. We write

instead of w™, ¢", I,,. In the sequel, C' denotes a constant whose value may change from line to line.

By the Schur complement formula, we have

((H™(&) = zloy) '™, §") = 2 (w", (=21, + (X — £1,) (X — fIn)*)_l "y,
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and we are led to study the concentration of the quadratic form {(w, Q) ¢) with
Q=z(—2I+(X —€N(X —€D) .
Notice that @ being the top-left corner of matrix (H"™ — zI)~!, we immediately get ||Q| < (S(2))~!. Denote by
Y =X ¢l

and let the (y;)’s being the columns of matrix Y. In particular, y; = z; — e; and
N -1
Q==z(-2"+ YY")71 =z <—z2 + Z yw;ﬁ) )
k=1

For further use, we introduce Q° = z (—22 + ki yky;)fl. Denote by

f(ylv"' ,yn) :<’IU,QC]>

Let fz be the function f evaluated at (y1, -+ ,¥i—1, Ui, Yit1, " ,Yn) Where ¢; is an independent copy of y;. By
Efron-Stein’s inequality [BLB03, Theorem 3.1] we have

N =

var(f) <

DIEIf - il
i=1

We will rely on the following elementary facts. Let M € C™*™ a deterministic matrix, then

1
(3-4) E(yMy;) = ETrace(M) + |§\2Mu‘ ,
4 2 *\ ..
(3.5) var(y; My;) < C <]EAH|Trace(MM*)+ WM) .
Ny n

The function 2z — y}Q%(2)y; is the Stieltjes transform of a non-negative measure, and the function

1
2+ yr QN (2)yi

is the Stieltjes transform of a probability measure. In particular

1
z+y; QU (2)yi

1

<

In the sequel, we denote by E; = E( - |y, k # i) and by var; the associated conditional variance. Using

Sherman-Morrisson’s inequality, we get

* )T * ()i Y i |2
E}f—f-lz _ Ny Q'quw*Q'y; 3" Q'quw* Q'Y
' z+ y; Q' z+ 9 Qi
‘ ‘ : 2 , , 2
@ e |(UQew QY E Qe Q)| o 150 Qaw QB (5Q'qw Q')
"2+ yiQlys 2+ Ei(y; Q'yi) o2+ 2+ B Qi) |
. . . . 2
_upp |MQaw Qi Ei(yiQqw*Q'y,)
|zt Qi z + Eqi(y; Q'vi) ’

where (a) follows from the introduction of the auxiliary term

Ei (y;Q'qu*Q'y;)  Ei (3;Q'quw* Q')

2+ Ei(y; Qlys) 2+ Ei(9; Q')
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and the elementary inequality |a + b|? < 2|a|? + 2|b|?. Introducing appropriate auxiliary terms and proceeding

similarly, we get

. . ‘ 2
y;QquQ'y;  Ei (y;Qlquw*Q'y;)

2
| z+yrQly; 2+ yrQly;

E|f - fi

N

SEE;

2
+8EE;

)

, , 1 L
E; (y; Q'quw*Q"y; i j
(v Q'qwQ y){z+%‘*Q1yz‘ Z+Ei(y:Qlyi)}

8 * M) * M) 8 * M) * M) * M * M) 2
< %T(Z)Evari(yiQ qu*Q'y;) + %T(Z)E }El<yzQ qu*Q"y;) (%Q yi — Ei(y; Q yz))| )

(3.6) = 0. (Bvar(y!Q'qw Q'y) + O (E By} Q'qw’ Q'y:) (4! Q'i — Ealy; Q'w)|) -
We first estimate var;(yQ'qw Q%y;). By (3.5) we have
TI“aCG(Qiqw*Qi[Qi]*w (]*[Qi]*> . |£‘2 (qu w*Qi[Qi]*w q*[Qz]*)”)

nk,, n

(3.7) - oz< ! >+oz,5 (W[Q])>

var; (y; Q'qu*Q'y;) < C(

nk,, n
We now estimate E;(y; Q'qw*Q'y;). By (3.4) we have
* )i * M)t 1 i * M)t 2 % * )i 1 2 ) * M)
Ei(yiQquwQ'y:) = —Trace(Q'quw'Q") + |¢* (Q'qw*Q");; = O: | — | + 1€ (Q'qu@’) ;-
Notice that

|(Qiqw*Qi)ii‘2 = (@ @), x ([QTwe'[Q']),,

S (Qiqw*Qi[Qi]*wq*[Qi]*)ii < 32(2) (Qiqq*[Qi]*)n"
Hence
i i 2 1 ; * i 2 1 i * L] *
39 Q@ = 0. (1) +0ue (((@Q0r@), ) = 0. () + 0. (Qa1QT),) -

We finally estimate var;(y;Q'y;). By (3.5) we have

(39)  var(yiQ'y:) < K (Tracefiw]*) s [QzQi]*]ii> =0, (;ﬂ) +0.¢ (i) = 0. (;ﬂ) .

Notice that the final upper estimate of var;(y}Q%y;) above is deterministic. Noticing that
E; {|E;U> x |V} = |E;UPPE;|V|?,

and using (3.8)-(3.9), we get

EE: [E:(y; Q'qw* Q'y:) (v Q'yi — Eu(yi Q'v)|” = E{|Ei(yZQiqw*Qiyi)|2Ei v Qi — Ei(yzQiyi)\z} ,
= E{’Ei(y;Qiqw*Qiyi)fVari(y;Qiyi)} )
1 E 7 * i* N
(310) = Oz,& (M) + Oz,{ ( (Q q;{[Q] )”> .

Plugging back estimates (3.7) and (3.10) into (3.6) and summing over ¢ finally yields

1, NEQee[Q
K, K, '

var(f) < %EEU—JE:F = O&Z(

It remains to notice that

by [HLNV13, Theorem 3.6] to conclude.

We now present fairly standard results concerning the Gaussian matrix S™.
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Theorem 3.8. Let £ € C with |£] > 1. Let G™ be a n x n matriz with i.i.d. real Gaussian entries each with
variance n=1 and S™(€) the 2n x 2n matriz defined by (3.1).
The following facts hold true for matriz S™(§).

a) There exists a probability measure pé such that
(a) y f

3

1
on Z Mi(smy = a.s.

ie[2n] o
(b) The probability measure pi* is symmetric and has a density supported in (—C¢, —c¢) U (cg, Ce) for some
positive constants 0 < c¢ < Ce.
(c) If m& denotes the Stieltjes transform of us, then mS is the unique function that satisfies the following
fixed point equation

€1

(3.11) prarn ek

=w +m*(w) — with  S(mé(w)), S(w) >0,

-~ mé(w)

(d) There exists a positive constant ¢e such that

lim P(s,(G" —&I) > ¢é) = 1.

n—ao0
Let w?™, ¢*™ be two deterministic unit vectors in C?" satisfying w" = 2" =0 fori >n+ 1.

(e) Let n e RT, then

lim [(@®", (8™ —inI)~'@®") — m&(in)(@*", ") =0 a.s..

n—0o0

(f) Let z € C*, then for every € > 0,

lim P ([(@*", (S™ — 21)7'¢*") — (0®" E(S™ — 2I)'¢"")| =€) = 0.

n— 00
Proof. Random matrix models like S™ are very popular and have been heavily studied. (a) and (b) can be found
in Proposition 3.1 of [BYY14];(c) can be found in [CESX23, (2.17)]; (d) can be proven by a direct application
of [DS07, Theorem 1.1]. Finally (e) and (f) are consequences of [HLNV13, Theorem 1.1]. O

Corollary 3.9. Let > 0 and m¢ the Stieltjes transform defined in Theorem 3.8-(c), then one has:
(& (4
LSS 1
n—0 n €2 —1

Proof. Let p¢ denote the density of u¢, notice that p¢ is symmetric. Recall that pé is supported in (—C¢, —ce) L
(ce, C¢) for positive constants cg, Ce. First, define the function

S(mt (in)) _ QJCE Zg(x)zdx.
0 2247

h(n) ==

3

Then h(n) is Lipschitz continuous on a small interval (0,¢) with ¢ < ¢¢ since

Ce £

P~ (x) 4e
h —h < 4 — 5 d < = _ )
| (771) (772)| |771 772‘ ch (w2+n%)(x2+n%) z CZL |771 772|

In particular, the limit lim, o h(n) exists. The symmetry of the density p* yields that mé(in) = —m&(in) hence
Rms(in) =0.
Rewriting the fixed point equation in Theorem 3.8-(c) in terms of function h(n) yields

(3.12) 1= h(nn*(1 + h(n)) + m .

Taking the limit of (3.12) as n — 0 we end up with the desired result:

1

hO) = ey

O

We are now in position to compare quadratic forms based on the resolvent of H™ and on the resolvent of S™.
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Corollary 3.10. Let A" satisfy Assumption (5), z€ C*, e >0 and

lim 228" _ .
n—o0 n
Let w*™,¢°™ € C?" be deterministic unit vectors satisfying W™ = =0 fori=n+1, then
Hm P ([((H™(&) — =I)7'a™, ¢*™) — {(S™(€) — zI)*%b?”, ") =€) = 0.

n—ao0

Proof. In the notations below, we drop the indices. The claim follows from the inequality

\<<H = 20) 7, Gy = (S = 1), )|
< KH =207, ) — E(H — 21) 7', §))
+ [ = 271w, @y — B(S — 2I) "M, | + |E(S — 2I) ' —E(H — 2I)7 .
The first term of the r.h.s. goes to zero in probability by Lemma 3.6; the second term goes to zero by Theorem

3.8-(f); the last term goes to zero by Theorem 3.3-(b).
(]

4. PROOF OF THEOREM 1.6

Recall the definition of X™ in (1.1) and the fact that Y = X™ + 4™ (v™)*. In all this section, we shall assume
without generality loss that

whuy —— £eC with €] > 1,

n— 00
since it is sufficient to establish the convergence in probability to all sub-sequential limits of {v™, u™).
We start our analysis with a well-known linear algebra result (see, e.g., [BGN11, Taol3]) that we prove for

completeness.
Lemma 4.1. Let zg ¢ o(X™). Then, zo € o(Y™) if and only if
1+ (X" = 200) "™, 0™) = 0.
The case being, a Tight eigenvector corresponding to the eigenvalue zg of Y is
(X" — 201) " u

Proof. For the first part, since zg is not an eigenvalue of X™ and by the property that det(I+ AB) = det(I+ BA)
for rectangular matrices A and B with compatible dimensions, we get that
det(Y" — Z()I) —1 1
——————~ =det( + (X" — 20/ ™M) =1 X" — 2zl oo™y,
det(X7 = 2]) et(I + ( zol) T u (V™)) +<( 201) u,v>
The claim follows.

For the second part, for zg ¢ o(X™), we have that
(Y™ — 20D )(X™ — 2oD) '™ = u" + u" (") (X" — z]) 'u" = (((X" = 20]) " 'u", 0"y + 1) u

Due to the first part of the lemma, if zy is an eigenvalue of Y™, the right hand side of this expression is zero.
Thus Y™ (X™ — 200) " tu™ = 2(X"™ — zoI)~'u™ which is the required result. O

Let us briefly present the strategy of proof. Thanks to the former result, we are led to study the behavior of

< u (X" — Apax (Y >
Hun”7 [(X™ — Amax( Yn 1“””

on an appropriate probability event. With the help of the results of the former section, we first show that
(X™ = Amax(Y™)I)~! can be replaced with (X™ —&I)~! in this expression. This is the aim of Lemma 4.2 below.
With the help of Theorem 1.1, we then consider the asymptotics of (u", (X™ — &I)~1u")/|[u™|? (Lemma 4.3).
The remainder of the proof consists in studying [[(X™ — £I)~u™|/|u™| with help of the results of Section 3

again.
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Lemma 4.2. There erists a sequence (E42) of probability events such that lgaz — 1 in probability, the smallest

singular values of X™ — &I and X™ — Amax(Y™)I are lower bounded by positive constants on E2

<, and moreover,
it holds that

Lesa (X" = Amax (YD) = (X" — D)7V —2 0,

n—o0

Proof. We mainly need to control the smallest singular value s, (X™ — £I), and to use Corollary 1.5, which
shows in our context that
)\max(Yn) L 5 .

n—ow
To control s, (X™ — &I), we apply Theorems 3.3-(a) and 3.8-(d) to obtain the existence of a constant ¢ > 0
satisfying
liTEnIP{sn(X" &) >cp=1.
Defining the event
£ ={sn(X" = &D) = ¢} {PAmax (Y") — €] < ¢/2},
we know from what precedes that P{€12} —,, 1. Moreover, by Weyl’s inequality, we obtain that

$n(X"™ = Amax(Y")I) = sn(X" —&I) — [€ = Amax (Y")].

Therefore, s,(X"™ — Apax(Y™)I) = ¢/2 on €22, and both matrices X™ — €I and X™ — Apax (Y™)I have their

n

smallest singular values lower bounded by a positive constant on £22. In particular, the expression
Leaa | (X" = Amax (VD)™ = (X7 — 1)
is well-defined. On €12, we furthermore have

[(X™ = Amax (YT = (X" = €17 [(X™ = Amax (Y™ D) THX™ = €07 Amax(Y™) = )],

< Pamax(Y™) = € X" = Anax (YD T X" = D)7
2 n
< P =l
and the second statement follows from the convergence of Apax(Y™) to £ in probability. O

Next we turn our attention to {(X™ — £I)~*u™, u™) on the event where (X" — £I) is invertible.

Lemma 4.3. Let E23 be the event where (X" — £I) is invertible. Then, lgas —y 1 in probability, and

1 _ P 1
leas—— (X" =D W™, 0y ———  —=.
ot unp X7 DT

Proof. The convergence 1g1.s —,, 1 in probability follows obviously from, e.g., Theorem 1.4. Arguing as in the

proof of Lemma 4.1, we furthermore have
leasdet(I — & H(X™ +u™(u™)*) = Leas (14 (u” (X" = &) ™)) det(I — €71 X™).

By Assumptions 2 and 4, the sequence (|u™|) converges to a limit 5 > 0 along a subsequence that we still

denote as (n). We fix this subsequence. Setting
E" =u™(u")* and Y"=X"4+E",
and defining the H2—valued random vector [¢Y ¢X]7 as
<q§ (z)> - <det([ - zf/”)>
X (2) det(I — 2zX™) ) '

we easily see that the sequence ([q,’f ¢:X]T) is tight in the space H? equipped with the product distance, and

furthermore, by inspecting again the proof of Theorem 1.1 (in particular, Proposition 2.7 with E™ = u™(u™)*

and Lemma 2.8), that
y b
(q}> _aw | kexp(—F) ( f) with bye(2) =1 — 322,
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By Slutsky’s theorem, we then get that

Y
dn law bw
lgas <q£{> — kexp(—F) ( . ) .

By Skorokhod’s representation theorem, there exists a sequence of C2-valued random variables ([p} pX]7) and

a C%—valued random variable ([pg pX]T) on a probability space Q, such that

nY aw 7}: 1 Zo aw b (1
(%) O (;’Qﬁ;) and (f:g) la m(l/@exp(—F(l/s))( (1/f)> 7

and ([pY pf]T) converges to ([pY, p‘gg]T) for all & € €. Recalling that xexp(—F) # 0, it holds that the random
variable p} /pxX converges pointwise to p, /pX law b (1/€). This implies that

leas (1+ ™ (X" =€) 'u™)) = lea q" 8;8 n_ﬂ’ioo beo(1/€) = 1—%,

and the result of the lemma follows. O

It remains to establish an asymptotic result for WH(X n — &)~ tu™|?. Tt will be more convenient to work
with the hermitisation H,,(£) of X™ defined in (3.1). Furthermore, it will also be convenient to introduce a

small parameter 1 > 0 and work on the resolvent (H"™ — zI)~! of H™ evaluated at z = in. Specifically:

Lemma 4.4. There exists a sequence of events (E4*) such that H™ is invertible on Ex*, EX2 < £X4 and
Loss[(H™) ™ = (H" —inD) Y| < Can

for some constant Cy 4 > 0.

Proof. Recall that A is an eigenvalue of the Hermitian matrix H™ if and only if A or —\ is a singular value of
— &I, Thus, the event
53'4 = {sn (X" =&I) = ¢}
where ¢ > 0 is the one chosen in the proof of Lemma 4.2 satisfies the first two assertions of the statement.
On the event £} it holds that ||(H™)~!|| < 1/c. On the same event, since the singular values of (H™ —inl)~!
are of the form 1/|\; — in| where the \;’s are the real eigenvalues of H", we obtain that ||(H"™ —inl)~!| < 1/c.
By the resolvent identity, on this event, we therefore obtain the following estimate:

[(H™ = (H —aipD) ™ = JHDTHH" —ipD) "l < [(HDTH < H i) T < c%

(I
For the resolvent (H™ — inl)~! we have that

Lemma 4.5. Consider a sequence of deterministic unit vectors w*™ € C*" satisfying

W =0 for ief{n+1,---,2n},
then the following limit holds:
(o (4
H(Hn - in[)—1w2n”2 P \S(m (7’77)) :
n—0o0 ’]7

where m¢ is the Stieltjes transform of the probability measure &5 defined in the statement of Theorem 3.8.
Proof. Denoting as M = (M — M*)/(2¢) the imaginary part of a complex matrix, it holds by the resolvent’s
identity that

(H™ —in)™")" (H" —inI)~! =

From this, we conclude that

J(E™ = anD) ™M |2 = (™ = inT) ™ @, (H" = i)~ @) = ((H" = inl)™)" (H" — i)™ 0*", @*" )

- <ls (H™ —inD)™t) w2",w2">,

Ui
and the claim follows by combining Corollary 3.10 with Theorem 3.8-(e). (]

S(H"—inI)™).

|~
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We are now ready to examine the asymptotic behavior of WH(X” — &)~ tum 2.

Lemma 4.6. Let u™ € C" be a deterministic vector, then the following limit holds:
(X" —en | e 1
lun now /€2 =1

Proof. Denote by ¢?>" € C?" the deterministic unit vector defined by

on _ [u"/ "]
e (1)

Recall that H™ is invertible on £ and notice that on this event (H™)~! writes

(Hn)—l _ ( 0 ~ (Xn_g-[)_*> )
(X" — €D~ 0

g

In particular
|(X™ — &)~ tun|
Jun]

Fix an arbitrarily small € > 0 and choose 17 > 0 small enough so that

Lgaa = 15;41~4‘|(Hn)71q2nH :

€ Smé(n) 1 €
04_477 < = and > - =,
2 U Vigp-1 4

which is possible by Corollary 3.9. With this choice, we have by Lemma 4.4

ey [~ Ly |G = inD) 2| < Tega |(HY) g — (7 —inD) ] < S
Now
[(X™ — &)~ un| 1 n_ ol on 1 £
Tga. — > Tgaa ||(H™ —inl - =
{ gaa T \/|£|27_1 £a4 H( inl)"q H FP —1 2
n_ ol on Smé(n)| _ €
c {'”(H —anl) L2 H— T 24}.
Taking the probability of both events, combined with Lemma 4.5, yields the desired result. O

We conclude with the proof of Theorem 1.6.

Proof of Theorem 1.6. We need to show that

2

u P 1
Tarl? ¥ o T TR
] n—>0 4

To this end, we are allowed to multiply the left hand side with llff? (Yn)|:115741.2 which converges to one in
probability by Corollary 1.5 and Lemma 4.2.
On the event {|oF(Y™)| = 1}, the right eigenspace of Y™ associated with Apax(Y™) is one-dimensional. By
Lemma 4.1, we are therefore reduced to showing that
|<un7 (X" — AmaX(Yn)I)ilunNQ P 1

]lg+ ny—q Lga.2 — 1—-—.
G T T e e o

Noticing that £22 < £33, we obtain by Lemmas 4.2 and 4.3 that

1 _ P 1
Leaz 0 (X" = Anax (YD) "™ 0y ——  —=.
SN (DT e

By Lemmas 4.2, 4.4 and 4.6, it holds that
(X" = Amax (Y™) 1) "™ P 1

Jun] S RVIGEE

and the result is obtained through a direct calculation. (I

Il£;112
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5. OPEN PROBLEMS

‘We now present several open problems that emerge naturally from our results. Most of these appear approach-
able using refinements of existing techniques, while one in particular—concerning assumptions on Theorem

1.6—poses a more significant theoretical challenge and remains largely unresolved.

Open Problem 1 (sparser regimes). The bounds in (2.11) and (2.4) tend to zero even when K, remains
bounded as n — 0. Our current methods already yield an analogue of (1.3) in the case K,, = K > 0. To fully
extend the result, one must compute the moments of Tr(X™), as in Lemma 2.8. The limiting distribution is not

Gaussian—in the directed Erdés—Rényi case, for instance, the non-Gaussian limit is derived in [Cos23].

Open Problem 2 (types of sparsity). Fztend the analysis to alternative sparsity regimes beyond that defined
in (1.1). For example, consider the Hadamard product of an i.i.d. matriz with the adjacency matriz of a
K, -regular graph, uniformly sampled from the space of such graphs. The interplay between randommness and

structured sparsity presents new analytical challenges.

Open Problem 3 (unbounded eigenvalues of E™). Proposition 2.7 remains valid if | E"|| = O(n°M). Investi-
gate whether, after proper normalization, the sequence q,(z) remains tight and whether Theorem 1.1 continues

to hold when |E™|| — o as n — co.

Open Problem 4 (assumptions on Theorem 1.6). Can one remove the distributional and sparsity assumptions
in Theorem 1.62 Doing so would require asymptotic lower bounds on the least singular value s,(X™ —&I). Our
approach depends on the universality results of [BvH24], which justify these extra assumptions. Removing them

appears to be a substantially harder problem and is currently out of reach.

Open Problem 5 (eigenvectors of finite-rank perturbation). Generalize Theorem 1.6 to the case of a defor-
mation with an arbitrary finite rank, similarly to what was done in the Hermitian case by, e.g., [BGN11]). This
generalization is useful for many applicative contexts where the matrix E™ bears an “information” buried in the

sparse noise matriz X".
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