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Analysis of Sum-Weight-like algorithms for
averaging in Wireless Sensor Networks

Franck Iutzeler, Philippe Ciblat and Walid Hachem

Abstract—Distributed estimation of the average value over a
Wireless Sensor Network has recently received a lot of attention.
Most papers consider single variable sensors and communications
with feedback (e.g. peer-to-peer communications). However, in
order to use efficiently the broadcast nature of the wireless
channel, communications without feedback are advocated. To
ensure the convergence in this feedback-free case, the recently-
introduced Sum-Weight-like algorithms which rely on two vari-
ables at each sensor are a promising solution. In this paper,
the convergence towards the consensus over the average of the
initial values is analyzed in depth. Furthermore, it is shown
that the squared error decreases exponentially with the time.
In addition, a powerful algorithm relying on the Sum-Weight
structure and taking into account the broadcast nature of the
channel is proposed.

I. I NTRODUCTION

The recent years have seen a surge of signal processing and
estimation technologies operating in stressful environments.
These environments do not make possible the use of a fusion
center so the units/sensors have to behave in a distributed
fashion. In various applications, sensors have to communicate
asynchronously through wireless channels because of the
lack of infrastructure. Hence, the problem of communicating
between the different sensors to estimate a global value is a
key issue. The topic was pioneered by Tsitsiklis [2] and is
receiving a lot of interest from various communities (see [3],
[4], [5] and references therein).

One of the most studied problems in Wireless Sensor
Networks is the average computation of the initial measure-
ments of the sensors. More precisely, each sensor wants to
reachconsensusover the mean of the initial values. A basic
technique to address this problem, calledRandom Gossip, is to
make the sensors randomly exchange their estimates in pairs
and average them. This technique has been widely analyzed
in terms of convergence and convergence speed in [5], [6].

In the context of asynchronous ad-hoc networks without
fusion centers, finding more efficient exchange protocols has
been a hot topic for the past few years. The proposed improve-
ments were essentially twofold: i) exploiting the geometry
of the network to have a more efficient mixing between the
values (e.g. [7], [8], [9]) and ii) taking advantage of the
broadcast nature of the wireless channels (e.g. [10] without
feedback link, and [11] with feedback link). Whereas the use
of network geometry has received a lot of attention, the use
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of the broadcast nature of the wireless channel is less studied
albeit promising. Therefore, in our paper, we will focus on
averaging algorithms taking into account the broadcast nature
of the channel. In order to keep the number of communications
as low as possible, we forbid the use of feedback links.

In the feedback-free context, one can mention [10]. How-
ever, even if the algorithm described in [10] converges quickly
to a consensus, the reached value is incorrect. This can be
explained by the fact that the sum of the sensor estimates is not
constant over time. To overcome this problem, Franceschelli
et al. [12] proposed to use well-chosen updates on two local
variables per sensor while using the broadcast nature of the
channel without feedback link. A more promising alternative
is to use theSum-Weightscheme proposed by Kempe [13]
and studied more generally by Béńezit [14]. In this setup,
two local variables are also used: one representing thesum
of the received values and the other representing theweight
of the sensor (namely, the proportion of the sensor activity
compared to the others). The two variables are transmitted
at each iteration and both are updated in the same manner.
The wanted estimate is then the quotient of these values. The
convergence of this class of algorithms (without necessarily
sum-conservation) has been proven in [13], [14]. In contrast,
their convergence speed has never been theoretically evaluated
except in [13] for a very specific case.

The goal of this paper is to theoretically analyze the con-
vergence speed for any Sum-Weight-like algorithm. As a by-
product, we obtain necessary and sufficient condition for the
convergence. In addition, we propose a new Sum-Weight-like
algorithm based on broadcasting which outperforms existing
ones.

This paper is organized as follows: the notations and as-
sumptions on the network model and on the Sum-Weight-
like algorithms are provided in Section II. Section III is
dedicated to the theoretical analysis of the squared error of the
algorithms and provides the main contributions of the paper. In
Section IV, we propose new Sum-Weight-like algorithms. In
Section V, we compare our results with previous derivations
done in the literature for the Sum-Weight-like algorithms as
well as the algorithms based on the exchange of a single
variable between the nodes. Section VI is devoted to numerical
illustrations. Concluding remarks are drawn in Section VII.

II. M ODEL AND ASSUMPTIONS

A. General notations

Let x , [x1, ..., xN ]T be the vector of the{xi}i=1,...,N

with ·T the transpose operator. We additionally define1N ,

[1, ..., 1]T the size-N vector of ones.
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Let X be the matrix of the{xi,j}i,j=1,...,N . We will
say thatX is positive (resp. non-negative), notedX > 0
(resp.X ≥ 0), if it has only positive (resp. non-negative)
coefficients. Furthermore, we will say thatX is row (resp.
column) stochastic if it is non-negative and if its row sum
(resp. column sum) is equal to1, that is ifX1N = 1N (resp. if
1T
NX = 1T

N ). A matrix which is row and column stochastic is
said to be doubly stochastic. Also, a non-negative matrixX is
said to be primitive ifXm > 0 for somem > 1. In addition to
the standard matrix product, we denote the Kronecker product
by ‘⊗’.

In terms of matrix norms, we define i) the Frobenius
norm: ‖X‖F ,

√∑

i,j |xi,j |2 ( alternatively ‖X‖F =
√

Trace(XTX) ) and ii) theL∞ vector norm on matrices
as |||X|||∞ , Nmax

i,j
|xij |. The |||·|||∞ norm is a matrix norm

and hence is submultiplicative. Finally, we defineρ(X) as the
spectral radius of matrixX, that is, ρ(X) = maxi |λi(X)|
with {λi(X)} the eigenvalues of matrixX.

B. Network model

The sensor network will be modeled by a graphG = (V,E)
(possibly directed),V being the set of vertices/sensors andE
being the set of edges which models the possible links between
the sensors. We also define the adjacency matrixA of G as the
N×N matrix such that(A)i,j equals1 if there is an edge from
i to j and 0 otherwise. We define the neighborhood of each
sensori as followsNi = {j ∈ V |(i, j) ∈ E}. Let di = |Ni|
denote the degree of the sensori where |A| represents the
cardinality of the setA. Let dmax = maxi di be the maximum
degree.

Every sensori has an initial valuexi(0) and we define
x(0) = [x1(0), ..., xN (0)]T. The goal of the network is to
communicate through the edges of the underlying graph to
reach consensus over the mean of the initial values of the
sensors. A communication and estimation step will be referred
to as anupdate.

We will assume that the network follows a discrete time
model such that the timet is the time of thet-th update.
As an example, every sensor could be activated by an in-
dependent Poisson clock. The time would then be counted
as the total number of clock ticks across the network. We
will denote xi(t) the i-th sensor estimate at timet and
x(t) = [x1(t), ..., xN (t)]T.

C. Averaging Algorithms

The goal of averaging algorithms is to make the vector
of estimatesx(t) converge toxave1N , also known as the
consensus vector, wherexave = (1/N)1T

Nx(0) is the average
of the initial values of the sensors. In the present state-of-the-
art, two classes of algorithms exist and are described below.

1) Class of Random Gossip algorithms:In standard gossip
algorithms (e.g. [5]), sensors update their estimate according
to the equationx(t + 1)T = x(t)TK(t) where theK(t) are
doubly-stochastic matrices. Since two sensors can exchange
information only across the edges of the graph, for any
i 6= j, (K(t))i,j cannot be positive if(A)i,j = 0. From

an algorithmic point of view, the row-stochasticity implies
that the sum of the values is unchanged:x(t + 1)T1N =
x(t)TK(t)1N = x(t)T1N whereas the column-stochasticity
implies that the consensus is stable: ifx(t) = c1N , then
x(t + 1)T = x(t)TK(t) = c1T

NK(t) = c1T
N . For these rea-

sons, double-stochasticity is desirable; however using doubly-
stochastic matrices implies a feedback. In addition to the
eventual multiple access techniques to implement, it represents
a surplus in the number of communications, in particular if a
sensor sends information to multiple neighbors. Similarly, if
the message is sent through a long route within the network,
the same route may not exist anymore for feedback in the
context of mobile wireless networks. As these algorithms only
rely on the exchanges of one variable per sensor, they will be
calledsingle-variatealgorithms in the rest of the paper.

2) Class of Sum-Weight algorithms:To overcome this
drawback, a possible method is to use two variables : one
representing thesum of the received values and another
representing the relativeweightof the sensor. For the sensori
at timet, they be respectively writtensi(t) andwi(t). Writing
s(t) = [s1(t), ..., sN (t)]T and w(t) = [w1(t), ..., wN (t)]T,
both variables will be modified by the same update matrix,
s(t+1)T = s(t)TK(t) andw(t+1)T = w(t)TK(t). Finally,
the estimate of sensori at time t will be the quotient of the
two variables,xi(t) , si(t)/wi(t). The initialization is done
as follows: {

s(0) = x(0)
w(0) = 1N .

(1)

For the sake of convergence we will need an important
property: Mass Conservation

{
∑N

i=1 si(t) =
∑N

i=1 xi(0) = Nxave
∑N

i=1 wi(t) = N.
(2)

This clearly rewrites as∀t > 0,K(t)1N = 1N which cor-
responds to sum-conservation as in classic gossip algorithms
and leads to row-stochastic updates matrices.

D. Notations for the Sum-Weight scheme

Let us now introduce some useful notations along with
some fundamental assumptions for convergence in the Sum-
Weight scheme. Given two vectorsa andb with the same size,
we denote bya/b the vector of the elementwise quotients.
The Sum-Weight algorithm is described by the following
equations:

x(t) ,
s(t)

w(t)
=

[
s1(t)

w1(t)
, ...,

sN (t)

wN (t)

]T

{
sT(t+ 1) = sT(t)K(t) = xT(0)P(t)
wT(t+ 1) = wT(t)K(t) = 1T

NP(t)

with P(t) = K(1)K(2) . . .K(t).
We can notice that reaching consensus is equivalent forx(t)

to converge to the consensus linec1N wherec is consensus
value. For this reason, it is useful to defineJ = (1/N)1N1T

N

the orthogonal projection matrix to the subspace spanned
by 1N and (I− J) the orthogonal projection matrix to the
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complementary subspace which can be seen as the error hy-
perplane. The matrixI is the identity matrix with appropriate
size.

In order to intuitively understand the algorithm behavior,let
us decomposexT(t) as follows

xT(t) =
sT(t)

wT(t)
=

xT(0)P(t)

wT(t)

=
xT(0)JP(t)

wT(t)
+

xT(0)(I− J)P(t)

wT(t)

=
xave1

T
NP(t)

1T
NP(t)

+
xT(0)(I− J)P(t)

wT(t)

= xave1
T
N +

xT(0)(I− J)P(t)

wT(t)
(3)

Obviously, the algorithm will converge to the right consensus
if the second term in the right hand side vanishes. Actually,
under some mild assumptions related to the connectedness of
the network, we expect the numerator which corresponds to a
projection on the error hyperplane will converge to zero at an
exponential rate while all the elements ofw(t) are of order
one. Proving these results will be the core of the paper.

E. Assumptions on the update matricesK(t)

First, we will always assume that both following conditions
will be satisfied by any update matrix associated with a Sum-
Weight like algorithm.

(A1) Matrices{K(t)}t>0 are independent and identically
distributed (i.i.d.), and row-stochastic. The matrix
K(t) is valued in a setK = {Ki}i=1..M of size
M < ∞. Also, pi , P[K(t) = Ki] > 0.

(A2) Any matrix in K has a strictly positive diagonal.

The first assumption is just a reformulation of themass con-
servationproperty introduced in section II-C2 along with the
assumption of a finite number of actions across the network.
At each iteration, a sensor can perform any linear combination
of the network sensors values with non-negative, summing to
1, coefficients. The second assumption forces every sensor to
keep part of the information it had previously. We also define
{

mK = mini,j,k

{

(Kk)i,j : (Kk)i,j > 0
}

,

pK = mink {P [K(t) = Kk]} = mink pk > 0.
(4)

In addition to both previous assumptions, we will see
that next assumption plays a central role in the convergence
analysis of any Sum-Weight like algorithm.

(B) E[K] =
∑M

i=1 piKi is a primitive matrix.

In terms of graph theory, matrixE[K] stands for the
adjacency matrix of a weighted directed graph (see [15,
Def. 6.2.11]). Since it is primitive, this graph is strongly
connected (see [15, Cor. 6.2.18]). Observe that this graph
contains a self-loop at every node due to Assumption(A2). In
fact, the matrixA + I coincides with the so-called indicator
matrix ([15, Def. 6.2.10]) ofE[K].

III. M ATHEMATICAL RESULTS

A. Preliminary results

The assumption(B) can be re-written in different ways
thanks to the next Lemma.

Lemma 1. Under assumptions(A1) and (A2), the following
propositions are equivalent to(B) :

(B1) ∀(i, j) ∈ {1, ..., N}2, ∃Lij < N and a realization of
P(Lij) verifyingP(Lij)i,j > 0.

(B2) ∃L < 2N2 and a realization ofP(L) which is a positive
matrix.

(B3) E[K⊗K] =
∑M

i=1 piKi ⊗Ki is a primitive matrix.

The proof is reported in Appendix A. This Lemma will be
very useful in the sequel since it enables us to interpret the
Assumption(B) in various manners.

Our approach for analyzing the convergence of Sum-Weight
algorithms is inspired by [13] (with a number of important
differences explained below) and so relies on the analysis of
the Squared Error (SE). Actually, the Squared Error can be
upper-bounded by a product of two terms as follows

‖x(t)− xave1‖22 =

N∑

i=1

|xi(t)− xave|2 (5)

=
N∑

i=1

1

wi(t)2
|si(t)− xavewi(t)|2

=
N∑

i=1

1

wi(t)2

∣
∣
∣
∣
∣
∣

N∑

j=1

xj(0)Pji(t)−
1

N

N∑

k=1

xk(0)
N∑

l=1

Pli(t)

∣
∣
∣
∣
∣
∣

2

≤ Ψ1(t)Ψ2(t) (6)

with Ψ1(t) =
‖x(0)‖22

[min
k

wk(t)]2
(7)

Ψ2(t) =
N∑

i=1

N∑

j=1

∣
∣
∣

(
PT(t) (I− J)

)

i,j

∣
∣
∣

2

. (8)

Notice that the decomposition done in Eq. (6) mimics Eq. (3)
for the Squared Error.

From now, our main contributions will be to understand the
behavior of both termsΨ1(t) andΨ2(t) when t is large. In
Section III-B, we will prove that there is a constantK < ∞
such thatΨ1(t) ≤ K infinitely often with probability1. The
term Ψ2(t) represents the projection of the current sensor
values on the orthogonal space to the consensus line. The
analysis of this term is drawn in Section III-C.

B. Analysis ofΨ1(t)

This term depends on the inverse of the minimum of the
sensors weights (see Eq. (7)) and thus can increase quickly.
However, the sensors frequently exchange information and
hence spread their weight so the probability that a node weight
keeps decreasing for a long time is very small. We will work
on this probability and show that it can be made as small
as one wants considering a sufficiently long amount of time.
This will enable us to prove that there existsK < ∞ such



4

that P[ {Ψ1(t) ≤ K} infinitely often] = 1. To obtain these
results, some preliminary lemmas are needed.

First, we will focus on the behavior of the nodes weights
and especially on their minimum. One can remark that at
every time t there is as least one node whose weight is
greater than or equal to1 (as the weights are non-negative
and∀t > 0,

∑

i wi(t) = N because of the mass conservation
exhibited in Eq. (2)). Asw(t0 + t)T = w(t)TP(t0, t0 + t)
whereP(t0, t0 + t) , K(t0)...K(t0 + t), it is interesting to
focus on i) the minimum non-null value ofP(t0, t0 + t) and
ii) on the instants whereP(t0, t0 + t) is positive.

Lemma 2. For all t, t0 > 0, all the non-null coefficients of
P(t0, t0 + t) are greater than or equal to(mK)t.

Proof: Let us recall thatmK is the smallest non-null entry
of all the matrices belonging to the setK as defined in Eq. (4).
Let us consider the random matrixP(t) (as the matrix choice
is i.i.d., we drop the offsett0). We will then prove this result
by induction. It is trivial to see that every non-null coefficient
of P(1) = K(1) is greater thanmK and as

(P(t))i,j =

N∑

k=1

(P(t− 1))i,k (K(t))k,j ,

it is obvious that if (P(t))i,j > 0, then there is a term in
the sum that is positive (we remind that all the coefficient
here are non-negative). This term is the product of a positive
coefficient of P(t − 1) and a positive coefficient ofK(t).
Hence, if all the non-null coefficients ofP(t− 1) are greater
than(mK)t−1, then any non-null coefficient ofP(t) is greater
than (mK)t−1.mK = (mK)t. So, by induction, we have that
∀t > 0 every non-null coefficient ofP(t) is greater than
(mK)t.

Thanks to Item(B2) of Lemma 1, there is a finiteL such that
there exists a realization ofP(L) which is a positive matrix.
Considering the time at multiples ofL, we know that for anyn,
if P(nL+1, (n+1)L) > 0 then for alli, wi((n+1)L) ≥ mL

K.
Let us define the following stopping times:
{

τ0 = 0

τn = L×min
{

j :
∑j

k=1 1{P(kL+1,(k+1)L)>0} = n
}

where1E is the indicator function of eventE. And,

∆n = τn − τn−1 n = 1, ...,∞.

The1{P(kL+1,(k+1)L)>0} are i.i.d. Bernoulli random variables
with strictly positive parameterp. Thus the inter-arrival times
∆n are i.i.d. and geometrically distributed up to a multiplica-
tive factorL i.e.P[∆1 = k] = pk−1(1−p) for k ≥ 1. Observe
that the{τn}n>0 are all finite and converge to infinity with
probability one. We then have proven the following result:

Proposition 1. Under Assumptions(A1), (A2), and(B), there
exists a sequence of positive i.i.d. geometrically distributed
random variables{∆n}n>0 such that for alln > 0

Ψ1(τn) ≤ ‖x(0)‖22(mK)
−2L

whereτn =
∑n

k=1 ∆k.

C. Analysis ofΨ2(t)

This section deals with new results aboutΨ2(t). These
results extend dramatically those given in [13] since we
consider more general models forK(t) and any type of
strongly connected graph. According to Eq. (8), we have

Ψ2(t) = ‖ (I− J)P(t)‖2F . (9)

One technique (used ine.g. [5]) consists in writing
E[Ψ2(t)] = Trace

(
(I− J)E

[
P(t)PT(t)

]
(I− J)

)
thanks to

Eq. (9) and finding a linear recursion betweenE[Ψ2(t)|Ψ2(t−
1)] andΨ2(t − 1). However this technique does not work in
the most general case1.

Therefore, as proposed alternatively in [5] (though not
essential in [5]) in the context of Random-Gossip Algorithms
(see Section II-C1), we writeΨ2(t) with respect to a more
complicated matrix for which the recursion property is easier
to analyze. Indeed, recalling that for any matrixM,

‖M‖2F = Trace
(
MMT

)

and Trace (M⊗M) = (Trace (M))
2

one can find that
Ψ2(t) = ‖Ξ(t)‖F

with
Ξ(t) = (I− J)P(t)⊗ (I− J)P(t).

By remarking that(I− J)P(t) (I− J) = (I− J)P(t), and
by using standard properties on the Kronecker product, we
have

Ξ(t)= (I− J)P(t− 1) (I− J)K(t)

⊗ (I− J)P(t− 1) (I− J)K(t)

= Ξ(t− 1) [((I− J)⊗ (I− J)) (K(t)⊗K(t))] .(10)

By considering the mathematical expectation given the natural
filtration of the past eventsFt−1 = σ (K(1), · · · ,K(t− 1)),
we obtain

E [Ξ(t)|Ft−1] = Ξ(t− 1) ((I− J)⊗ (I− J))E [K⊗K] .

As Ξ(0) = (I− J) ⊗ (I− J) and ((I− J)⊗ (I− J))
2
=

(I− J)⊗ (I− J), we finally have

E [Ξ(t)] = Rt. (11)

with
R = ((I− J)⊗ (I− J)) .E [K⊗K] . (12)

Now one can find a simple relationship betweenE[Ψ2(t)]
and the entries of the matrixE[Ξ (t)] by consideringQ(t) =

1We have E[Ψ2(t)|Ψ2(t − 1)] =
Trace

(

(I− J)P(t− 1) (I− J)E
[

KK
T
]

(I− J)P(t− 1)(I− J)
)

.
By introducing the matrix M = (I− J)E

[

KK
T
]

(I− J),
it is easy to link E[Ψ2(t)|Ψ2(t − 1)] with Ψ2(t − 1) since
E[Ψ2(t)|Ψ2(t − 1)] ≤ ‖M‖spΨ2(t − 1) where ‖ · ‖sp is the spectral
norm (see [15, Chap. 7.7] for details). Unfortunately, in some cases,‖M‖sp
can be greater than 1; indeed for theBWGossipalgorithm (introduced in
Section IV-A), one can have‖M‖sp > 1 for some underlying graphs.
Nevertheless, thisBWGossipalgorithm converges as we will see later. As
a consequence, the inequalityE[Ψ2(t)|Ψ2(t − 1)] ≤ ‖M‖spΨ2(t) is not
tight enough to prove a general convergence result and another way has to
be found.
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(I− J)P(t) and (Q(t))i,j = qij(t). After simple algebraic
manipulations, we show that,∀(i, j, k, l) ∈ {1, · · · , N}4

(E[Ξ (t)])i+(k−1)N,j+(l−1)N = E[qij(t)qkl(t)].

According to Eq. (9), we haveE[Ψ2(t)] = E[‖Q(t)‖2F ] which
implies that

E[Ψ2(t)] =

N∑

i,j=1

E
[
q2ij(t)

]
=

N∑

i,j=1

(E [Ξ(t)])i+(i−1)N,j+(j−1)N .

As a consequence, the behavior of the entries ofE[Ξ (t)] drives
the behavior ofE[Ψ2(t)].

Using the Jordan normal form ofR and theL∞ vector
norm on matrices (see [15, Chap. 3.1 and 3.2]), we get that
there is an invertible matrixS such that
∣
∣
∣
∣
∣
∣Rt
∣
∣
∣
∣
∣
∣
∞ =

∣
∣
∣
∣
∣
∣SΛtS−1

∣
∣
∣
∣
∣
∣
∞ ≤ |||S|||∞

∣
∣
∣
∣
∣
∣S−1

∣
∣
∣
∣
∣
∣
∞
∣
∣
∣
∣
∣
∣Λt
∣
∣
∣
∣
∣
∣
∞ (13)

whereΛ is the Jordan matrix associated withR.
After some computations, it is easy to see that the absolute

value of all the entries ofΛt are bounded in the following
way:

max
1≤i,j≤N

∣
∣(Λt)i,j

∣
∣ ≤ max

0≤j≤J−1

(
t

t− j

)

ρ(R)t−j

with J the maximum size of the associated Jordan blocks.
Hence,∀t > 0

max
1≤i,j≤N

∣
∣(Λt)i,j

∣
∣ ≤ tJ−1ρ(R)t−J+1 (14)

WhenR is diagonalizable,J = 1, and we get that

max
1≤i,j≤N

∣
∣(Λt)i,j

∣
∣ ≤ ρ(R)t (whenR is diagonalizable)

(15)
Putting together Eqs. (11), (13), (14), (15), and remarking

that the subspace spanned by1N2 = 1N ⊗1N is in the kernel
of R, we get that the size of the greatest Jordan block is
≤ N − 1, hence the following lemma:

Lemma 3. We have

E[Ψ2(t)] = O
(
tN−2ρ(R)t

)

whereR is defined in Eq. (12) and whereρ(R) is the spectral
radius of the matrixR.

The next step of our analysis is to prove that the spectral
radius ρ(R) is strictly less than1 when Assumptions(A1),
(A2), and (B) hold. Applying Theorem 5.6.12 of [15] on
Eq. (11) proves thatρ (R) < 1 if and only if E [Ξ(t)]
converges to zero ast goes to infinity. Therefore our next
objective is to prove thatE [Ξ(t)] converges to zero by using
another way than the study of the spectral radius ofR.

Actually, one can find another linear recursion onΞ(t)
(different from the one exhibited in Eq. (10)). We get

Ξ(t) = Ξ(t− 1) (K(t)⊗K(t))

and, by taking the mathematical expectation given the past,
we obtain

E [Ξ(t)|Ft−1] = Ξ(t− 1)E [K⊗K] .

Remarking thatΞ(t)1N2 = 0, we have for any vectorv,

E [Ξ(t)|Ft−1] = Ξ(t− 1)
(
E [K⊗K]− 1N2vT

)

and then, for any vectorv,

E [Ξ(t)] = Ξ(0)St
v

(16)

with Sv = E [K⊗K]−1N2vT andΞ(0) = (I− J)⊗(I− J).
By considering Eq. (16), it is straightforward to see that

E [Ξ(t)] converges to zero ast goes to infinity if there is a
vector v such thatρ(Sv) < 1. However, this condition is
only sufficient whereas the one derived from Eq. (11) is a
necessary and sufficient condition. Asρ(Sv) < 1 implies the
convergence ofE [Ξ(t)] and as the convergence ofE [Ξ(t)]
implies that ρ(R) < 1, one thus can state the following
Lemma:

Lemma 4. If there is a vector v such that
ρ
(
E [K⊗K]− 1N2vT

)
< 1, thenρ(R) < 1 .

One of the most important result in the paper lies in the
following Lemma in which we ensure that, under Assump-
tions (A1), (A2), and (B) there is a vectorv such that
ρ
(
E [K⊗K]− 1N2vT

)
< 1 and thusρ(R) < 1.

Lemma 5. If Assumptions(A1), (A2), (B) hold, there is a
vectorv such thatρ

(
E [K⊗K]− 1N2vT

)
< 1.

Proof: Assumptions(A1), (A2), and(B) imply that

i) E[K ⊗K] is a non-negative matrix with a constant row
sum equal to one (because of the row-stochasticity).
According to Lemma 8.1.21 in [15], we haveρ(E[K ⊗
K]) = 1.

ii) E[K ⊗K] is a primitive matrix (see(B3) in Lemma 1)
which implies that there only is one eigenvalue of max-
imum modulus. This eigenvalue is thus equal to1 and
associated with the eigenvector1N2 .

By using the Jordan normal form and the simple multiplicity
of the maximum eigenvalue (equal to1), we know that i) there
exists a vectorv1 equal to the left eigenvector corresponding
to the eigenvalue1, and ii) that the set of the eigenvalues
of E [K⊗K] − 1N2vT

1 = Sv1
are exactly the set of the

eigenvalues ofE [K⊗K] without the maximum one equal
to 1. Indeed the maximum eigenvalue ofE [K⊗K] has been
removed by the vector1N2vT

1 and the associated eigenvector
now belongs to the kernel ofSv1

. As a consequence, the
modulus of the eigenvalues ofSv1

is strictly less than1, i.e.,
ρ(Sv1

) < 1.
Aggregating successively the results provided in Lemmas

5, 4, and 3 leads to the main result of this Section devoted
to the analysis ofΨ2(t). Indeed, Lemma 5 ensures that there
is a vectorv such thatρ(Sv) < 1, then Lemma 4 states that
ρ(R) < 1. Then, Lemma 3 concludes the proof for the next
result.

Proposition 2. Under Assumptions(A1), (A2) and (B) holds,
then

E[Ψ2(t)] = O
(
tN−2e−κt

)

with κ = − log (ρ (R)) > 0.
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D. Final results

Thanks to the various intermediate Lemmas and Proposi-
tions provided above, we are now able to state the main The-
orems of the paper. The first one deals with the determination
of the necessary and sufficient conditions for Sum-Weight-like
algorithms to converge. The second one gives us an insight on
the decrease speed of the Squared Error (defined in Eq. (5)).
In the meanwhile, we need the following lemma:

Lemma 6. ‖x(t) − xave1N‖∞ = maxi |xi(t) − xave| is a
non-increasing sequence with respect tot.

Proof: One can remark that, at timet+ 1, we have

∀j, xj(t+ 1) =

∑N

i=1(K)i,jsi(t)
∑N

i=1(K)i,jwi(t)

=

N∑

i=1

(

(K)i,jwi(t)
∑N

ℓ=1(K)ℓ,jwℓ(t)

)

xi(t)

whereK corresponds to any matrix inK. So xj(t + 1) is a
center of mass of{xi(t)}i=1,...,N . Therefore,∀j ∈ {1, ..., N},

|xj(t+ 1)− xave| ≤
N∑

i=1

(

(K)i,jwi(t)
∑N

ℓ=1(K)ℓ,jwℓ(t)

)

|xi(t)− xave|

≤max
i

|xi(t)− xave|.

1) Result on the convergence:Let us consider that Assump-
tion (B) does not hold. Thanks to(B1) in Lemma 1, this
is equivalent to∃(k, l) ∈ N2 such that∀T, P(T )k,l = 0.
Let us takex(0) equal to the canonical vector composed
by a 1 at the k-th position and0 elsewhere. Then for any
t > 0, xl(t) = 0 which is different fromxave = 1/N .
Consequently, the algorithm does not converge to the true
consensus for any initial measurement. So if the Sum-Weight
algorithm converges almost surely to the true consensus for
any initial vectorx(0) then Assumption(B) holds.

Let us now assume that Assumption(B) holds. Using
Markov’s inequality along with Result 2, we have a finiteK
such that for anyδ > 0,

∑

t>0

P [|Ψ2(t)| > δ] ≤ 1

δ

∑

t>0

E[|Ψ2(t)|]

≤ 1

δ
K
∑

t>0

tN−2e−κt < ∞.

Consequently, Borel-Cantelli’s Lemma leads to the almost
sure convergence ofΨ2(t) to zero. In addition, the random
variables{τn}n>0 provided in the statement of Proposition 1
converge to infinity with probability one, henceΨ2(τn) → 0
almost surely. SinceΨ1(τn) is bounded,Ψ1(τn)Ψ2(τn) →

n→∞
0 almost surely. According to Lemma 6,‖x(t) − xave1N‖∞
is a nonincreasing nonnegative sequence verifying‖x(t) −
xave1N‖∞ ≤ Ψ1(t)Ψ2(t), as there is converging subsequence
with limit 0, the sequence itself converges to the same limit
which implies the following theorem.

Theorem 1. Under Assumptions(A1) and (A2), x(t) con-
verges almost surely to the average consensusxave1N for
any x(0), if and only if Assumption(B) holds.

We have additional result on another type of convergence
for x(t). As ‖x(t)−xave1N‖∞ is a non-increasing sequence,
we have, for anyt, ‖x(t)−xave1N‖∞ ≤ ‖x(0)−xave1N‖∞
which implies thatx(t) is bounded for anyt > 0. As a
consequence, according to [16], sincex(t) also converges
almost surely toxave1N , we know thatx(t) converges to
xave1N in Lp for any positive integerp. The convergence of
the mean squared error ofx(t) thus corresponds to the case
p = 2.

Corollary 1. If x(t) converges almost surely to the average
consensusxave1N then the mean squared error (MSE) con-
verges to zero.

2) Result on the convergence speed:The next result on
the convergence speed corresponds to the main challenge and
novelty of the paper. Except in [13] for a very specific case
(cf. Section V-A for more details), our paper provides the first
general results about the theoretical convergence speed for the
squared error of the Sum-Weight like algorithms. For the sake
of this theorem we introduce the following notation: given
two sequences of random variables{Xn}n>0 and {Yn}n>0,
we will say thatXn = oa.s.(Yn) if Xn/Yn → 0 almost surely.

Theorem 2. Under Assumptions(A1), (A2), and (B), the
squared error (SE) is non-increasing. Furthermore, it is
bounded by an exponentially decreasing function as follows

SE(τn) = ‖x(τn)− xave1N‖22 = oa.s.
(
τNn e−κτn

)

with κ = − log (ρ (((I− J)⊗ (I− J))E [K⊗K])) > 0 and
τn =

∑n

i=1 ∆i as defined in Proposition 1.

This result tells us that the slope oflog(SE(t)) is lower-
bounded byκ infinitely often which provides us a good insight
about the asymptotic behavior ofx(t). Indeed, the squared
error will vanish exponentially and we have derived a lower
bound for this speed. We believe this result is new as it may
foretell any algorithm speed. The particular behavior of the
weights variables in this very general setting does not enable
us to provide a clearer result about the mean squared error;
however for some particular algorithms (e.g. single-variate
ones) this derivation is possible (see Section V for more
details). The authors would like to draw the reader’s attention
to the fact that the main contribution of the paper lies in the
exponential decrease constantκ.

Proof: To prove this result we will once more use the
decomposition of the squared error introduced in Eq. (6). We
know from Proposition 2 thatE[t−NeκtΨ2(t)] = O(t−2). By
Markov’s inequality and Borel-Cantelli’s lemma,

t−NeκtΨ2(t) −−−→
t→∞

0 almost surely.

Composing with the{τn}n>0, we get

τ−N
n eκτnΨ2(τn) −−−−→

n→∞
0 almost surely.

Since∃C, ∀n > 0,Ψ1(τn) ≤ C, we get the claimed result.

IV. PROPOSED ALGORITHMS

In Subsection IV-A, we propose a new Sum-Weight-like
algorithm using the broadcast nature of the wireless channel
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which converges and offers remarkable performance. This
algorithm is hereafter calledBroadcast-Weighted Gossip (BW-
Gossip). In Subsection IV-B, a new distributed management
of the nodes’ clocks which can improve averaging algorithms
is proposed. Finally, Subsection IV-C provides an extension
of this work to the distributed sum computation. For the sake
of clarity, we assume that the underlying graph is directed
throughout this section.

A. BWGossip algorithm

Remarking i) that the broadcast nature of the wireless
channel was often not taken into account in the distributed
estimation algorithms (apart in [10] but this algorithm does
not converge to the average) and ii) that information propaga-
tion is much faster while broadcasting compared to pairwise
exchanges [17], we propose an algorithm taking into account
the broadcast nature of the wireless channel. At each global
clock tick, it simply consists in uniformly choosing a sensor
that broadcasts its pair of values in an appropriate way; then,
the receiving sensors add their received pair of values to
their current one. A more algorithmic formulation is presented
below.

Algorithm 1 BWGossip

When the sensori wakes up (at global timet):
◮ The sensori broadcasts

(
si(t)

|Ni|+1 ;
wi(t)
|Ni|+1

)

◮ The sensors of the neighborhoodNi update :

∀j ∈ Ni,

{

sj(t+ 1) = sj(t) +
si(t)

|Ni|+1

wj(t+ 1) = wj(t) +
wi(t)
|Ni|+1

◮ The sensori updates :

{

si(t+ 1) = si(t)
|Ni|+1

wi(t+ 1) = wi(t)
|Ni|+1

Let D = diag(d1, · · · , dN ) andL = D−A be the degree
matrix and the Laplacian matrix respectively [18]. According
to this formulation, the update matrixKi associated with the
action of thei-th sensor takes the following form

Ki = I− eie
T
i + eie

T
i

[
(I+D)−1 (A+ I)

]

= I− eie
T
i (I+D)−1L (17)

with ei the i-th canonical vector. Clearly, the update matrices
satisfy the Assumptions(A1) and (A2).

Thanks to Eq. (17), we obtain that

E[K] = I− 1

N
(I+D)−1L

=
N − 1

N
I+ (I+D)−1 (I+A) .

As all the involved matrices are non-negative, we have(I +
D)−1 (I+A) ≥ (I+A) /((dmax+1)N). As a consequence,
we have

E[K] ≥ 1

(dmax + 1)N
(I+A) ≥ 0.

Since A is the adjacency matrix of a connected graph,
∃m > 0, (I + A)m > 0. Hence, for the samem, E[K]m ≥
1/(dmaxN + N)m(I + A)m > 0, which implies thatE[K]

is a primitive matrix. Applying Lemma 1 enables us to prove
that Assumption(B) also holds.

Hence, Theorem 1 states that the BWGossip algorithm con-
verges almost surely to the average consensus and Theorem 2
gives us an insight about the decrease speed of the squared
error.

B. Adaptation to smart clock management

So far, all the Poisson coefficients of the clocks were iden-
tical. This means that all sensors were waking up uniformly
and independently from their past actions. Intuitively, itwould
be more logical that a sensor talking a lot became less active
during a long period.

Another advantage of the Sum-Weight algorithms is the
knowledge of how much a sensor talks compared to the others
which is a useful information. Actually, each sensor knows
whether it talks frequently or not (without additional cost)
through its own weight value because when a sensor talks, its
weight decreases and conversely when it receives information,
its weight increases. Therefore, our idea is to control the
Poisson coefficient of each sensor with respect to its weight.

We thus propose to consider the following rule for each
Poisson coefficient

∀i ∈ V, λi(t) = α+ (1− α)wi(t) (18)

whereα ∈ (0, 1) is a tuning coefficient.
Notice that the global clock remains unchanged since∀t >

0,
∑N

i=1 λi(t) = N . Keeping the global message exchange
rate unchanged, the clock rates of each sensor are improved.
The complexity of the algorithm is the same because the sensor
whose weight changes has just to launch a Poisson clock.

Even if the convergence and the convergence speed with
clock improvement have not been formally established, our
simulations with the BWGossip algorithm (see Fig. 2) show
that it seems to also converge exponentially to the average
more quickly ifα is well chosen.

C. Distributed estimation of the sum

In some cases, distributively computing the sum of the
initial values is very interesting. For example, in the caseof
signal detection, the Log Likelihood Ratio (LLR) of a set of
sensors is separable into the sum of the LLRs of the sensors.
Hence, in order to perform a signal detection test based on the
information of the whole network (using a Generalized LLR
Test for instance), every sensor needs to estimate the sum of
the LLRs computed by the sensors.

An estimate of the sum can be trivially obtained by multi-
plying the average estimate by the number of sensors which
might not be available at any sensor. Another interest of the
Sum-Weight scheme is that the initialization of the weightsof
the sensors enables us to compute different functions related to
the average. Intuitively, as the sum of thes(t) andw(t) vectors
are conserved through time and the convergence to a consensus
is guaranteed by the assumptions on the update matrices,
we get that the sensors will converge to

∑

i si(0)/
∑

i wi(0).
This is obviously equal to the average1/N

∑

i xi(0) with the
initialisation of Eq. (1).



8

Now, if a sensor wants to trigger a estimation of the sum
through the network, it simply sets its weight to1 and sends a
starting signal to the other nodes which set their weights to0.
Mathematically, we then have the following initializationafter
sensori triggers the algorithm

{
s(0) = x(0)
w(0) = ei

whereei is the i-th canonical vector. In this setting, all Sum-
Weight like algorithms converge exponentially to the sum of
the initial value as all the theorems of the paper hold with
only minor modifications in the proofs.

V. COMPARISON WITH EXISTING WORKS

In this section, we will show that our results extend the
works done previously in the literature. In Subsection V-A and
V-B, we compare our results with existing papers dealing with
the design and the analysis of the Sum-Weight like algorithms.
In Subsection V-C, we will observe that our results can even
be applied to the traditional framework of single-variate gossip
algorithms.

A. Comparison with Kempe’s work

In the Kempe’s work [13], the setup is quite different since
the sensors’ updates are synchronous, that is, at each timet, all
the sensors send and update their values. Another important
difference lies in the fact that the communication graph is
assumed to be complete and to offer self-loops, i.e., each
sensor can communicate with any other one, including itself.
The algorithm introduced in [13] is described in Algorithm 2.

Algorithm 2 Push-Sum Algorithm [13]

At each timet, every sensori activates:
◮ The sensori chooses uniformly a nodeji(t) belonging

to its neighborhood (including itself)
◮ The sensori sends the pair(si(t)/2;wi(t)/2) to ji(t)
◮ Let R be the set of sensors that sent information to

i. The sensori updates:
{

si(t+ 1) = si(t)/2 +
∑

r∈R sr(t)/2
wi(t+ 1) = wi(t)/2 +

∑

r∈R wr(t)/2

Consequently, at timet, the update matrix takes the follow-
ing form

K(t) =
1

2
I+

1

2

N∑

i=1

eie
T
ji(t)

(19)

where the indexji(t) is defined in Algorithm 2. Notice that the
first term of the right hand side corresponds to the information
kept by the sensor, while the second term corresponds to
the information sent to the chosen sensor. Moreover, as each
sensor selects uniformly its neighbor2 (including itself), we
obtain that

E[K] =
1

2
I+

1

2
J.

2as the graph is complete, this means, choosing one node uniformly in the
graph.

It is then easy to check that

- the (instantaneous) update matrices are non-negative and
row-stochastic. In addition, they are chosen uniformly in
a set of sizeNN .

- the (instantaneous) update matrices have a strictly posi-
tive diagonal.

- E[K] > 0, thusE[K] is a primitive matrix.

This proves that the Kempe’s algorithm satisfies the assump-
tions (A1), (A2) and(B), and so it converges almost surely to
the average consensus (which was also proven in [13]).

Let us now focus on the convergence speed of the Kempe’s
algorithm. We remind that the convergence speed is driven
by Ψ2(t) (denoted byΦt in [13]). As this algorithm is
synchronous and only applies on a complete communi-
cation graph, it is simple to obtain a recursion between
E[Ψ2(t)|Ψ2(t−1)] andΨ2(t−1). Indeed, the approach given
in the footnote of Section III-C can be applied. More precisely,
the corresponding matrixM = (I− J)E[KKT] (I− J) is
given in closed-form as (see Appendix B-A for details)

M = (I− J)E[KKT] (I− J) =

(
1

2
− 1

4N

)

(I− J) , (20)

and then one can easily check3 that

E[Ψ2(t)|Ψ2(t− 1)] =

(
1

2
− 1

4N

)

Ψ2(t− 1). (21)

Moreover, thanks to Eq. (20), we have thatρ(M) =
(1/2− 1/(4N)) < 1 and thus the inequality in the above-
mentioned footnote has been replaced with an equality and
the spectral radius ofM is less than1. Therefore, the true
convergence speed is provided byρ(M). Comparing this
previous convergence speed (obtained very easily in [13])
with the convergence speed bounds obtained in our paper
is of great interest and will be done below. First of all
we remind (see the footnote in Section III-C) that in the
general case treated in our paper, it is impossible to find a
recursion similar to Eq. (21) which justifies our alternative
approach. Secondly, following the general alternative approach
developed in this paper, we know that the matrix of interest
is R = ((I− J)⊗ (I− J))E [K⊗K] (see Proposition 2).
After some computations (a detailed proof is available in
Appendix B-B), we have that

R =
1

4
(I− J)⊗ (I− J) +

N − 1

4N
vvT (22)

with v = (1/
√
N − 1) (u− (1/N)1N2) andu =

∑N

i=1 ei ⊗
ei.

Consequently,R is a linear combination of two following
orthogonal projections:

• the first projection, generated by(I− J)⊗ (I− J), is of
rankN2 − 2N + 1,

• the second projection, generated byvvT, is of rank1.

As (I− J) ⊗ (I− J) andvvT are orthogonal projections,
the vector spaceRN2

(on which the matrixR is operating)
can be decomposed into a direct sum of four subspaces:

3Note that there is a typo in Lemma 2.3 of [13]. Indeed, the coefficient is
(1/2− 1/(2N)) in [13] instead of(1/2− 1/(4N)).
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• S0 = Im(vvT) ∩ Ker ((I− J)⊗ (I− J))
• S1 = Im(vvT) ∩ Im ((I− J)⊗ (I− J))
• S2 = Ker(vvT) ∩ Im ((I− J)⊗ (I− J))
• S3 = Ker(vvT) ∩ Ker ((I− J)⊗ (I− J))

As ((I− J)⊗ (I− J))v = v (see Appendix B-B), we have
S0 = {0}.

Moreover, according to Eq. (22), we obtain that

Rx =







(
1
2 − 1

4N

)
x ∀x ∈ S1

1
4x ∀x ∈ S2

0 ∀x ∈ S3

As a consequence, the non-null eigenvalues ofR are1/4 and
(1/2 − 1/(4N)) which implies thatρ (R) = 1/2 − 1/(4N).
Hence, the convergence speed bound obtained by our general
alternative approach developed in this paper provides the true
convergence speed for the Kempe’s algorithm [13].

B. Comparison with B́eńezit’s algorithm

In [8], it has been shown that doing a multi-hop communi-
cation between sensors provides significant performance gain.
However, the proposed algorithm relied on a single-variate
algorithm. In order to ensure the convergence of this algorithm,
the double-stochasticity of the matrix update is necessary
which implies a feedback along the route. The feedback can
suffer from link failure (due to high mobility in wireless
networks). To counter-act this issue, Béńezit proposes to get
rid of the feedback by using the Sum-Weight approach [14].
In this paper, the authors established a general convergence
theorem close to ours. In contrast, they did not provide any
result about convergence speed. It is worth noting that our
convergence speed results can apply to the Béńezit’s algorithm.

C. Comparison with the single-variate algorithms

If the following additional assumption holds,

(A3) The matrices ofK are column-stochastic,

one can easily show that all the weightsw(t) remain constant
and equal to1N , i.e.,

∀t > 0, w(t)T = w(0)TP(t) = 1T
NP(t) = 1T

N

and x(t) = s(t) = K(t)Tx(t− 1).

Therefore, the single-variate algorithms ([19]) with double-
stochastic update matrices such as theRandom Gossip[6],
[5], the Geographic Gossip[7] can surprisingly be cast into
the Sum-Weight framework. Moreover asΨ1(t) = ‖x(0)‖22
because all the weights stay equal to1, the proposed results
aboutΨ2(t) (that is Section III-C) can be applied directly to
the squared error for these algorithms.

Let us re-interpret the work of Boydet al. [5] (espe-
cially their section 2) in the light of our results. In [5],
it is stated that under doubly-stochastic update matrices
K(t), the mean squared error at timet is dominated by
ρ
(
E[KKT]− (1/N)1N1T

N

)t
and converges to0 whent goes

to infinity if

ρ

(

E[K]− 1

N
1N1T

N

)

< 1. (23)

Since K(t) is doubly-stochastic, one can remark that
(I− J)E

[
KKT

]
(I− J) = E

[
KKT

]
− (1/N)1N1T

N . By
following the approach developed in the footnote of Sec-
tion III-C, we obtained directly the domination proven in [5].
Moreover, the condition corresponding to Eq. (23) actuallyim-
plies Assumption(B). Indeed, due to Eq. (23) and the double-
stochasticity ofK(t), one can remark that the maximum
eigenvalue ofE[K] is unique and equal to 1. Consequently,
E[K] is primitive, and thus Assumption(B) holds (see Lemma
1). Furthermore, in [5] (see section II-B) , it is stated that
the condition corresponding to Eq. (23) is only a sufficient
condition and that the necessary and sufficient condition is
the following one

ρ

(

E[K⊗K]− 1

N
1N21T

N2

)

< 1 (24)

which is exactly the same expression as that in Lem-
mas 4 and 54. Along with the reasoning detailed in Sec-
tion III-D1, these two lemmas prove that under assumptions
(A1) and (A2), the condition corresponding to Eq. (24) is
eventually necessary and sufficient when assumption(A3) is
also satisfied.

Moreover, according to Eq. (19) (in [5]) and Eq. (16)
(in our paper), we know that the mean squared er-
ror at time t is upper bounded by−κ′t with κ′ =
− log(ρ

(
E[K⊗K]− (1/N)1N21T

N2

)
) > 0. However, as

stated in Proposition 2, the logarithm of the squared error
scales with−κt. Though these two spectral radii are less1 and
so ensure the convergence,ρ ((I− J)⊗ (I− J)E [K⊗K])
(i.e. e−κ) exhibited in our paper is in general smaller than
ρ
(
E[K⊗K]− (1/N)1N21T

N2

)
(i.e. e−κ′

) introduced in [5].
This accounts for our approach when analyzing convergence
speed of gossip algorithms. Numerical illustrations related to
this statement are displayed on Fig. 4.

VI. N UMERICAL RESULTS

In order to investigate the performance of distributed aver-
aging algorithms over Wireless Sensor Networks, the use of
Random Geometric Graphs (RGG) is commonly advocated.
These graphs consist in uniformly placingN points in the
unit square (representing the vertices of the future graph)
then connecting those which are closer than a predefined
distancer. A choice of r of the form

√

r0 log(N)/N with
r0 ∈ [1, .., 10] ensures connectedness with high probability
whenN becomes large and avoids complete graphs (see [20]
for more details). In the following, we consider the mean
squared error MSE(t) , E[‖x(t) − xave1‖22] as an indicator
of the performance of an algorithm.

In Fig. 1, we plot the empirical mean squared error versus
time for different gossip algorithms: i) theRandom Gossip
[6] which is the reference algorithm in the literature; ii) the
Broadcast Gossipintroduced in [10] which uses the broad-
casting abilities of the wireless channel but does not converge
to the average; iii) the algorithm introduced by Franceschelli

4Indeed, as the vectorv used in our formulation can be replaced with
the left eigenvector corresponding to the eigenvalue1 (see the proof of
Lemma 5 for more details) which is proportional to1N here due to the
double-stochasticity of the update matrices
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in [12] which uses a bivariate scheme and seems to converge
(no convergence proof is provided in the paper); and iv) the
proposedBWGossipalgorithm. A Random Geometric Graphs
with N = 100 sensors andr0 = 4 has been considered.
We remark that theBWGossipalgorithm outperforms the
existing algorithms without adding routing or any other kind
of complexity.

In Fig. 2, we plot the empirical mean squared error for the
BWGossipalgorithm versus time with different clock tuning
coefficients (see IV-B and Eq. (18) for more details). Com-
pared to the algorithm without clock management (α = 1), the
convergence is much faster at the beginning withα = 0 but
the asymptotic rate is lower; withα = 0.5, the performance
is better than theBWGossipfor any time.

In Fig. 3, we display the empirical convergence slope5

and the associated lower-boundκ derived in Theorem 2 for
the BWGossipalgorithm versus the number of sensorsN .
Different Random Geometric Graphs withr0 = 4 have been
considered. We observe a very good agreement between the
empirical slope and the proposed lower bound. Consequently,
our bound is very tight.

In Fig. 4, we display the empirical convergence slope, the
associated lower-boundκ, and the bound given in [5] for the
Random Gossipalgorithm versus the number of sensorsN .
The proposed boundκ seems to fit much better than the one
proposed in [5]. Actually, the proposed bound matches very
well the empirical slope (see Section V-C for more details).

Thanks to Fig. 5, we inspect the influence of link failures
in the underlying communication graph on theBWGossip
algorithm. We consider a Random Geographic Graph with
10 sensors andr0 = 1 onto which i.i.d. link failure events
appear with probabilitype. In Fig. 5a, we plot the empirical
mean squared error of theBWGossipversus time for different
values of the edge failure probabilitype. As expected, we
observe that the higherpe the slower the convergence but the
MSE still exponentially decreases. Then, in Fig. 5b, we plot
the empirical convergence slope and the associated boundκ
for different link failure probabilities. Here,κ is computed
according to a modified matrix set taking into account the
link failures through different update matrices. We remarka
very good fitting between our lower bound and the simulated
results. Consequently, computingκ on the matrix set including
the link failures enables us to predict very well the convergence
speed in this context.

VII. C ONCLUSION

In this paper, we have analyzed the convergence of the Sum-
Weight-like algorithms (relying on two variables rather than
one) for distributed averaging in a Wireless Sensor Network.
We especially give a very precise insight on the convergence
speed of the squared error for such algorithms. In addition,
we proposed a particular Sum-Weight-like algorithm taking
full advantage of the broadcast nature of the wireless channel.

5this slope has been obtained by linear regression on the logarithm of the
empirical mean squared error. This regression makes sense since, for inspected
algorithms, the mean squared error in log scale is almost linearfor t large
enough as seen in Fig. 1.

We observed that this algorithm significantly outperforms the
existing ones.

APPENDIX A
PROOF OFLEMMA 1

(B) ⇒ (B1) Let denote byK(u,v) a matrix of K whose
(u, v)-th coefficient is positive. As the graph associated with
E [K] is strongly connected, then for all couples of nodes
(i, j), there is a path of finite lengthLij < N from i to j:
(i = u1, ..., uLij

= j). Consequently, the matrixKi→j =

K(u1,u2)K(u2,u3)...K(uLij−1,uLij
) verifies: (Ki→j)i,j > 0

which gives us a realization ofP(Lij) verifying (P(Lij))i,j >
0.
(B1) ⇒ (B2) Let us takeL =

∑N

i,j=1 Lij < 2N2. Since each
matrix has a positive diagonal according to Assumption(A2)
then

∏N

i,j=1 K
i→j is a possible realization ofP(L) of strictly

positive probability which is a positive matrix.
(B2) ⇒ (B3) If there is aL < 2N2 and a realizationp of
P(L) so thatP[P(L) = p] > 0 andp > 0, thenp⊗p is also
positive. Since(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) for any
matricesA,B,C,D with the appropriate dimensions,

(E [K⊗K])
L
=

(
M∑

i=1

piKi ⊗Ki

)L

≥ P[P(L) = p]p⊗p > 0.

Hence,E[K⊗K] is a primitive matrix.
(B3) ⇒ (B) First, we will calculateE [K]⊗E [K] with respect
to E [K⊗K]. So,

E [K]⊗ E [K]=

M∑

i=1

M∑

j=1

pipjKi ⊗Kj

≥
M∑

i=1

p2iKi ⊗Ki ≥ (min
j

pj)

M∑

i=1

piKi ⊗Ki

= (min
j

pj)E [K⊗K]

Hence as it existsk such that (E [K⊗K])
k

> 0, then
(E [K])

k
> 0 so the primitivity ofE [K] is proven.

APPENDIX B
DERIVATIONS RELATED TO SECTION V

A. Derivations for Eq. (20)

According to Eq. (19), we have easily that

K(t)K(t)T =
1

4
I+

1

4

N∑

i=1

eie
T
ji(t)

+
1

4

N∑

i=1

eji(t)e
T
i

+
1

4

N∑

i=1

N∑

i′=1

eie
T
ji(t)

eji′ (t)e
T
i′

By remarking thateTj ej = 1, we have

K(t)K(t)T =
1

2
I+

1

4

N∑

i=1

eie
T
ji(t)

+
1

4

N∑

i=1

eji(t)e
T
i

+
1

4

N∑

i=1

N∑

i′=1
i′ 6=i

eie
T
ji(t)

eji′ (t)e
T
i′
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The randomness inK(t)K(t)T is only due to the choice of
the nodesji(t) for i = {1, · · · , N}. Therefore, eachji(t) will
be modeled by a random variableℓ(i) (independent oft). The
random variables{ℓ(i)}i=1,··· ,N are i.i.d. and are uniformly
distributed over{1, · · · , N}. As a consequence, we obtain

E[KKT]=
1

2
I+

1

4

N∑

i=1

ei

(

1

N

N∑

k=1

eTk

)

+
1

4

N∑

i=1

(

1

N

N∑

k=1

ek

)

eTi

+
1

4

N∑

i=1

N∑

i′=1
i′ 6=i

ei




1

N2

N∑

k,k′=1

eTk ek′



 eTi′

By remarking thateTk ek′ = 0 as soon ask 6= k′, we have
∑N

k,k′=1 e
T
k ek′ = N . Furthermore,

as
N∑

k=1

ek = 1N and
N∑

i=1

N∑

i′=1
i′ 6=i

eie
T
i′ = 1N1T

N − I

we obtain E[KKT] =

(
1

2
− 1

4N

)

I+
3

4
J

It is then straightforward to obtain Eq. (20).

B. Derivations for Eq. (22)

Once again, according to Eq. (19), we have directly that

K(t)⊗K(t) =
1

4
I⊗ I+

1

4

(
N∑

i=1

eie
T
ji(t)

)

⊗ I (25)

+
1

4
I⊗

(
N∑

i=1

eie
T
ji(t)

)

+
1

4

(
N∑

i=1

eie
T
ji(t)

)

⊗
(

N∑

i′=1

ei′e
T
ji′ (t)

)

︸ ︷︷ ︸

, ξ

Using the same technique as in Appendix B-A , we obtain
that

E

[
N∑

i=1

eie
T
ji(t)

]

=

N∑

i=1

ei

(

1

N

N∑

k=1

ek

)

= J (26)

Thus, it just remains to evaluateE[ξ]. Let us first remark that

ξ =
N∑

i=1

N∑

i′=1
i′ 6=i

eie
T
ji(t)

⊗ ei′e
T
ji′ (t)

+
N∑

i=1

eie
T
ji(t)

⊗ eie
T
ji(t)

As a consequence, we have

E[ξ] =
1

N2

N∑

i=1

N∑

i′=1
i′ 6=i

N∑

k=1

N∑

k′=1

eie
T
k ⊗ ei′e

T
k′

+
1

N

N∑

i=1

N∑

k=1

eie
T
k ⊗ eie

T
k

=
1

N2

N∑

i=1

N∑

i′=1

N∑

k=1

N∑

k′=1

eie
T
k ⊗ ei′e

T
k′

+
1

N

N∑

i=1

N∑

k=1

eie
T
k ⊗ eie

T
k − 1

N2

N∑

i=1

N∑

k=1

N∑

k′=1

eie
T
k ⊗ eie

T
k′

Using the well-known result on Kronecker product ((AB)⊗
(CD) = (A ⊗ C)(B ⊗ D) for four matricesA, B, C, and
D with appropriate sizes), we have

E[ξ] = J⊗ J+
1

N
uuT − 1

N2
u1T

N2 . (27)

Putting Eqs. (26)-(27) into Eq. (25), we get

4E [K⊗K] = I⊗I+J⊗I+I⊗J+J⊗J+
1

N
uuT− 1

N2
u1T

N2 .

Before going further, let us remark that

((I− J)⊗ (I− J))u

=

N∑

i=1

(ei −
1

N
1N1T

Nei)⊗ (ei −
1

N
1N1T

Nei) (28)

=

N∑

i=1

ei ⊗ ei −
N∑

i=1

(ei ⊗
1

N
1N )

−
N∑

i=1

(
1

N
1N ⊗ ei) +

1

N2

N∑

i=1

1N ⊗ 1N (29)

= u− 1

N
1N2 . (30)

As a consequence, we have

R = ((I− J)⊗ (I− J))E [K⊗K]

=
1

4
(I− J)⊗ (I− J) +

1

4N

(

u− 1

N
1N2

)

uT

− 1

4N2

(

u− 1

N
1N2

)

1T
N2

=
1

4
(I− J)⊗ (I− J) +

1

4N
uuT − 1

4N2
1N2uT

− 1

4N2
u1T

N2 +
1

4N
J⊗ J

Let us remindv = 1√
N−1

(
u− 1

N
1N2

)
. Thanks to Eq. (30),

we have

vvT =
1

N − 1

(

uuT − 1

N
1N2uT − 1

N
u1T

N2 + J⊗ J

)

which straightforwardly leads to Eq. (22).
In addition, note that using Eq. (30), we have

((I− J)⊗ (I− J))v = v.
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Fig. 1: Mean squared error of theBWGossipand other famous
algorithms versus time.
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Fig. 2: Mean squared error of theBWGossipversus time for
different clock management schemes.
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Fig. 3: Empirical convergence slope of theBWGossipand the
associated lower boundκ.

10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Sensors

A
sy

m
pt

ot
ic

 s
lo

pe
 o

f t
he

 lo
ga

rit
hm

 o
f t

he
 M

S
E

Fig. 4: Empirical convergence slope of theRandom Gossip,
the associated lower boundκ, and the bound given in [5].
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(a) Mean squared error versus time for different link failureproba-
bilities.
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(b) Empirical convergence slope and the associated lower bound κ
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Fig. 5: BWGossipanalysis in the presence of link failures.


