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Abstract—Distributed estimation of the average value over a of the broadcast nature of the wireless channel is lessestudi
Wireless Sensor Network has recently received a lot of attention. albeit promising. Therefore, in our paper, we will focus on
Most papers consider single variable sensors and communications o\ eraging algorithms taking into account the broadcastraat
with feedback (e.g. peer-to-peer communications). However, in L
order to use efficiently the broadcast nature of the wireless of the channel. _In order to kgep the number of Commynlcatlons
channel, communications without feedback are advocated. To as low as possible, we forbid the use of feedback links.
ensure the convergence in this feedback-free case, the recgnt In the feedback-free context, one can mention [10]. How-
introduced Sum-Weight-like algorithms which rely on two vari-  ever, even if the algorithm described in [10] converges kjyic
ables at each sensor are a promising solution. In this paper, 15 5 consensus, the reached value is incorrect. This can be
the convergence towards the consensus over the average oéth . ' . .
initial values is analyzed in depth. Furthermore, it is shown explained by th? fact that the sum of t.he Sensor estlmateg 1SN
that the squared error decreases exponentially with the time. constant over time. To overcome this problem, Franceschell
In addition, a powerful algorithm relying on the Sum-Weight et al. [12] proposed to use well-chosen updates on two local
structure and taking into account the broadcast nature of the variables per sensor while using the broadcast nature of the
channel is proposed. channel without feedback link. A more promising alternativ
is to use theSum-Weightscheme proposed by Kempe [13]
and studied more generally byéBEezit [14]. In this setup,
two local variables are also used: one representingstire

The recent years have seen a surge of signal processing ehthe received values and the other representingwtbight
estimation technologies operating in stressful enviramsie of the sensor (namely, the proportion of the sensor activity
These environments do not make possible the use of a fusewmpared to the others). The two variables are transmitted
center so the units/sensors have to behave in a distributgdeach iteration and both are updated in the same manner.
fashion. In various applications, sensors have to comnatmic The wanted estimate is then the quotient of these values. The
asynchronously through wireless channels because of timmvergence of this class of algorithms (without necelysari
lack of infrastructure. Hence, the problem of communiagatinsum-conservation) has been proven in [13], [14]. In cohtras
between the different sensors to estimate a global value ishair convergence speed has never been theoreticallyadgdlu
key issue. The topic was pioneered by Tsitsiklis [2] and isxcept in [13] for a very specific case.
receiving a lot of interest from various communities (seg [3 The goal of this paper is to theoretically analyze the con-
[4], [5] and references therein). vergence speed for any Sum-Weight-like algorithm. As a by-

One of the most studied problems in Wireless Sensproduct, we obtain necessary and sufficient condition fer th
Networks is the average computation of the initial measureenvergence. In addition, we propose a new Sum-Weight-like
ments of the sensors. More precisely, each sensor wantsalgorithm based on broadcasting which outperforms exjstin
reachconsensu®ver the mean of the initial values. A basiones.
technique to address this problem, calRahdom Gossips to This paper is organized as follows: the notations and as-
make the sensors randomly exchange their estimates in paitgptions on the network model and on the Sum-Weight-
and average them. This technique has been widely analyfiké algorithms are provided in Section Il. Section Il is
in terms of convergence and convergence speed in [5], [6]dedicated to the theoretical analysis of the squared efribreo

In the context of asynchronous ad-hoc networks withoatgorithms and provides the main contributions of the paper
fusion centers, finding more efficient exchange protocoks h&ection 1V, we propose new Sum-Weight-like algorithms. In
been a hot topic for the past few years. The proposed improsection V, we compare our results with previous derivations
ments were essentially twofold: i) exploiting the geometrglone in the literature for the Sum-Weight-like algorithns a
of the network to have a more efficient mixing between thaell as the algorithms based on the exchange of a single
values (e.g. [7], [8], [9]) and ii) taking advantage of the&/ariable between the nodes. Section VI is devoted to nuiaeric
broadcast nature of the wireless channels (e.g. [10] withdlustrations. Concluding remarks are drawn in Section. VII
feedback link, and [11] with feedback link). Whereas the use I, MODEL AND ASSUMPTIONS
of network geometry has received a lot of attention, the use '

A. General notations
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Let X be the matrix of the{z;;}: =1, . ~. We will an algorithmic point of view, the row-stochasticity imie
say thatX is positive (resp. non-negative), not&d > 0 that the sum of the values is unchangedt + 1)"1y =
(resp. X > 0), if it has only positive (resp. non-negative)x(t)TK(¢)1x = x(t)T1y whereas the column-stochasticity
coefficients. Furthermore, we will say tha is row (resp. implies that the consensus is stable:xift) = c1y, then
column) stochastic if it is non-negative and if its row sunx(t + 1)T = x(t)TK(t) = c1}K(t) = c1}. For these rea-
(resp. column sum) is equal 1o that is if X1 = 1 (resp. if sons, double-stochasticity is desirable; however usinglye
15, X = 1%). A matrix which is row and column stochastic isstochastic matrices implies a feedback. In addition to the
said to be doubly stochastic. Also, a non-negative mariis  eventual multiple access techniques to implement, it s=pTes
said to be primitive ifX™ > 0 for somem > 1. In addition to a surplus in the number of communications, in particular if a
the standard matrix product, we denote the Kronecker ptodsensor sends information to multiple neighbors. Similaifly

by ‘®". the message is sent through a long route within the network,
In terms of matrix norms, we define i) the Frobeniuthe same route may not exist anymore for feedback in the
norm: X[z £ />, ;lzig? ( alternatively || X[ = context of mobile wireless networks. As these algorithmly on

rely on the exchanges of one variable per sensor, they will be
called single-variatealgorithms in the rest of the paper.

2) Class of Sum-Weight algorithmsTo overcome this
and hence is submult|pl|cat|ve Finally, we definX) as the drawback, a possible method is to use two variables : one
spectral radius of matrixX, that is, p(X) = max; [A;(X)| representing thesum of the received values and another

/Trace( XTX ) ) and ii) the L, vector norm on matrices
as || X[l = Nmax\:c”| The ||-]|, norm is a matrix norm

with {\;(X)} the eigenvalues of matriX. representing the relativeeightof the sensor. For the sensor
at timet, they be respectively writtes; (¢) andw; (t). Writing
B. Network model s(t) = [s1(t),....sn@®)]T and w(t) = [wi(t),...,wn(E)]T,
; both variables will be modified by the same update matrix,
The sensor network will be modeled by a grapb- (V, E X
yagraph (V.B) -0 T S TK (1) andwl(t + 1)T = w(t)TK(1). Finall,

(possibly directed)}) being the set of vertices/sensors aid S
being the set of edges which models the possible links betwdB€ estimate of sensarat time will be the quotient of the

the sensors. We also define the adjacency matrof G as the WO variables,z;(t ) = si(t)/wi(t). The initialization is done
N x N matrix such thatA), ; equalsl if there is an edge from as follows: s(0) = x(0)

1 to 7 and 0 otherwise. We define the neighborhood of each { W<0); 1n (1)
sensori as followsN; = {j € V|(i,j) € E}. Letd; = || '

denote the degree of the sensowhere | A| represents the For the sake of convergence we will need an important
cardinality of the setd. Let d,,,,.. = max; d; be the maximum property: Mass Conservation

degree. N N
Every sensori has an initial valuez;(0) and we define sz'vﬂ si(t) = 22121 2i(0) = Nxqpe )
x(0) = [21(0),...,zx(0)]T. The goal of the network is to >im wilt) = N.

communicate through the edges of the underlying graph to

reach consensus over the mean of the initial values of IEB'S clgarly rewrites a¥t > 0,K(t )1N| — .lN Wh'.Ch for-. h
sensors. A communication and estimation step will be regerr™€SPONdS to sum-conservation as in classic gossip algusit
to as anupdate and leads to row-stochastic updates matrices.

We will assume that the network follows a discrete time
model such that the time is the time of thet-th update. D. Notations for the Sum-Weight scheme
As an example, every sensor could be activated by an in-
dependent Poisson clock. The time would then be counte
as the total number of clock ticks across the network.
will denote z;(t) the i-th sensor estimate at time and

x(t) = [z1(t), ..., n(t)]F.

et us now introduce some useful notations along with

me fundamental assumptions for convergence in the Sum-
eight scheme. Given two vectaisandb with the same size,

we denote bya/b the vector of the elementwise quotients.

The Sum-Weight algorithm is described by the following

equations:
C. Averaging Algorithms T
The goal of averaging algorithms is to make the vector x(t) 2 s(t) _ [Sl(t) - sn(t)
of estimatesx(t) converge t0z...1y, also known as the w(t)  Lwi(?) wn (1)
_ T i
c?nﬁens_u_s Ivecltpwhefreﬁme = (1/N|)1th(0) is the average sT(t+1) =sT(OK() = xT(0)P(¢)
of the initial values of the sensors. In the present statief wl(t+1) = wl(t)K(t) = 1TP(1)

art, two classes of algorithms exist and are described below
1) Class of Random Gossip algorithmist standard gossip with P(¢) = K(1)K(2) ... K(%).

algorithms (e.g. [5]), sensors update their estimate @aogr  We can notice that reaching consensus is equivalent(figr

to the equationx(t 4+ 1)T = x(¢)TK(t) where theK(t) are to converge to the consensus linky wherec is consensus

doubly-stochastic matrices. Since two sensors can exehawnglue. For this reason, it is useful to defilie= (1/N)1x17%

information only across the edges of the graph, for arfie orthogonal projection matrix to the subspace spanned

i # j, (K(t));,; cannot be positive if(A); ; = 0. From by 15 and (I —J) the orthogonal projection matrix to the



complementary subspace which can be seen as the error hy- [1l. M ATHEMATICAL RESULTS
perplane. The matriX is the identity matrix with appropriate A, preliminary results
size.

In order to intuitively understand the algorithm behaviet,
us decompose ™ (¢) as follows

The assumption(B) can be re-written in different ways
thanks to the next Lemma.

Lemma 1. Under assumption§Al) and (A2), the following

ropositions are equivalent tB) :
(1) xT(O)P(®) i K )

xT(t) = = . (B1) Y(i,j) € {1,..,N}? 3L;; < N and a realization of

w (t) w (t) P(L”) Verifying P(Lij)i,j > 0.
_ xN0)JP(t)  x"(0)(I-T)P(t) (B2) 3L < 2N? and a realization of?(L) which is a positive
B wT(t) wT(t) matrix.

TaveINP(t)  xT(0)(I - J)P(t) (B3) EK®K] = Zi]‘il p:K; ® K; is a primitive matrix.

13 P(t) wi(t) The proof is reported in Appendix A. This Lemma will be
r o xXT0)I-J)P(t) very useful in the sequel since it enables us to interpret the

= Tavely + wT(t) ®) Assumption(B) in various manners.

) ) ) ) Our approach for analyzing the convergence of Sum-Weight
Obviously, the algorithm will converge to the right consess a|gorithms is inspired by [13] (with a number of important
if the second term in the right hand side vanishes. Actuallyifferences explained below) and so relies on the analyisis o
under some mild assumptions related to the connectednesgnaf squared ErrorSE). Actually, the Squared Error can be

the network, we expect the numerator which corresponds t@gper-bounded by a product of two terms as follows
projection on the error hyperplane will converge to zerorat a

N

exponential rate while all the elements wf(¢) are of order 2 2

. . t) — 1|5 = i(t) — 5

one. Proving these results will be the core of the paper. IP(t) = Zave 13 z; [2:(t) = ave ©®)
-

L t )
E. Assumptions on the update matrid€$t) B ; w;(t)? [3:(t) = Zaverws(t)
First, we will always assume that both following conditions 1 N L
will be satisfied by any update matrix associated with a Sum-= e z: (0P (t) — = 21.(0 Pt
Weight like algoriilhm.y i ;wi(t)Q ; sOFF () NZ H )Z it
(Al) Matrices{K(t)},., are independent and identically < W, (t)Wy(t) (6)
distributed (i.i.d.), and row-stochastic. The matrix
K(t) is valued in a setC = {K;},_, ,, of size
M < oo. Also, p; £ PK(t) = K;] > 0. with v = X0l e
(A2) Any matrix in K has a strictly positive diagonal. [min wy ()]
The first assumption is just a reformulation of thrass con- N N
servationproperty introduced in section 11-C2 along with the Uy(t) = Z Z ‘ (PT(t) (I- J))i
assumption of a finite number of actions across the network. i=1j=1
At each iteration, a sensor can perform any linear comlamnatintice that the decomposition done in Eq. (6) mimics Eq. (3)
of the network sensors values with non-negative, summingf§ the Squared Error.
1, coefficients. The second assumption forces every sensor t¢rom now, our main contributions will be to understand the
keep part of the information it had previously. We also defingehavior of both terms; (t) and W, (¢) whent is large. In
Section IlI-B, we will prove that there is a constalit < oo
{ mi = ming j p {(Kk)i,j (Kk); ;> 0}» (4) such that¥,(t) < K infinitely often with probabilityl. The

2
- (8)

pr = ming {P [K(t) = Kj]} = ming p;, > 0. term Wy(¢) represents the projection of the current sensor
values on the orthogonal space to the consensus line. The
In addition to both previous assumptions, we will segnalysis of this term is drawn in Section IlI-C.
that next assumption plays a central role in the convergence
analysis of any Sum-Weight like algorithm. B. Analysis ofl; (¢)

(B) E[K]=>", pK; is a primitive matrix. This term depends on the inverse of the minimum of the

In terms of graph theory, matri[K] stands for the sensors weights (see Eq. (7)) and thus can increase quickly.
adjacency matrix of a weighted directed graph (see [1Bowever, the sensors frequently exchange information and
Def. 6.2.11]). Since it is primitive, this graph is stronglyhence spread their weight so the probability that a nodehteig
connected (see [15, Cor. 6.2.18]). Observe that this grakéeps decreasing for a long time is very small. We will work
contains a self-loop at every node due to Assumpts2). In  on this probability and show that it can be made as small
fact, the matrixA + I coincides with the so-called indicatoras one wants considering a sufficiently long amount of time.
matrix ([15, Def. 6.2.10]) off[K]. This will enable us to prove that there exigts < oo such



that P[ {¥,(¢t) < K} infinitely often = 1. To obtain these C. Analysis of¥y(t)

results, some preliminary lemmas are needed. _ This section deals with new results abouit (). These
First, we will focus on the behavior of the nodes weightgesyits extend dramatically those given in [13] since we
and especially on their minimum. One can remark that gbnsider more general models fa€(t) and any type of

greater than or equal tb (as the weights are non-negative

andvt > 0,3, w;(t) = N because of the mass conservation Uo(t) = X =T) PO % ©)
exhibited in Eq. (2)). Asw(to +t)T = w(t)TP(tg,to + t)

where P (tg,to +t) = K(to)...K(to + t), it is interesting to
focus on i) the minimum non-null value @ (¢o,t, + ¢) and
ii) on the instants wher® (¢, to + t) is positive.

One technique (used ire.g. [5]) consists in writing
E[W,(t)] = Trace ((I—J)E [P(¢t)PT(t)] (I—J)) thanks to
Eq. (9) and finding a linear recursion betwegW(t)| o (t —

1)] and U5(t — 1). However this technique does not work in
Lemma 2. For all ¢,#, > 0, all the non-null coefficients of the most general case

P(tg,to +t) are greater than or equal témx)®. Therefore, as proposed alternatively in [5] (though not
essential in [5]) in the context of Random-Gossip Algorithm
(see Section II-C1), we writd/(t) with respect to a more
complicated matrix for which the recursion property is easi
to analyze. Indeed, recalling that for any mathk,

Proof: Let us recall thatn is the smallest non-null entry
of all the matrices belonging to the gétas defined in Eq. (4).
Let us consider the random matdX(¢) (as the matrix choice
is i.i.d., we drop the offsety). We will then prove this result

by induction. It is trivial to see that every non-null coeiiat IM||3 = Trace (MM")
of P(1) = K(1) is greater thanni and as and Trace(M®M) = (Trace(M))’
N .
(B(1))iy = D (Pt = 1)), (K(0) one can find that

2 (1) = [IE(0) |

it is obvious that if (P(t)), ; > 0, then there is a term in with

the sum that is positive (we remind that all the coefficient Et)=I-9HPH) o I-I)P().

here are non-negative). This term is the product of a p@sitiéy remarking that(I — J) P(¢) (I— J) = (I—J)P(¢), and
coefficient of P(t — 1) and a positive coefficient oK(t). p sing standard( prop)ertigag (on th)e Kr(oneck)er <|020duct, we
Hence, if all the non-null coefficients d?(t — 1) are greater | o o

than (mx)*~!, then any non-null coefficient d(¢) is greater

than (mx ) ~L.mx = (mx)t. So, by induction, we have that Z(¢t)= (I-J)P(t—1)(I—-J)K(¢)

?t >)t0 every non-null coefficient ofP(¢) is greater than ® I-IPEt—1)T-I)K()

mic)". | =4 _ _ _

Thanks to Iten{B2) of Lemma 1, there is a finité such that = Et-DIT-De@-1)KEe K@) (10
there exists a realization @& (L) which is a positive matrix. By considering the mathematical expectation given therahtu
Considering the time at multiples &f, we know that for any:, filtration of the past event$; | = o (K(1),--- ,K(t — 1)),
if P(nL+1,(n+1)L) > 0 then for alli, w;((n+1)L) > mE. we obtain

Let us define the following stopping times:
g stopping E[2()|F 1] =2t - 1) (I-T e (- I)EKK].

T0 — 0 2
(. ; AsZ(0) = I-J)@d-J) and (I-I)e@(I-J))" =
{ T = L x min {J P ke (L1, (k4 1) 0)>0) = ”} (I-J)® (I-1J), we finally have
where 1 is the indicator function of event. And, E[2(t)] = R. (11)
An =Tn — Tn—1 n = 1,...,00. with
R=((I-J)@(I-J) EK&K]. (12)

The 1ypr+1,(k+1)0)>0) are i.i.d. Bernoulli random variables
with strictly positive parametep. Thus the inter-arrival times  Now one can find a simple relationship between, (t)]
A, are i.i.d. and geometrically distributed up to a multiplicaand the entries of the matri®[= (¢)] by consideringQ(t) =
tive factorL i.e. P[A; = k] = p*~!(1—p) for k > 1. Observe

that the {7, },,~o are all finite and converge to infinity with ‘we have W (t)|Wa(t - D] =

o : . Trace (I-J)P(t—1) (I-J)E [KKT] (I-J)P(t — 1)(I-J)).
probability one. We then have proven the following result: By introducing the matrix 1\£1 :] (1-3)E [KKT] (- J),

i ; it is easy to link E[Wa(t)|¥a(t — 1)] with Wa(t — 1) since
Pr9p03|t|0n 1. Under Assumpno_n'%l), (A2), a'nd(B), Fhe.re E[Wo(t)|Wa(t — 1)] < ||M]|spPa(t — 1) where | - ||sp is the spectral
exists a sequence of positive i.i.d. geometrically disteld norm (see [15, Chap. 7.7] for details). Unfortunately, imsocases|| M|,

random variables{A,, },,~o such that for alln > 0 can be greater than 1; indeed for tB&VGossipalgorithm (introduced in
Section IV-A), one can havéM||s, > 1 for some underlying graphs.
2 —2L i i i i .
\Ijl(Tn) < ||X(O)||2(mIC) Nevertheless, thiBWGossipalgorithm converges as we will see later. As

a consequence, the inequaliBjWq(¢)|Wa(t — 1)] < |[M|sp¥2(t) is not
tight enough to prove a general convergence result and enethy has to

n
wherer, =" | Ay, be found.



(I-J)P(t) and (Q(t)), ; = ai;(t). After simple algebraic
manipulations, we show thati, j, k,1) € {1,--- ,N}*

EEODiyk-1)n a1y = Elgij (t)gr ()]

According to Eq. (9), we havE[¥»(t)] = E[||Q(t)||%] which
implies that

N N
E[Wa()] :.ZE [q7;(1)] :_Z(E E®Di+—1yNj+G-1)N -

As a consequence, the behavior of the entriéS[af(¢)] drives
the behavior ofE[¥4(t)].
Using the Jordan normal form dR and the L., vector

Remarking thaE(t)1 52 = 0, we have for any vectoy,
E[E®)|Fi-1]=EZ(t—1) (E[K®K] — 1y2vT)
and then, for any vectov,

E[=(t)] = E(0)S} (16)

with Sy = E[K @ K|—1x2vT and=(0) = (I - J)@(I - J).

By considering Eq. (16), it is straightforward to see that
E [Z(¢)] converges to zero asgoes to infinity if there is a
vector v such thatp(S,) < 1. However, this condition is
only sufficient whereas the one derived from Eqg. (11) is a
necessary and sufficient condition. AES,) < 1 implies the

norm on matrices (see [15, Chap. 3.1 and 3.2]), we get tf@nvergence off [=(¢)] and as the convergence &f=(1)]

there is an invertible matri$ such that
IR . = lISA's™H | . < ISl IS~ I Al @3)

where A is the Jordan matrix associated wikh

After some computations, it is easy to see that the absolute
value of all the entries oA’ are bounded in the following follo

way:

 Jnax [(AD)ig] <

t ) p(R)"™

max
0<j<J—1\t — J

implies that p(R) < 1, one thus can state the following
Lemma:

Lemma 4. If there is a vector v such that

p(EK®K]—1y:vT) <1, thenp(R) < 1.

One of the most important result in the paper lies in the
wing Lemma in which we ensure that, under Assump-
tions (A1), (A2), and (B) there is a vectorv such that
p(E[K®K]—1y2vT) <1 and thusp(R) < 1.

Lemma 5. If AssumptiongAl), (A2), (B) hold, there is a

with J the maximum size of the associated Jordan blockgectorv such thatp (E[K @ K] — 1y2v?') < 1.

Hence,Vt > 0

AYRPE A t—J+1
 max (A9 <t p(R)

(14)

WhenR is diagonalizable)J = 1, and we get that

max [(A"); ;| < p(R)" (whenR is diagonalizable)
1<i,j<N (15)

Putting together Egs. (11), (13), (14), (15), and remarking

that the subspace spannedby- = 15 ® 1y is in the kernel

of R, we get that the size of the greatest Jordan block is

< N — 1, hence the following lemma:
Lemma 3. We have
E[W5(t)] = O (" 2p(R)")

whereR is defined in Eq. (12) and whepgR) is the spectral
radius of the matrixR.

Proof: AssumptiongAl), (A2), and(B) imply that

i) E[K ® K] is a non-negative matrix with a constant row
sum equal to one (because of the row-stochasticity).
According to Lemma 8.1.21 in [15], we hayg¢E[K ®
K]) =1.

) E[K ® K] is a primitive matrix (se€B3) in Lemma 1)
which implies that there only is one eigenvalue of max-
imum modulus. This eigenvalue is thus equallt@nd
associated with the eigenvectby-.

By using the Jordan normal form and the simple multiplicity
of the maximum eigenvalue (equal 1y we know that i) there
exists a vectow; equal to the left eigenvector corresponding
to the eigenvaluel, and ii) that the set of the eigenvalues
of E[K® K] — 152v] = S,, are exactly the set of the
eigenvalues off [K @ K| without the maximum one equal
to 1. Indeed the maximum eigenvalue BfK © K] has been
removed by the vectat y2v] and the associated eigenvector

The next step of our analysis is to prove that the spectighy pelongs to the kernel d8,,. As a consequence, the

radius p(R) is strictly less thanl when AssumptiongAl),

modulus of the eigenvalues 8f,, is strictly less thar, i.e,

(A2), and (B) hold. Applying Theorem 5.6.12 of [15] on p(Sy,) < 1. ™

Eqg. (11) proves thap (R) < 1 if and only if E[=(¢)]

Aggregating successively the results provided in Lemmas

converges to zero as goes to infinity. Therefore our nexts 4 and 3 leads to the main result of this Section devoted
objective is to prove that [=(¢)] converges to zero by Usingyg the analysis off,(t). Indeed, Lemma 5 ensures that there

another way than the study of the spectral radiuRof
Actually, one can find another linear recursion &)
(different from the one exhibited in Eq. (10)). We get

E)=2(t—-1)(K(t) @ K(t))

and, by taking the mathematical expectation given the past,

we obtain

E[Z(t)|F1] =2t - 1)EK 2 K].

is a vectorv such thatp(Sy) < 1, then Lemma 4 states that
p(R) < 1. Then, Lemma 3 concludes the proof for the next
result.

Proposition 2. Under AssumptionfAl), (A2) and (B) holds,
en
E[W2(t)] = O (t" %)

with k = —log (p (R)) > 0.



D. Final results We have additional result on another type of convergence

Thanks to the various intermediate Lemmas and Propof@! X(¢). AS [|x() — Zavc1n||o IS @ non-increasing sequence,
tions provided above, we are now able to state the main TH¥E have, for any, [|x(¢) — zaveln|[loo < [[%(0) = Zaveln o
orems of the paper. The first one deals with the determinatifiich implies thatx(¢) is bounded for anyt > 0. As a
of the necessary and sufficient conditions for Sum-Weiiiet-I Consequence, according to [16], singer) also converges
algorithms to converge. The second one gives us an insight®Aost surely tozq..1y, we know thatx(t) converges to
the decrease speed of the Squared Error (defined in Eq. (8)kely in L? for any positive integep. The convergence of

In the meanwhile, we need the following lemma: the mean squared error af(t) thus corresponds to the case
: p=2.
Lemma 6. ||x(t) — Taveln|loo = max; |7;(t) — Tavel IS a
_ ) consensus:,,.1y then the mean squared error (MSE) con-
Proof: One can remark that, at time+ 1, we have verges to zero.
N (K)i st
Vi, ai(t+1) = > i1 (K)ijsi(t) 2) Result on the convergence spe€the next result on
' vazl(K)i,jwi(t) the convergence speed corresponds to the main challenge and
N novelty of the paper. Except in [13] for a very specific case
= > (K):jwi(t) () (cf. Section V-A for more details), our pa ides thstfi
= 5 . , paper provides thetfir
=\ e (K e we(t) general results about the theoretical convergence spediefo

where K corresponds to any matrix ik. Soxz;(t + 1) is a squared error of the Sum-Weight like algorithms. For theesak

center of mass ofx;(t)}i—1.._ . Thereforeyj € {1,..., N}, of this theorem we introduce the following notation: given
N two sequences of random variableX,, },,~o and {Y;, } >0,
( (K); jwi(t) 1:(t) — Tave] we will say thatX,, = 0a5(Y5,) if X,,/Y,, — 0 almost surely.
7 - Yave
(t)

"rj(t+1>_xuve| SZ N
> o= (K)ejwe Theorem 2. Under AssumptiongAl), (A2), and (B), the

.....

i=1
gln?X|1'i(t) — Tayel- squared error §E) is non-increasing. Furthermore, it is
bounded by an exponentially decreasing function as follows

1) Result on the convergencket us consider that Assump-  SE(7,) = ||x(75,) — Zaveln |3 = 0as. (T e ™)
tion (B) does not hold. Thanks t@B1l) in Lemma 1, this
is equivalent to3(k,l) € N? such thatvT, P(T); = 0. with « o — log (p(((I__ J)_® (I- J).).E [K ®K])) > 0 and
Let us takex(0) equal to the canonical vector composedr = 2-i—1 Ai @s defined in Proposition 1.

by a1 at the k-th position and0 elsewhere. Then for any  This result tells us that the slope afg(SE(t)) is lower-
t > 0, z;(t) = 0 which is different fromz,,. = 1/N. bounded by infinitely often which provides us a good insight
Consequently, the algorithm does not converge to the traBout the asymptotic behavior of(t). Indeed, the squared
consensus for any initial measurement. So if the Sum-Weighror will vanish exponentially and we have derived a lower
algorithm converges almost surely to the true consensus f@iund for this speed. We believe this result is new as it may
any initial vectorx(0) then Assumptior(B) holds. foretell any algorithm speed. The particular behavior & th
Let us now assume that AssumptidB) holds. Using weights variables in this very general setting does not lenab
Markov’s inequality along with Result 2, we have a fin¢ us to provide a clearer result about the mean squared error;

such that for any > 0, however for some particular algorithms (e.g. single-varia
1 ones) this derivation is possible (see Section V for more
ZP [W2()] > 9] < 5 ZEH%“)H details). The authors would like to draw the reader’s aitbent
=0 . £>0 to the fact that the main contribution of the paper lies in the
< gKZtN‘Qe—“t < 00. exponential decrease constant
>0 Proof: To prove this result we will once more use the

Consequently, Borel-Cantelli's Lemma leads to the almogecomposition of the squared error introduced in Eq. (6). We
sure convergence a,(t) to zero. In addition, the random know from Proposition 2 thal[t e ¥, (t)] = O(t~2). By
variables{r, },~o provided in the statement of Proposition ;Markov's inequality and Borel-Cantelli's lemma,
converge to infiqity with pr_obability one, hencky(7,,) — 0 1N Rty (1) 0 almost surely.
almost surely. Sinc&(7,,) is bounded¥,(7,,)¥a(7,) — t—o0

n— . .
0 almost surely. According to Lemma 6x() — Z4peln|/oo  COMpOsing with the{7, },,>0, We get
is a nonincreasing nonnegative sequence verifyjagt) — =N KTy
ZavelN|loo < U1(t)Pa(t), as there is converging subsequence " 2

with limit 0, the sequence itself converges to the same lingince3C, vn > 0, ¥, (7,) < C, we get the claimed resulm
which implies the following theorem.

Theorem 1. Under AssumptiongAl) and (A2), x(t) con- IV. PROPOSED ALGORITHMS
verges almost surely to the average consensysly for In Subsection IV-A, we propose a new Sum-Weight-like
any x(0), if and only if AssumptioifB) holds. algorithm using the broadcast nature of the wireless cHanne

(1) —— 0 almost surely.
n—oo



which converges and offers remarkable performance. Thésa primitive matrix. Applying Lemma 1 enables us to prove
algorithm is hereafter calleBroadcast-Weighted Gossip (BW-+that AssumptionB) also holds.

Gossip) In Subsection IV-B, a new distributed management Hence, Theorem 1 states that the BWGossip algorithm con-
of the nodes’ clocks which can improve averaging algorithma&rges almost surely to the average consensus and Theorem 2
is proposed. Finally, Subsection IV-C provides an extemsigives us an insight about the decrease speed of the squared
of this work to the distributed sum computation. For the salaror.

of clarity, we assume that the underlying graph is directed

throughout this section. B. Adaptation to smart clock management
. . So far, all the Poisson coefficients of the clocks were iden-
A. BWGossip algorithm tical. This means that all sensors were waking up uniformly

Remarking i) that the broadcast nature of the wirelessid independently from their past actions. Intuitivelyyéuld
channel was often not taken into account in the distributé® more logical that a sensor talking a lot became less active
estimation algorithms (apart in [10] but this algorithm eoeduring a long period.
not converge to the average) and ii) that information prapag Another advantage of the Sum-Weight algorithms is the
tion is much faster while broadcasting compared to pairwig@owledge of how much a sensor talks compared to the others
exchanges [17], we propose an algorithm taking into accoumbich is a useful information. Actually, each sensor knows
the broadcast nature of the wireless channel. At each globdiether it talks frequently or not (without additional gost
clock tick, it simply consists in uniformly choosing a sensaothrough its own weight value because when a sensor talks, its
that broadcasts its pair of values in an appropriate way,thaveight decreases and conversely when it receives infoomati
the receiving sensors add their received pair of values its weight increases. Therefore, our idea is to control the
their current one. A more algorithmic formulation is premeh Poisson coefficient of each sensor with respect to its weight
below. We thus propose to consider the following rule for each

Poisson coefficient

VieV, MN(t)=a+(1—a)wt) (18)

Algorithm 1 BWGaossip

When the sensoi wakes up (at global time):
» The sensoi broadcasts(%; % Where_a € (0,1) is a tuning coefficie_nt.
» The sensors of the neighblorhoﬁd update : Notice that the global clock remains unchanged sivice-

s (t+1) = s;(1) + 5i(t) 0, Zf;l Ai(t) = N. Keeping the global message exchange
Vi € N, { ! ! N rate unchanged, the clock rates of each sensor are improved.
wj(t+1) = w;(t) + w5 The complexity of the algorithm is the same because the senso
) ] osit+1) = IJffii(li1 whose weight changes has just to launch a Poisson clock.
> The sensoi updates : wi(t+1) = % Even if the convergence and the convergence speed with

clock improvement have not been formally established, our

simulations with the BWGaossip algorithm (see Fig. 2) show
Let D = diag(dy,--- ,dy) andL = D — A be the degree that it seems to also converge exponentially to the average

matrix and the Laplacian matrix respectively [18]. Accagli more quickly if « is well chosen.

to this formulation, the update matriK; associated with the

action of thei-th sensor takes the following form C. Distributed estimation of the sum
K, = I—epe] +ee; [(I+D)'(A+T1)] In some cases, distributively computing the sum of the
= I—eef(I+D)"'L (17) initial values is very interesting. For example, in the ca$e

_ _ ~ signal detection, the Log Likelihood Ratio (LLR) of a set of
with e; the i-th canonical vector. Clearly, the update matricesensors is separable into the sum of the LLRs of the sensors.

satisfy the AssumptionfAl) and (A2). Hence, in order to perform a signal detection test based®n th
Thanks to Eq. (17), we obtain that information of the whole network (using a Generalized LLR
1 . Test for instance), every sensor needs to estimate the sum of
EK] = I-5(I+D)"L the LLRs computed by the sensors.
N -1 . An estimate of the sum can be trivially obtained by multi-
= TI +(I+D) (I+A). plying the average estimate by the number of sensors which

might not be available at any sensor. Another interest of the

Sum-Weight scheme is that the initialization of the weigtits

the sensors enables us to compute different functionserktat

the average. Intuitively, as the sum of &) andw (¢) vectors

E[K] > (I+A)>0. are conserved through time and the convergence to a corssensu
(dmaz + 1N is guaranteed by the assumptions on the update matrices,

Since A is the adjacency matrix of a connected graphye get that the sensors will convergeXo, s;(0)/ >, w;(0).

Im > 0,(I+ A)™ > 0. Hence, for the same:, E[K|™ > This is obviously equal to the averageN >, ;(0) with the

1/(dmaxN + N)™(I + A)™ > 0, which implies thatE[K] initialisation of Eq. (1).

As all the involved matrices are non-negative, we hélve-
D) '(I+A)> T+ A)/((dnax+1)N). As a consequence,
we have



Now, if a sensor wants to trigger a estimation of the suiihis then easy to check that

through the network, it simply sets its weightt@nd sends a - the (instantaneous) update matrices are non-negative and
starting signal to the other nodes which set their weights to row-stochastic. In addition, they are chosen uniformly in
Mathematically, we then have the following initializatiafter a set of sizeV ™.
sensor: triggers the algorithm - the (instantaneous) update matrices have a strictly posi-
s(0) = x(0) tive diagonal.
{ w(0) = e - E[K] > 0, thusE[K] is a primitive matrix.

wheree; is thei-th canonical vector. In this setting, all Sum-This proves that the Kempe's algorithm satisfies the assump-

Weight like algorithms converge exponentially to the sum ¢ons (Al), (A2) and(B), and so it converges almost surely to

the initial value as all the theorems of the paper hold witlié average consensus (which was also proven in [13]).
only minor modifications in the proofs. Let us now focus on the convergence speed of the Kempe’s

algorithm. We remind that the convergence speed is driven
V. COMPARISON WITH EXISTING WORKS by Wy(t) (denoted by®; in [13]). As this algorithm is

In this section, we will show that our results extend thgynchronous and only applies on a complete communi-
works done previously in the literature. In Subsection Vaala cation graph, it is simple to obtain a recursion between
V-B, we compare our results with existing papers dealingwitE[¥2(t)[¥2(t —1)] and ¥» (¢ —1). Indeed, the approach given
the design and the analysis of the Sum-Weight like algorthnin the footnote of Section 11I-C can be applied. More prelgise
In Subsection V-C, we will observe that our results can evéfie corresponding matridM = (I—J)E[KK'](I-J) is
be applied to the traditional framework of single-variatsgjp 9iven in closed-form as (see Appendix B-A for details)
algorithms. 1 1

M=I-NEKK'(I-J)= ( - > (I-1J), (20)

. . 2 4N
A. Comparison with Kempe’s work

In the Kempe’s work [13], the setup is quite different sinc8"d then one can easily chetihat
the sensors’ updates are synchronous, that is, at each,tatie 1 1
the sensors send and update their values. Another important E[¥2(0)|¥2(t — 1)] = <2 - 4N> ot =1). (21
difference lies in the fact that the communication graph is
assumed to be complete and to offer self-loops, i.e., eddpreover, thanks to Eq. (20), we have thatM) =

sensor can communicate with any other one, including itselt/2 — 1/(4)V)) < 1 and thus the inequality in the above-
The algorithm introduced in [13] is described in Algorithm 2Mentioned footnote has been replaced with an equality and
the spectral radius oM is less thanl. Therefore, the true

convergence speed is provided yM). Comparing this

Algorithm 2 Push-Sum Algorithm [13] previous convergence speed (obtained very easily in [13])
At each timet, every sensof activates: with the convergence speed bounds obtained in our paper
» The sensof chooses uniformly a nodg(t) belonging is of great interest and will pe dong below. First pf all
to its neighborhood (including itself) we remind (see the footnote in Section IlI-C) that in the

» The sensoi sends the paifs; (t)/2; w;(t)/2) to j;(t) general case treated in our paper, it is impossible to find a
» Let R be the set of sensors that sent information fgcursion similar to Eq. (21) which justifies our alternativ

i. The senso¥ updates: approach. S_econdly, following the general alterna_tiverapq:h
developed in this paper, we know that the matrix of interest
{ sit+1) =si(t)/2+ 3, er sr(t)/2 isR = (I-J)®(I—J))E[K®K] (see Proposition 2).
wi(t+1) =wi(t)/2+ 3, cr wr(t)/2 After some computations (a detailed proof is available in
Appendix B-B), we have that
Consequently, at timg the update matrix takes the follow- R — 1 I-Ned-J)+ vt (22)
ing form 4 4N
N . N
1 1 with v = (1//N —1 —(1/N)1nz) andu=>." ¢ ®
K(t) = 5T+ 5> el oy Y W/ ) (= (1/N)Lyz) andu =3 iy e
i=1

ConsequentlyR is a linear combination of two following

where the indey; (t) is defined in Algorithm 2. Notice that the orthogonal projections:

first term of the right hand side corresponds to the inforomati the first i ted 3 I—7) is of
kept by the sensor, while the second term corresponds tcd ek']r\% prgjifc 'OT' generated Ky — J) ® (I—J), is 0
the information sent to the chosen sensor. Moreover, as each ran ~ +L

o T
sensor selects uniformly its neighBofincluding itself), we « the second projection, generated wy", is of ra_nkl_.
obtain that As (I-J)® (I-J) andvv™ are orthogonal projections,

1 1 the vector spacé{N2 (on which the matrixR is operating)
EK] = jI+3J. can be decomposed into a direct sum of four subspaces:

2as the graph is complete, this means, choosing one node unjfarrtie SNote that there is a typo in Lemma 2.3 of [13]. Indeed, the cdefficis
graph. (1/2—1/(2N)) in [13] instead of(1/2 — 1/(4N)).



e So=Im(vwHnKer(I-J)®(X-17J)) Since K(t) is doubly-stochastic, one can remark that
¢« Si=Im(vwhHNIm(I-J)e(I-1J)) I-J)E[KK?](I-J) = E[KK”] — (1/N)1y1%. By
e So=Ker(vwwh)NIm(I-J)®(d-1J)) following the approach developed in the footnote of Sec-
e S3=Ker(vwh)nKer (I-J)® (I-1J)) tion 111-C, we obtained directly the domination proven in.[5
As((I—J)® (I-J))v =v (see Appendix B-B), we have Moreover, the condition corresponding to Eq. (23) actuiatly
Sy = {0}. plies Assumptior(B). Indeed, due to Eq. (23) and the double-
Moreover, according to Eq (22)’ we obtain that StOChaStiCity OfK(t), one can remark that the maximum
L L eigenvalue ofE[K] is unique and equal to 1. Consequently,
(15 - m) X Vx €S E[K] is primitive, and thus AssumptiofB) holds (see Lemma
Rx=1{ 3% Vx € Sp 1). Furthermore, in [5] (see section II-B) , it is stated that
0 Vx € S3 the condition corresponding to Eq. (23) is only a sufficient

As a consequence, the non-null eigenvalueRadre1/4 and condition and that the necessary and sufficient condition is
(1/2 — 1/(4N)) which implies thatp (R) = 1/2 — 1/(4N). the following one

Hence, the convergence speed bound obtained by our general 1 -

alternative approach developed in this paper providesrtree t P <E[K ® K] - N1N21N2> <1 (24)

convergence speed for the Kempe’s algorithm [13].
g P P g [13] which is exactly the same expression as that in Lem-

mas 4 and % Along with the reasoning detailed in Sec-

B. Comparison with Brezit's algorithm tion 11-D1, these two lemmas prove that under assumptions
In [8], it has been shown that doing a multi-hop communiAl) and (A2), the condition corresponding to Eq. (24) is

cation between sensors provides significant performanice g&ventually necessary and sufficient when assumpi8) is
However, the proposed algorithm relied on a single-variagso satisfied.
algorithm. In order to ensure the convergence of this algr; Moreover, according to Eq. (19) (in [5]) and Eq. (16)
the double-stochasticity of the matrix update is necessdip our paper), we know that the mean squared er-
which implies a feedback along the route. The feedback ct@r at time ¢ is upper bounded by-x't with " =
suffer from link failure (due to high mobility in wireless —log(p (E[K ® K] — (1/N)1y21%.)) > 0. However, as
networks). To counter-act this issueé®zit proposes to get stated in Proposition 2, the logarithm of the squared error
rid of the feedback by using the Sum-Weight approach [14jcales with—«t. Though these two spectral radii are lésand
In this paper, the authors established a general convesged@ ensure the convergence((I—-J)® (I-J)E K ® K])
theorem close to ours. In contrast, they did not provide afiye. e~"~) exhibited in our paper is in general smaller than
result about convergence speed. It is worth noting that oafE[K ® K] — (1/N)1x21%.) (i.e.e=*') introduced in [5].
convergence speed results can apply to teeeBit’s algorithm. This accounts for our approach when analyzing convergence

speed of gossip algorithms. Numerical illustrations esdato

C. Comparison with the single-variate algorithms this statement are displayed on Fig. 4.

If the following additional assumption holds, V1. NUMERICAL RESULTS

(A3) The matrices ok are column-stochastic, In order to investigate the performance of distributed -aver
one can easily show that all the weights¢) remain constant aging algorithms over Wireless Sensor Networks, the use of
and equal tol v, i.e., Random Geometric Graphs (RGG) is commonly advocated.

V> 0, w(t)T = w(0)TP(t) = 11P(t) = 11 Thgse graphs consist in unlformly.placn’j@ points in the
T unit square (representing the vertices of the future graph)

and x(t) =s(t) = K(t) x(t —1). then connecting those which are closer than a predefined

distancer. A choice of r of the form /7o log(N)/N with

stochastic update matrices such as Rendom Gossigé], "0 € [1,..,10] ensures connectgdness with high probability
[5], the Geographic Gossifj7] can surprisingly be cast into when N becomes large and avoids complete graphs (see [20]

the Sum-Weight framework. Moreover as, (t) = [|x(0)]2 for more details). In the following, we consider the mean

a 2 indi
because all the weights stay equalltothe proposed results squared error MSE) = E[||x(t) — za.c1[3] as an indicator

aboutW,(t) (that is Section I11-C) can be applied directly to°' the performance of an algorithm.
In Fig. 1, we plot the empirical mean squared error versus

the squared error for these algorithms. ) X i - e .
Let us re-interpret the work of Boyet al. [5] (espe- time for different gossip algorithms: i) thRandom Gossip

cially their section 2) in the light of our results. In [5]’[6] which is the _rgference algorithm in_the literature; ijet

it is stated that under doubly-stochastic update matricB&oadcast Gossipntroduced in [10] which uses the broad-
K(1), the mean squared error at tinteis dominated by casting abilities of the wireless channel but does not cgave
p (E[1KKT] B (1/N)1N1%)t and converges t6 whent goes to the average,; iii) the algorithm introduced by Francebiche

to infinity if 4Indeed, as the vectov used in our formulation can be replaced with
1 the left eigenvector corresponding to the eigenvaluésee the proof of
o T Lemma 5 for more details) which is proportional 1oy here due to the
P (E[K] N 1N1N> <1l (23) double-stochasticity of the update matrices

Therefore, the single-variate algorithms ([19]) with dmib
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{B1) = (B2) Let us takeL = 3", L;; < 2N?. Since each
matrix has a positive diagonal according to Assump{iag)
then Hf\fj:l K~/ is a possible realization d?(L) of strictly
positive probability which is a positive matrix.

@2 = (B3) If there is aL < 2N? and a realizatiorp of
L) so thatP[P(L) = p] > 0 andp > 0, thenp @ p is also
positive. Since(A ® B)(C ® D) = (AC) ® (BD) for any
HgatricesA,B, C, D with the appropriate dimensions,

M M
E piK; ® K; > (min p;) E piKi @ K;
. j .

1=1 =1

= (min p,)EK©K]

%

in [12] which uses a bivariate scheme and seems to conveklje observed that this algorithm significantly outperforing t
proposedBWGossipalgorithm. A Random Geometric Graphs
with N = 100 sensors andy, = 4 has been considered. APPENDIX A
existing algorithms without adding routing or any otherdin (u,0) .
of complexity. (B) = (B1) Let denote byK a matrix of  whose
BWGossipalgorithm versus time with different clock tuning .[K] 1S strqngly connect_eq, then for al couples‘of nf)des
e : i,7), there is a path of finite length;; < N from ¢ to j:
coefficients (see IV-B and Eq. (18) for more details). Com- , NP
i = ui,..,ur,, = j). Consequently, the matriK'~/ =
U7 ,Us U, U (u iU LJ) YR i—7\ .
convergence is much faster at the beginning with= 0 but K (w2 K w) KMo - t) verifies: (K77);; > 0
the asymptotic rate is lower; with = 0.5, the performance ‘(’)"h'Ch gives us a realization & (Li;) verifying (P(Ly;))i,; >
In Fig. 3, we display the empirical convergence sfop
and the associated lower-bourdderived in Theorem 2 for
Different Random Geometric Graphs with = 4 have been
considered. We observe a very good agreement between
our bound is very tight.
In Fig. 4, we display the empirical convergence slope, t
Random Gossiflgorithm versus the number of sensd¥s (E[K @ K|)"= ZpiKi ® K1> > P[P(L) = p]p®p > 0.
The proposed bound seems to fit much better than the one i=1
well the empiri_cal slope _(see Sectior_1 V-C for more detgils).(B3) — (B) First, we will calculateE [K]©E [K] with respect
Thanks to Fig. 5, we inspect the influence of link failureg, ¢ K ® K]. So
algorithm. We consider a Random Geographic Graph with(K] @E[K]= "> pip;K; 0 K;
10 sensors andy = 1 onto which i.i.d. link failure events i=1j=1
mean squared error of tH®WGossipversus time for different
values of the edge failure probability.. As expected, we
MSE still exponentially decreases. Then, in Fig. 5b, we plot . ' X
the empirical convergence slope and the associated beunéfence as it existse such that(E [K ® K])" > 0, then
according to a modified matrix set taking into account the
link failures through different update matrices. We remark APPENDIXB
resu.lts. Cpnsequently, computing).n the matrix set including A. Derivations for Eq. (20)
the link failures enables us to predict very well the coneerge

(no convergence proof is provided in the paper); and iv) thexisting ones.
We remark that theBWGossipalgorithm outperforms the PROOF OFLEMMA 1
In Fig. 2, we plot the empirical mean squared error for t u, v)-th coefficient is positive. As the graph associated with

pared to the algorithm without clock managementf 1), the . 4
3

is better than th&WGossipfor any time.

the BWGossipalgorithm versus the number of sensa¥s

empirical slope and the proposed lower bound. Consequlen

associated lower-boung, and the bound given in [5] for the < M L

proposed in [5]. Actually, the proposed bound matches VeFYence,]E[K © K] is a primitive matrix.

in the underlying communication graph on tfBWGossip ‘MM

appear with probabilityp.. In Fig. 5a, we plot the empirical

observe that the higher, the slower the convergence but the

for different link failure probabilities. Heres is computed (E[K])" > 0 so the primitivity of E [K] is proven.

very good fitting between our lower bound and the simulated DERIVATIONS RELATED TO SECTION V

speed in this context.

According to Eq. (19), we have easily that

11y 1 Y
VII. CONCLUSION KOK®HT = T+ _ cici + 7 Z e tyer
In this paper, we have analyzed the convergence of the Sum- L lel =t
Weight-like algorithms (relying on two variables ratheath + 7 Z Z €il). (1€ (1) Cir
one) for distributed averaging in a Wireless Sensor Network i=1i=1

We especially give a very precise insight on the convergengg remarking thatTe; — 1, we have

speed of the squared error for such algorithms. In addition; 77 '
we proposed a particular Sum-Weight-like algorithm taking 1 1 N 1 N

- T _ T T

full advantage of the broadcast nature of the wireless aflann ~ K(t)K(t)" = -I+ - D eiel i+ 1 > enwmer
i=1 =1

5this slope has been obtained by linear regression on theitlagaof the 1 N N
empirical mean squared error. This regression makes senge fsinmspected + = Z Z eieT ne ,_/(t)eT
algorithms, the mean squared error in log scale is almost liferat large 4~ QML !
enough as seen in Fig. 1. il

©
I

—
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The randomness iK (¢)K(¢)" is only due to the choice of Using the well-known result on Kronecker produdtAB) ®
the nodegj;(¢) for i = {1,--- , N}. Therefore, each,(¢) will
be modeled by a random varialdg) (independent of). The D with appropriate sizes), we have

random vanables{e( )}Z 1,....n are ii.d. and are uniformly
distributed over{l N} As a consequence, we obtain

T n T k
N ) N &~
Z ekek/ ey

i
kk’ 1

N

D

i=1

By remarking thatele,, = 0 as soon as # £/, we have
fok,:l eler = N. Furthermore,

as Zek:lN and ZZele,_lNlT I
i= 12,/¢}
we obtain E[KK'] = LS § J
N 2 4N

It is then straightforward to obtain Eq. (20).

B. Derivations for Eq. (22)
Once again, according to Eq. (19), we have directly that

K(t) @ K(t) = 71®I+ (Zel J(t)> Q1

N
1 T 1 T
1@ (E :eiem)) +t1 (E :eiejm) ® (
i=1 i=1 =1

(25)

)

T
Z e ejz" (t)

£¢

Using the same technique as in Appendix B-A , we obtafft US

that
N N 1 N
2Saclo] - Ta(yoa) -1 @
i=1 i=1 k=1

Thus, it just remains to evalual&¢]. Let us first remark that

€= ZZeZ €ji(t) ®el'€w(t +Zel

i=14'=1
il #4

() ® €itj, 1)

As a consequence, we have

N N N N

=YY Y adoed

i=14=1k=1k'=1

N N%
+N;k:lezek ® ejef
] NN NN
ZTZZZZ € Qepey
i=114i'=1k=1k'=1
1 NN N N N
+sze’ek ® eep e ZZ Z ciel @ eiel,

(CD) = (A ® C)(B ® D) for four matricesA, B, C, and
1 T 1 T
Putting Eqgs. (26)-(27) into Eq. (25), we get
1 1
EK®K] = I®I+J®I+I®J+J®J+NuuT—mulﬁg.
Before going further, let us remark that
(I-J)oI-J))u
al 1 1
= Z(ez — Nl]\[l}{}@,‘) X (ei — N].Nl%ei) (28)
i 1
al 1
— Zel®eZ ; 2®N1N)
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= u_— i1 (30)
= N N2.

As a consequence, we have

R = (I-J)®(I-J)EK®K]
1 1 1 T
1 1
m (u — N1N2> 1%2
1 . 1
- 1
- mu:‘.]\p + WJ ®J
remindv = \/% (u— %1y2). Thanks to Eq. (30),
we have
vl = L uuT—il zuT—iulT +J®J
N-1 NN N N
which straightforwardly leads to Eq. (22).
In addition, note that using Eqg. (30), we have
(I-J)I-J)v=wv.
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